Information-theoretic Bounds on Learning Network Dynamics

Andrea Montanari
[with Jose Bento and Morteza Ibrahimi]

Stanford University
December 11, 2015

What is this talk about?

How long should I observe a system before I can learn its dynamics?

- Information-theoretic tools
- Tutorial
(no Information Theory background required)

What is this talk about?

How long should I observe a system before I can learn its dynamics?

- Information-theoretic tools
- Tutorial
(no Information Theory background required)

Outline

(1) General approach
(2) Some simple examples
(3) A more advanced application
(4) Conclusion

General approach

General estimation in Hamming metric

- Parameter space $\Theta,|\Theta|<\infty$
- Family of probability measures $\left(\mathrm{P}_{\theta}\right)_{\theta \in \Theta}$ on space \mathcal{X}

Estimator:

Minimax risk

$$
\mathrm{R}_{M}(\Theta)=\inf _{\widehat{\theta}} \max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta)
$$

General estimation in Hamming metric

- Parameter space $\Theta,|\Theta|<\infty$
- Family of probability measures $\left(\mathrm{P}_{\theta}\right)_{\theta \in \Theta}$ on space \mathcal{X}

Estimator:

$$
\begin{aligned}
\widehat{\theta}: \mathcal{X} & \rightarrow \Theta \\
X & \mapsto \widehat{\theta}(X)
\end{aligned}
$$

Minimax risk

$$
\mathrm{R}_{M}(\Theta)=\inf _{\widehat{\theta}} \max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta)
$$

General estimation in Hamming metric

- Parameter space $\Theta,|\Theta|<\infty$
- Family of probability measures $\left(\mathrm{P}_{\theta}\right)_{\theta \in \Theta}$ on space \mathcal{X}

Estimator:

$$
\begin{aligned}
\widehat{\theta}: \mathcal{X} & \rightarrow \Theta \\
X & \mapsto \widehat{\theta}(X)
\end{aligned}
$$

Minimax risk

$$
\mathrm{R}_{M}(\Theta)=\inf _{\widehat{\theta}} \max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta)
$$

Entropy and conditional entropy

$X \sim p_{X}(\cdot)$, probability measure on \mathcal{X}, finite

$$
H(X)=-\sum_{x \in \mathcal{X}} p_{X}(x) \log p_{X}(x)
$$

$(X, Y) \sim p_{X, Y}(\cdot, \cdot)$, probability measure on $\mathcal{X} \times \mathcal{Y}$, finite

Entropy and conditional entropy

$X \sim p_{X}(\cdot)$, probability measure on \mathcal{X}, finite

$$
H(X)=-\sum_{x \in \mathcal{X}} p_{X}(x) \log p_{X}(x)
$$

$(X, Y) \sim p_{X, Y}(\cdot, \cdot)$, probability measure on $\mathcal{X} \times \mathcal{Y}$, finite

$$
H(X \mid Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p_{X, Y}(x, y) \log p_{X \mid Y}(x \mid y)
$$

Two properties

Chain rule

$$
H(X, Y)=H(X \mid Y)+H(Y)
$$

Sub-addittivity

[with $=$ iff independent]

Two properties

Chain rule

$$
H(X, Y)=H(X \mid Y)+H(Y)
$$

Sub-addittivity

$$
H(X, Y) \leq H(X)+H(Y)
$$

[with $=$ iff independent]

Information-theoretic approach

- Assume $\theta \sim \mathbb{P}$:

$$
\begin{aligned}
\max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) & \geq \mathbb{P}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) \\
& \equiv \sum_{\theta_{0} \in \Theta} \mathbb{P}\left(\theta=\theta_{0}\right) \mathrm{P}_{\theta_{0}}\left(\widehat{\theta}(\boldsymbol{X}) \neq \theta_{0}\right)
\end{aligned}
$$

- Fano's inequality

For any distribution \mathbb{P},

Information-theoretic approach

- Assume $\theta \sim \mathbb{P}$:

$$
\begin{aligned}
\max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) & \geq \mathbb{P}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) \\
& \equiv \sum_{\theta_{0} \in \Theta} \mathbb{P}\left(\theta=\theta_{0}\right) \mathrm{P}_{\theta_{0}}\left(\widehat{\theta}(\boldsymbol{X}) \neq \theta_{0}\right)
\end{aligned}
$$

- Fano's inequality

$$
\mathbb{P}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|}
$$

For any distribution \mathbb{P},

Information-theoretic approach

- Assume $\theta \sim \mathbb{P}$:

$$
\begin{aligned}
\max _{\theta \in \Theta} \mathrm{P}_{\theta}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) & \geq \mathbb{P}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) \\
& \equiv \sum_{\theta_{0} \in \Theta} \mathbb{P}\left(\theta=\theta_{0}\right) \mathrm{P}_{\theta_{0}}\left(\widehat{\theta}(\boldsymbol{X}) \neq \theta_{0}\right)
\end{aligned}
$$

- Fano's inequality

$$
\mathbb{P}(\widehat{\theta}(\boldsymbol{X}) \neq \theta) \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|}
$$

For any distribution \mathbb{P},

$$
\mathrm{R}_{M}(\Theta) \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|}
$$

Some simple examples

Toy example

- $\Theta=\left[2^{m}\right] \equiv\left\{1,2, \ldots, 2^{m}\right\}$
- $\boldsymbol{X}=\left(X_{1}, \ldots, X_{T}\right), X_{t} \in\left[2^{m}\right]$ independent given θ.

$$
\mathrm{P}_{\theta}\left(X_{t}=\ell\right)= \begin{cases}1-p\left(1-2^{-m}\right) & \text { if } \ell=\theta \\ p 2^{-m} & \text { otherwise }\end{cases}
$$

How to choose \mathbb{P} ?

Uniform

Toy example

- $\Theta=\left[2^{m}\right] \equiv\left\{1,2, \ldots, 2^{m}\right\}$
- $\boldsymbol{X}=\left(X_{1}, \ldots, X_{T}\right), X_{t} \in\left[2^{m}\right]$ independent given θ.

$$
\mathrm{P}_{\theta}\left(X_{t}=\ell\right)= \begin{cases}1-p\left(1-2^{-m}\right) & \text { if } \ell=\theta \\ p 2^{-m} & \text { otherwise }\end{cases}
$$

How to choose \mathbb{P} ?

Uniform

Evaluating the conditional entropy

$$
\begin{aligned}
& H(\theta)=\log |\Theta|=m \\
& H(\theta \mid X)= H(\theta, X)-H(X) \\
&=H(X \mid \theta)+H(\theta)-H(X) \text { (chain rule) } \\
&=\sum_{i=1}^{T} H\left(X_{t} \mid \theta\right)-H(X)+m \text { (chain rule) } \\
& \geq \sum_{t=1}^{T}\left\{H\left(X_{t} \mid \theta\right)-H\left(X_{t}\right)\right\}+m \text { (subain rule) } \\
&=
\end{aligned}
$$

Evaluating the conditional entropy

$$
\begin{aligned}
& H(\theta)=\log |\Theta|=m \\
H(\theta \mid \boldsymbol{X})=H(\theta, \boldsymbol{X})-H(\boldsymbol{X}) & \text { (chain rule) } \\
=H(X \mid \theta)+H(\theta)-H(X) & \text { (chain rule) } \\
=\sum_{i=1}^{T} H\left(X_{t} \mid \theta\right)-H(X)+m & \text { (chain rule) } \\
\geq \sum_{t=1}^{T}\left\{H\left(X_{t} \mid \theta\right)-H\left(X_{t}\right)\right\}+m & \text { (subadditivity) } \\
=-T\left\{H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right\}+m &
\end{aligned}
$$

Evaluating the conditional entropy

$$
H(\theta)=\log |\Theta|=m
$$

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta, \boldsymbol{X})-H(\boldsymbol{X}) \\
& =H(\boldsymbol{X} \mid \theta)+H(\theta)-H(\boldsymbol{X})
\end{aligned}
$$

(chain rule)
(chain rule)

Evaluating the conditional entropy

$$
H(\theta)=\log |\Theta|=m
$$

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta, \boldsymbol{X})-H(\boldsymbol{X}) \\
& =H(\boldsymbol{X} \mid \theta)+H(\theta)-H(\boldsymbol{X})
\end{aligned}
$$

(chain rule)
(chain rule)

$$
=\sum_{i=1}^{T} H\left(X_{t} \mid \theta\right)-H(\boldsymbol{X})+m
$$

(chain rule)
(chain rule)

$$
\geq \sum_{t=1}^{T}\left\{H\left(X_{t} \mid \theta\right)-H\left(X_{t}\right)\right\}+m
$$

$$
=-T\left\{H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right\}+m
$$

Evaluating the conditional entropy

$$
H(\theta)=\log |\Theta|=m
$$

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta, \boldsymbol{X})-H(\boldsymbol{X}) \\
& =H(\boldsymbol{X} \mid \theta)+H(\theta)-H(\boldsymbol{X})
\end{aligned}
$$

(chain rule) (chain rule)

$$
=\sum_{i=1}^{T} H\left(X_{t} \mid \theta\right)-H(\boldsymbol{X})+m
$$

(chain rule)
(chain rule)

$$
\geq \sum_{t=1}^{T}\left\{H\left(X_{t} \mid \theta\right)-H\left(X_{t}\right)\right\}+m
$$

(subadditivity)

$$
=-T\left\{H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right\}+m
$$

Evaluating the conditional entropy

$$
H(\theta)=\log |\Theta|=m
$$

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta, \boldsymbol{X})-H(\boldsymbol{X}) \\
& =H(\boldsymbol{X} \mid \theta)+H(\theta)-H(\boldsymbol{X}) \\
& =\sum_{i=1}^{T} H\left(X_{t} \mid \theta\right)-H(\boldsymbol{X})+m \\
& \geq \sum_{t=1}^{T}\left\{H\left(X_{t} \mid \theta\right)-H\left(X_{t}\right)\right\}+m \\
& =-T\left\{H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right\}+m
\end{aligned}
$$

(chain rule) (chain rule)
(chain rule)
(subadditivity)

Fano's inequality

$$
\begin{aligned}
\mathrm{R}_{M}(\Theta) & \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|} \\
& \geq 1-\frac{T}{m}\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]-m^{-1}
\end{aligned}
$$

Toy Theorem
Minimax error probability larger than (1/2) - (1/m) unless

Fano's inequality

$$
\begin{aligned}
\mathrm{R}_{M}(\Theta) & \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|} \\
& \geq 1-\frac{T}{m}\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]-m^{-1} .
\end{aligned}
$$

Toy Theorem
Minimax error nrobability larger than (1/2) - (1/m) unless

Fano's inequality

$$
\begin{aligned}
\mathrm{R}_{M}(\Theta) & \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|} \\
& \geq 1-\frac{T}{m}\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]-m^{-1}
\end{aligned}
$$

Toy Theorem

Minimax error probability larger than $(1 / 2)-(1 / m)$ unless

$$
T \geq \frac{m}{2\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]}=\frac{1}{2} \frac{\log |\Theta|}{I\left(X_{1} ; \theta\right)}
$$

Fano's inequality

$$
\begin{aligned}
\mathrm{R}_{M}(\Theta) & \geq \frac{H(\theta \mid \boldsymbol{X})-1}{\log |\Theta|} \\
& \geq 1-\frac{T}{m}\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]-m^{-1}
\end{aligned}
$$

Toy Theorem

Minimax error probability larger than $(1 / 2)-(1 / m)$ unless

$$
T \geq \frac{m}{2\left[H\left(X_{1}\right)-H\left(X_{1} \mid \theta\right)\right]}=\frac{1}{2} \frac{\log |\Theta|}{I\left(X_{1} ; \theta\right)}
$$

Interpretation

$$
T \geq \frac{1}{2} \frac{\log |\Theta|}{I\left(X_{1} ; \theta\right)}
$$

- Each observation yields $I\left(X_{1} ; \theta\right)=H(\theta)-H\left(\theta \mid X_{1}\right)$ bits
- Need to accumulate $\log |\Theta|$ bits

A more 'dynamical' example

$$
t \in\{1, \ldots, T-1\}:
$$

$$
X_{t+1}=\sqrt{1-\theta^{2}} X_{t}+\theta Z_{t}
$$

A more 'dynamical' example

$$
t \in\{1, \ldots, T-1\}:
$$

$$
X_{t+1}=\sqrt{1-\theta^{2}} X_{t}+\theta Z_{t}
$$

- $\theta \in \Theta \subseteq(0,1)$
- $Z_{t} \sim_{\text {i.i.d. }} \mathrm{N}(0,1)$
- $X_{t} \sim \mathrm{~N}(0,1)$ dependent

