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Why we	don’t	want	massive	multiplications?

Computationally	expensive	

Faster	computation	 is	likely	 to	
be	crucial	for	further	progress	
and	for	consumer	applications	
on	low-power	devices.

A	multiplier-free	 network	could	
pave	the	way	to	fast,	hardware	
friendly	 training	of	neural	
networks.



Various	trials	in	the	past	decades…

� Quantize	weight	values	(Kwan	&	Tang,	1993;	Marchesi et	al.,	1993).	
� Quantize	states,	learning	rates,	and	gradients.	(Simard &	Graf,	1994)	
� Completely	Boolean	network	at	test	time	(Kim	&	Paris,	2015
� Replace	all	floating-point	multiplications	by	integer	shifts.	(Machado	
et	al.,	2015)

� Bit-stream	networks	(Burge	et	al.,	1999)	substituting	weight	
connections	with	logical	gates.	

� ……



In many cases, neural networks need
only need very low precision

Stochasticity comes with benefits
- Dropout, Blackout. [4][5]
- Noisy Gradients [3]
- Noisy activation functions [2]

Binarization as	regularization?

Low	
precision

stochasticity

Stochastic	
binarization?

Can	we	take	advantage	of	the	impreciseness	of	a	binarization process	so	
that	we	can	have	reduced	computation	load	and	extra	regularization	at	the	
same	time?



Our	approach

• BinaryConnect[Courbariaux,	 et	al.,	2015]	and	
TernaryConnect

• Binarize weights	in	the	forward/backward	
propagations,	but	store	a	full-precision	version	of	
them	in	the	backend.

Binarize weight	values	

• Exponential quantization
• Employ	quantization	of	the	representations	while	
computing	down-flowing	 error	signals	in	the	
backward	pass.

Quantize	backprop
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BinaryConnect

Stochastic

• 𝑃 𝑊$% = 1 = ()*+,
-

• 𝑃 𝑊$% = −1 = 1 −𝑃 𝑊$% = 1

Deterministic

• 𝑊$% = / 1																	𝑤$% > 0
−1												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Binarize Weight	Values	
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TernaryConnect

Stochastic
• If	𝑤$% > 0:
• 𝑃 𝑊$% = 1 = 𝑤$%
• 𝑃 𝑊$% = 0 = 1 − 𝑤$%

• Else:
• 𝑃 𝑊$% = −1 = −𝑤$%
• 𝑃 𝑊$% = 0 = 1 + 𝑤$%

Deterministic

• 𝑊$% = <
1																								𝑤$% > 			0.5
0							− 0.5 < 𝑤$% ≤ 			0.5
−1																					𝑤$% ≤ −0.5
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Quantized	Backprop

� Consider	the	update	you	need	to	take	in	
the	backward	pass	of	a	given	layer,	with	
N input	units	and	M outputs:	

∆𝑊 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏 ⋅ 𝑥J
∆𝑏 = 𝜂𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

𝛿DK, = 𝑊J ⋅ 𝛿D ∘ ℎF 𝑊𝑥 + 𝑏

(1)
(2)
(3)

M

N

𝑊, 𝑏

𝛿D

𝛿DK,
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𝛿DK,
u It	is	hard	to	bound	the	values	of	ℎF ,	thus	
make	it	hard	to	decide	how	many	bits	it	
will	need.	

u We	choose	to	quantize	𝑥.
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N

𝑊, 𝑏

𝛿D

𝛿DK, u 3Mmultiplications	in	total
2M M#	multiplications:

u A	standard	backpropwould	have	to	
compute	all	the	multiplications,	
requiring	2MN	+	3M	multiplications.



How	many	multiplications	saved?

Full	precision Ternary	connect	+	
Quantized	backprop ratio	

without	BN 1.7480	× 109 1.8492	× 106 0.001058
with	BN 1.7535	× 109 7.4245	× 106 0.004234

u MLP	with	ReLU,	4	layers	(784-1024-1024-1024-10)

u Assume	that	standard	SGD	are	used	as	the	optimization	algorithm.

u BN	stands	for	Batch	Normalization

Output

Input



Range	of	Hidden	Representations

u Histogram	of	hidden	states	at	each	layer.	The	figure	
represents	a	snap-shot	in	the	middle	of	training.	

u The	horizontal	axes	stand	for	the	exponent	of	the	layers’	
representations,	 i.e.,	log2x.	

log2x
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The	Effect	of	Limiting	the	Range	of	Exponent

u Constraining	 the	maximum	allowed	amount	of	bit	shifts	in	quantized	
backprop.



General	Performance

Full	
precision

Binary	
connect	

Binary	connect	+	
Quantized	backprop

Ternary	connect	+	
Quantized	backprop

MNIST	 1.33% 1.23% 1.29% 1.15%
CIFAR10	 15.64% 12.04%	 12.08% 12.01%	
SVHN	 2.85%	 2.47%	 2.48%	 2.42%



Related	Works	&	Recent	Advances

� Binarize both	weights	and	activations	[Courbariaux,	et	al.,	2016]
� Exponential	quantization	over	the	forward	pass.
� Larger,	more	serious	datasets.
� Actual	dedicated	hardware	realization.



Any	questions?

References,	Code	&	More:


