
Go FUSE and store cookies in
database

Mihael Dimec

Joan and the need to scale

Joan and the need to scale

● Joan is digital door labeling and room
scheduling solution.

● Device is an E Ink(R) e-paper display and WiFi
connected thin client solution.

Joan and the need to scale

● Joan is actually web application supported by
“Visionect server” WebKit instances.

● Joan app. relies on cookies. WebKit back-end
stores persistent cookies trough file-system
only.
●Customers may choose to host in the cloud.
which presents for us a scaling exercise.

Joan and the need to scale
•V-server was (mostly) architectured with
scalability in mind. But until now it was used as
monolith until now.

• Problem: Load balancer can migrate web
sessions between different servers. → Cookies
need global storage.

• Solution: We are already using database to
store such data. → Implement FUSE interface
between database and WebKit, that each
server can mount.

Joan and the need to scale

FUSE: What is it?

● File system in User SpacE

● Allows us to run file system “drivers” in user
space.

● Acts like dispatcher between user space and
kernel space. Specifically through C lib called
“libfuse”, or its replacement written in Go.

FUSE: What is it?

FUSE: How is this useful?

• FUSE is an abstraction layer between data
source and “real” file-system.

• Many data sources can be interpreted as file-
system. (directories, files, read, write, move,
rename, …)

– WikipediaFS

– Cloud storage (Google drive, Dropbox, …)

– Real file-sytems like NTFS-3G

bazil.org/fuse -- Filesystems in Go

•Pure-Go implementation of user-space server
for the Linux and OS X kernel protocols.
•It is a Go replacment for C “libfuse” library

bazil.org/fuse -- Filesystems in Go

● It embraces Go fully for safety and ease of
programming.

● To support file or dir. operation, simply
implement it's interface for file node or open file
handle object.

● Implement only what you need. (func Attr())

bazil.org/fuse -- Filesystems in Go

Implementation
● Engine manages WebKit sessions on the server.

(also does image processing, touch manip.)

● Each engine mounts cookie files to machine local
file system.

● “cookiefs” is now interface between “storage
service” and WebKit instances.

●Networkmanager acts as load balancer and
assignees load to the engines.

Implementation

Potential issues
● There is no cookie file locking, we rely, that NM will

assign each session to one WK instance only.

● Bottlenecks : IPC, Database

● Single point of failure

Questions?