$|\Theta|=5, \quad T=20$

$|\Theta|=5, \quad T=40$

$|\Theta|=5, \quad T=80$

$|\Theta|=5, T=160$

Conditional entropy

$$
H(\theta \mid \boldsymbol{X})=H(\theta)+h(\boldsymbol{X} \mid \theta)-h(\boldsymbol{X})
$$

$$
\begin{aligned}
& =H(\theta)+\sum_{t=1}^{T} h\left(X_{t} \mid \theta, X_{t-1}\right)-\sum_{t=1}^{T} h\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) \\
& \geq H(\theta)+\sum_{t=1}^{T}\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \quad \text { (stationarity) } \\
& =H(\theta)-T I\left(\theta ; X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Conditional entropy

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta)+h(\boldsymbol{X} \mid \theta)-h(\boldsymbol{X}) \\
& =H(\theta)+\sum_{t=1}^{T} h\left(X_{t} \mid \theta, X_{t-1}\right)-\sum_{t=1}^{T} h\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) \\
& \geq H(\theta)+\sum_{t=1}^{T}\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T I\left(\theta_{;} X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Conditional entropy

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta)+h(\boldsymbol{X} \mid \theta)-h(\boldsymbol{X}) \\
& =H(\theta)+\sum_{t=1}^{T} h\left(X_{t} \mid \theta, X_{t-1}\right)-\sum_{t=1}^{T} h\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) \\
& \geq H(\theta)+\sum_{t=1}^{T}\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T I\left(\theta_{;} X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Conditional entropy

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta)+h(\boldsymbol{X} \mid \theta)-h(\boldsymbol{X}) \\
& =H(\theta)+\sum_{t=1}^{T} h\left(X_{t} \mid \theta, X_{t-1}\right)-\sum_{t=1}^{T} h\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) \\
& \geq H(\theta)+\sum_{t=1}^{T}\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \quad \text { (statii }
\end{aligned}
$$

(stationarity)

Conditional entropy

$$
\begin{aligned}
H(\theta \mid \boldsymbol{X}) & =H(\theta)+h(\boldsymbol{X} \mid \theta)-h(\boldsymbol{X}) \\
& =H(\theta)+\sum_{t=1}^{T} h\left(X_{t} \mid \theta, X_{t-1}\right)-\sum_{t=1}^{T} h\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right) \\
& \geq H(\theta)+\sum_{t=1}^{T}\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \\
& =H(\theta)-T\left\{h\left(X_{t} \mid \theta, X_{t-1}\right)-h\left(X_{t} \mid X_{t-1}\right)\right\} \quad \text { (stationarity) } \\
& =H(\theta)-T I\left(\theta ; X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

A general lemma

Lemma

If P_{θ} is a stationary Markov process, then error probability
$\geq(1 / 2)-(1 / m)$ unless

$$
T \geq \frac{1}{2} \frac{\log |\Theta|}{I\left(\theta ; X_{t} \mid X_{t-1}\right)} .
$$

A general lemma

Lemma

If P_{θ} is a stationary Markov process, then error probability
$\geq(1 / 2)-(1 / m)$ unless

$$
T \geq \frac{1}{2} \frac{\log |\Theta|}{I\left(\theta ; X_{t} \mid X_{t-1}\right)} .
$$

- $I\left(\theta ; X_{t} \mid X_{t-1}\right)$: 'new' information

Bounding the mutual information

$$
\begin{aligned}
I\left(\theta ; X_{t} \mid X_{t-1}\right) & =h\left(X_{t} \mid X_{t-1}\right)-h\left(X_{t} \mid \theta, X_{t-1}\right) \\
& \leq h\left(X_{t}\right)-\mathbb{E}_{\theta} h\left(\theta Z_{t}\right) \\
& =\mathbb{E}_{\theta}\left\{h(\mathbb{N}(0,1))-h\left(\mathbb{N}\left(0, \theta^{2}\right)\right)\right. \\
& =\mathbb{E}_{\theta} \log (1 / \theta)
\end{aligned}
$$

Bounding the mutual information

$$
\begin{aligned}
I\left(\theta ; X_{t} \mid X_{t-1}\right) & =h\left(X_{t} \mid X_{t-1}\right)-h\left(X_{t} \mid \theta, X_{t-1}\right) \\
& \leq h\left(X_{t}\right)-\mathbb{E}_{\theta} h\left(\theta Z_{t}\right) \\
& =\mathbb{E}_{\theta}\left\{h(\mathbb{N}(0,1))-h\left(\mathbb{N}\left(0, \theta^{2}\right)\right)\right. \\
& =\mathbb{E}_{\theta} \log (1 / \theta)
\end{aligned}
$$

Bounding the mutual information

$$
\begin{aligned}
I\left(\theta ; X_{t} \mid X_{t-1}\right) & =h\left(X_{t} \mid X_{t-1}\right)-h\left(X_{t} \mid \theta, X_{t-1}\right) \\
& \leq h\left(X_{t}\right)-\mathbb{E}_{\theta} h\left(\theta Z_{t}\right) \\
& =\mathbb{E}_{\theta}\left\{h(\mathrm{~N}(0,1))-h\left(\mathrm{~N}\left(0, \theta^{2}\right)\right)\right.
\end{aligned}
$$

Bounding the mutual information

$$
\begin{aligned}
I\left(\theta ; X_{t} \mid X_{t-1}\right) & =h\left(X_{t} \mid X_{t-1}\right)-h\left(X_{t} \mid \theta, X_{t-1}\right) \\
& \leq h\left(X_{t}\right)-\mathbb{E}_{\theta} h\left(\theta Z_{t}\right) \\
& =\mathbb{E}_{\theta}\left\{h(\mathrm{~N}(0,1))-h\left(\mathrm{~N}\left(0, \theta^{2}\right)\right)\right. \\
& =\mathbb{E}_{\theta} \log (1 / \theta)
\end{aligned}
$$

Hence

$$
X_{t+1}=\sqrt{1-\theta^{2}} X_{t}+\theta Z_{t}
$$

We need to observe for

$$
T \geq \frac{\log |\Theta|}{2 \mathbb{E}_{\theta} \log (1 / \theta)}
$$

- $T_{\min } \rightarrow \infty$ as $\theta \approx 1$ (\{ $\left.X_{t}\right\}$ independnet - Bad bound, cannot take $\theta \rightarrow 0$

Hence

$$
X_{t+1}=\sqrt{1-\theta^{2}} X_{t}+\theta Z_{t}
$$

We need to observe for

$$
T \geq \frac{\log |\Theta|}{2 \mathbb{E}_{\theta} \log (1 / \theta)}
$$

- $T_{\min } \rightarrow \infty$ as $\theta \approx 1$ (\{Xt $\}$ independnet
- Bad bound, cannot take $\theta \rightarrow 0$

A more advanced application

High-dimensional SDE

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=\mathbf{F}(\boldsymbol{X}(t) ; \theta)+\dot{\boldsymbol{B}}(t)
$$

- $\boldsymbol{X}=\boldsymbol{X}_{0}^{T}=\{\boldsymbol{X}(t)\}_{t \in[0, T]}, \boldsymbol{X}(t) \in \mathbb{R}^{d}$
- $\dot{\boldsymbol{B}}=d$-dimensional white noise: $\mathbb{E}\left\{\dot{B}_{i}(t) \dot{B}_{j}(s)\right\}=\delta_{i j} \delta(t-s)$
- For each $\theta \in \Theta, \mathbf{F}(\cdot ; \theta): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$

Example

Langevin dynamics

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\nabla H(\boldsymbol{X}(t) ; \theta)+\dot{\boldsymbol{B}}(t)
$$

Spin model

Example

Langevin dynamics

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\nabla H(\boldsymbol{X}(t) ; \theta)+\dot{\boldsymbol{B}}(t)
$$

Spin model

$$
\begin{array}{r}
H(x, \theta)=-\sum_{(i, j)} \theta_{i j} x_{i} x_{i}+\sum_{i=1}^{n} V\left(x_{i}\right), \\
\frac{\mathrm{d} X_{i}}{\mathrm{~d} t}(t)=-V^{\prime}\left(x_{i}(t)\right)+\sum_{j=1}^{n} \theta_{i j} x_{j}(t)+\dot{B}_{i}(t)
\end{array}
$$

Information-theoretic lower bound

Fano

$$
T \geq \frac{1}{2} \frac{\log |\Theta|}{I\left(\boldsymbol{X}_{0}^{T} ; \theta\right) / T}
$$

Duncan 1970; Kadota, Zakai, Ziv, 1971

$$
\begin{gathered}
I\left(X_{0}^{T} ; \theta\right)=\frac{1}{2} \int_{0}^{T} \mathbb{E}\left\{\operatorname{Var}\left(\mathbb{F}(t) \mid X_{0}^{t}\right)\right\} d t \\
\mathbb{F}(t) \equiv \mathbb{F}(X(t), \theta)
\end{gathered}
$$

- Interpretation: New information $=\operatorname{Var}\left(\mathbf{F}(t) \mid \boldsymbol{X}_{0}^{t}\right)$

Information-theoretic lower bound

Fano

$$
T \geq \frac{1}{2} \frac{\log |\Theta|}{I\left(\boldsymbol{X}_{0}^{T} ; \theta\right) / T}
$$

Duncan 1970; Kadota, Zakai, Ziv, 1971

$$
\begin{gathered}
I\left(\boldsymbol{X}_{0}^{T} ; \theta\right)=\frac{1}{2} \int_{0}^{T} \mathbb{E}\left\{\operatorname{Var}\left(\mathbf{F}(t) \mid \boldsymbol{X}_{0}^{t}\right)\right\} \mathrm{d} t \\
\mathbf{F}(t) \equiv \mathbf{F}(\boldsymbol{X}(t), \theta)
\end{gathered}
$$

- Interpretation: New information $=\operatorname{Var}\left(\mathbf{F}(t) \mid \boldsymbol{X}_{0}^{t}\right)$

A general lower bound

Theorem (Bento, Ibrahimi, Montanari, 2011; Bento, Ibahimi 2014)
If \boldsymbol{X} is stationary, then

$$
T \geq \frac{\log |\Theta|}{\mathbb{E}\left\{\operatorname{Var}\left(\mathbf{F}(t) \mid \boldsymbol{X}_{0}^{t}\right)\right\}}
$$

Application: Sparse, linear model

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\boldsymbol{X}(t)+\mu \boldsymbol{A}_{G} \boldsymbol{X}(t)+\dot{\boldsymbol{B}}(t)
$$

- $A_{G} \in\{0,+1,-1\}^{d \times d}$ adjacency matrix of a (directed, signed)

Application: Sparse, linear model

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\boldsymbol{X}(t)+\mu \boldsymbol{A}_{G} \boldsymbol{X}(t)+\dot{\boldsymbol{B}}(t)
$$

- $\boldsymbol{A}_{G} \in\{0,+1,-1\}^{d \times d}$ adjacency matrix of a (directed, signed) graph
- $\operatorname{deg}(i) \leq k$
- $\lambda_{\min }\left(\mathbf{I}-\mu A_{G}^{\text {symm }}\right) \equiv 1 / \tau>0$

Application: Sparse, linear model

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\boldsymbol{X}(t)+\mu \boldsymbol{A} \boldsymbol{X}(t)+\dot{B}(t)
$$

Theorem (Bento, Ibrahimi, Montanari, 2011)
In order to learn \boldsymbol{A}_{G}, we need time at least

$$
T \geq C(k) \max \left\{\frac{1}{\mu}, \frac{\tau}{\mu^{2}}\right\} \log p
$$

Application: Sparse, linear model

$$
\frac{\mathrm{d} \boldsymbol{X}}{\mathrm{~d} t}(t)=-\boldsymbol{X}(t)+\mu \boldsymbol{A} \boldsymbol{X}(t)+\dot{\boldsymbol{B}}(t)
$$

Theorem (Bento, Ibrahimi, Montanari, 2011)
In order to learn \boldsymbol{A}_{G}, we need time at least

$$
T \geq C(k) \max \left\{\frac{1}{\mu}, \frac{\tau}{\mu^{2}}\right\} \log p
$$

- Regularized maximum likelihood gets the right scaling [cf. Jose Bento's talk]

Conclusion

Conclusion

- Learning dynamical systems from data
- Largely open
- Information theory gives useful lower bounds

Conclusion

- Learning dynamical systems from data
- Largely open
- Information theory gives useful lower bounds

Conclusion

- Learning dynamical systems from data
- Largely open
- Information theory gives useful lower bounds

Conclusion

- Learning dynamical systems from data
- Largely open
- Information theory gives useful lower bounds

Thanks!

