
Neural Networks with 
Few Multiplications

Zhouhan Lin, Matthieu Courbariaux
Roland Memisevic, Yoshua Bengio

MILA, University of Montreal



Why we	don’t	want	massive	multiplications?

Computationally	expensive	

Faster	computation	 is	likely	 to	
be	crucial	for	further	progress	
and	for	consumer	applications	
on	low-power	devices.

A	multiplier-free	 network	could	
pave	the	way	to	fast,	hardware	
friendly	 training	of	neural	
networks.



Various	trials	in	the	past	decades…

� Quantize	weight	values	(Kwan	&	Tang,	1993;	Marchesi et	al.,	1993).	
� Quantize	states,	learning	rates,	and	gradients.	(Simard &	Graf,	1994)	
� Completely	Boolean	network	at	test	time	(Kim	&	Paris,	2015
� Replace	all	floating-point	multiplications	by	integer	shifts.	(Machado	
et	al.,	2015)

� Bit-stream	networks	(Burge	et	al.,	1999)	substituting	weight	
connections	with	logical	gates.	

� ……



In many cases, neural networks need
only need very low precision

Stochasticity comes with benefits
- Dropout, Blackout. [4][5]
- Noisy Gradients [3]
- Noisy activation functions [2]

Binarization as	regularization?

Low	
precision

stochasticity

Stochastic	
binarization?

Can	we	take	advantage	of	the	impreciseness	of	a	binarization process	so	
that	we	can	have	reduced	computation	load	and	extra	regularization	at	the	
same	time?



Our	approach

• BinaryConnect[Courbariaux,	 et	al.,	2015]	and	
TernaryConnect

• Binarize weights	in	the	forward/backward	
propagations,	but	store	a	full-precision	version	of	
them	in	the	backend.

Binarize weight	values	

• Exponential quantization
• Employ	quantization	of	the	representations	while	
computing	down-flowing	 error	signals	in	the	
backward	pass.

Quantize	backprop



Our	approach

• BinaryConnect[Courbariaux,	 et	al.,	2015]	and	
TernaryConnect

• Binarize	weights	in	the	forward/backward	
propagations,	but	store	a	full-precision	version	of	
them	in	the	backend.

Binarize weight	values	

• Exponential quantization
• Employ	quantization	of	the	representations	while	
computing	down-flowing	 error	signals	in	the	
backward	pass.

Quantize	backprop

*



Binarize Weight	Values	

Original weight 
histogram



Binarize Weight	Values	

Original weight 
histogram

weight clipping



Binarize Weight	Values	

Original weight 
histogram

weight clipping TernaryConnect

BinaryConnect



Binarize Weight	Values	

Original weight 
histogram

weight clipping

BinaryConnect

Stochastic

• 𝑃 𝑊$% = 1 = ()*+,
-

• 𝑃 𝑊$% = −1 = 1 −𝑃 𝑊$% = 1

Deterministic

• 𝑊$% = / 1																	𝑤$% > 0
−1												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Binarize Weight	Values	

Original weight 
histogram

weight clipping

TernaryConnect

Stochastic
• If	𝑤$% > 0:
• 𝑃 𝑊$% = 1 = 𝑤$%
• 𝑃 𝑊$% = 0 = 1 − 𝑤$%

• Else:
• 𝑃 𝑊$% = −1 = −𝑤$%
• 𝑃 𝑊$% = 0 = 1 + 𝑤$%

Deterministic

• 𝑊$% = <
1																								𝑤$% > 			0.5
0							− 0.5 < 𝑤$% ≤ 			0.5
−1																					𝑤$% ≤ −0.5



Our	approach

• BinaryConnect[Courbariaux,	 et	al.,	2015]	and	
TernaryConnect

• Binarize	weights	in	the	forward/backward	
propagations,	but	store	a	full-precision	version	of	
them	in	the	backend.

Binarize weight	values	

• Exponential quantization
• Employ	quantization	of	the	representations	while	
computing	down-flowing	 error	signals	in	the	
backward	pass.

Quantize	backprop



Quantized	Backprop

� Consider	the	update	you	need	to	take	in	
the	backward	pass	of	a	given	layer,	with	
N input	units	and	M outputs:	

∆𝑊 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏 ⋅ 𝑥J
∆𝑏 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

𝛿DK, = 𝑊J ⋅ 𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

(1)
(2)
(3)

M

N

𝑊, 𝑏

𝛿D

𝛿DK,



Exponential	Quantization
Fr
eq
ue
nc
y

x x



Quantized	Backprop

� Consider	the	update	you	need	to	take	in	
the	backward	pass	of	a	given	layer,	with	
N input	units	and	M outputs:	

∆𝑊 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏 ⋅ 𝑥J
∆𝑏 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

𝛿DK, = 𝑊J ⋅ 𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

(1)
(2)
(3)

M

N

𝑊, 𝑏

𝛿D

𝛿DK,
u It	is	hard	to	bound	the	values	of	ℎF ,	thus	
make	it	hard	to	decide	how	many	bits	it	
will	need.	

u We	choose	to	quantize	𝑥.



Quantized	Backprop

� Consider	the	update	you	need	to	take	in	
the	backward	pass	of	a	given	layer,	with	
N input	units	and	M outputs:	

∆𝑊 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏 ⋅ 𝑥J
∆𝑏 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

𝛿DK, = 𝑊J ⋅ 𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

(1)
(2)
(3)

M

N

𝑊, 𝑏

𝛿D

𝛿DK, u 3Mmultiplications	in	total
2M M#	multiplications:

u A	standard	backpropwould	have	to	
compute	all	the	multiplications,	
requiring	2MN	+	3M	multiplications.



How	many	multiplications	saved?

Full	precision Ternary	connect	+	
Quantized	backprop ratio	

without	BN 1.7480	× 109 1.8492	× 106 0.001058
with	BN 1.7535	× 109 7.4245	× 106 0.004234

u MLP	with	ReLU,	4	layers	(784-1024-1024-1024-10)

u Assume	that	standard	SGD	are	used	as	the	optimization	algorithm.

u BN	stands	for	Batch	Normalization

Output

Input



Range	of	Hidden	Representations

u Histogram	of	hidden	states	at	each	layer.	The	figure	
represents	a	snap-shot	in	the	middle	of	training.	

u The	horizontal	axes	stand	for	the	exponent	of	the	layers’	
representations,	 i.e.,	log2x.	

log2x

Fr
eq
ue
nc
y



The	Effect	of	Limiting	the	Range	of	Exponent

u Constraining	 the	maximum	allowed	amount	of	bit	shifts	in	quantized	
backprop.



General	Performance

Full	
precision

Binary	
connect	

Binary	connect	+	
Quantized	backprop

Ternary	connect	+	
Quantized	backprop

MNIST	 1.33% 1.23% 1.29% 1.15%
CIFAR10	 15.64% 12.04%	 12.08% 12.01%	
SVHN	 2.85%	 2.47%	 2.48%	 2.42%



Related	Works	&	Recent	Advances

� Binarize both	weights	and	activations	[Courbariaux,	et	al.,	2016]
� Exponential	quantization	over	the	forward	pass.
� Larger,	more	serious	datasets.
� Actual	dedicated	hardware	realization.



Any	questions?

References,	Code	&	More:


