

Neural Networks with Few Multiplications

Zhouhan Lin, Matthieu Courbariaux Roland Memisevic, Yoshua Bengio MILA, University of Montreal

Why we don't want massive multiplications?

Computationally expensive

Faster computation is likely to be crucial for further progress and for consumer applications on low-power devices.

A multiplier-free network could pave the way to fast, hardware friendly training of neural networks.

Various trials in the past decades...

- Quantize weight values (Kwan & Tang, 1993; Marchesi et al., 1993).
- Quantize states, learning rates, and gradients. (Simard & Graf, 1994)
- Completely Boolean network at test time (Kim & Paris, 2015
- Replace all floating-point multiplications by integer shifts. (Machado et al., 2015)
- Bit-stream networks (Burge et al., 1999) substituting weight connections with logical gates.

•

Binarization as regularization?

Can we take advantage of the impreciseness of a binarization process so that we can have reduced computation load and extra regularization at the same time?

Our approach

Binarize weight values

- *BinaryConnect*[Courbariaux, et al., 2015] and *TernaryConnect*
- Binarize weights in the forward/backward propagations, but store a full-precision version of them in the backend.

Quantize backprop

- Exponential quantization
- Employ quantization of the representations while computing down-flowing error signals in the backward pass.

Our approach

Binarize weight values

- *BinaryConnect*[Courbariaux, et al., 2015] and *TernaryConnect*
- Binarize weights in the forward/backward propagations, but store a full-precision version of them in the backend.

Quantize backprop

- Exponential quantization
- Employ quantization of the representations while computing down-flowing error signals in the backward pass.

weight clipping

Stochastic

•
$$P(W_{ij} = 1) = \frac{w_{ij}+1}{2}$$

• $P(W_{ij} = -1) = 1 - P(W_{ij} = 1)$

$$W_{ij} = \begin{cases} 1 & w_{ij} > 0 \\ -1 & otherwise \end{cases}$$

•

Our approach

Binarize weight values

- *BinaryConnect*[Courbariaux, et al., 2015] and *TernaryConnect*
- Binarize weights in the forward/backward propagations, but store a full-precision version of them in the backend.

Quantize backprop

- Exponential quantization
- Employ quantization of the representations while computing down-flowing error signals in the backward pass.

Quantized Backprop

 Consider the update you need to take in the backward pass of a given layer, with N input units and M outputs:

$$\Delta W = [\eta \delta_l \circ h'(Wx + b)] \cdot x^T (1)$$

$$\Delta b = \eta \delta_l \circ h'(Wx + b) (2)$$

$$\delta_{l-1} = [W^T \cdot \delta_l] \circ h'(Wx + b) (3)$$

Exponential Quantization

sign	sign exponent (8-bit)						mantissa (23-bit)																							
1																														
0	0 1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0							0																							0
31							23																							0

Quantized Backprop

 Consider the update you need to take in the backward pass of a given layer, with N input units and M outputs:

$$\Delta W = [\eta \delta_l \circ h'(Wx + b)] \cdot x^T (1)$$

$$\Delta b = \eta \delta_l \circ h'(Wx + b) (2)$$

$$\delta_{l-1} = [W^T \cdot \delta_l] \circ h'(Wx + b) (3)$$

- It is hard to bound the values of h', thus make it hard to decide how many bits it will need.
- We choose to quantize *x*.

Quantized Backprop

 Consider the update you need to take in the backward pass of a given layer, with N input units and M outputs:

$$\Delta W = [\eta \delta_l \circ h'(Wx + b)] \cdot x^T (1)$$

$$\Delta b = \eta \delta_l \circ h'(Wx + b) (2)$$

$$\delta_{l-1} = [W^T \cdot \delta_l] \circ h'(Wx + b) (3)$$

multiplications: 2M M

- 3M multiplications in total
- A standard backprop would have to compute all the multiplications, requiring 2MN + 3M multiplications.

How many multiplications saved?

	Full precision	Ternary connect + Quantized backprop	ratio
without BN	$1.7480 imes10^9$	$1.8492 imes10^6$	0.001058
with BN	$1.7535 imes10^9$	$7.4245 imes10^6$	0.004234

- MLP with ReLU, 4 layers (784-1024-1024-1024-10)
- Assume that standard SGD are used as the optimization algorithm.
- BN stands for Batch Normalization

Range of Hidden Representations

- Histogram of hidden states at each layer. The figure represents a snap-shot in the middle of training.
- The horizontal axes stand for the exponent of the layers' representations, i.e., log₂x.

The Effect of Limiting the Range of Exponent

Constraining the maximum allowed amount of bit shifts in quantized backprop.

General Performance

Related Works & Recent Advances

- Binarize both weights and activations [Courbariaux, et al., 2016]
- Exponential quantization over the forward pass.
- Larger, more serious datasets.
- Actual dedicated hardware realization.

Any questions?

References, Code & More:

