Guaranteed Non-convex Machine Learning
Using Tensor Methods

Anima Anandkumar

U.C. Irvine




Regime of Modern Machine Learning

Massive datasets, growth in computation power, challenging tasks

Success of Supervised Learning

o Learn p(y|z) from labeled samples {(z;,v;)}.
@ Extract relevant features from large amounts of labeled data.
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Regime of Modern Machine Learning

Massive datasets, growth in computation power, challenging tasks

Missing Link in Al: Unsupervised Learning

@ Learn p(z) from unlabeled samples {x;}.
@ Discover latent variables related to observed variable x.

@ Human vs. Machine Learning: Make discoveries automatically.

Image Credit: Whizz Education



Unsupervised Learning via Probabilistic Models

Data — Model — Learning Algorithm — Predictions
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Observed variables

Challenges in High dimensional Learning
@ Dimension of & > dim. of latent variable h.

@ Learning is like finding needle in a haystack.

@ Computationally & statistically challenging.



Overview of Unsupervised Learning Methods

‘Goal: learn model parameters 6 from observations x. ‘

@ Maximum likelihood: mgxxp(x;@).

@ Non-convex: stuck in local optima.

@ Curse of dimensionality: Exponential
no. of critical points.

@ Heuristics: Expectation Maximization, Variational Inference .. ..

@ Other mechanisms such as Generative Adversarial Nets also

non-convex.



Guaranteed Learning through Tensor Methods
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.+ Replace the objective function

" Max Likelihood vs. Best Tensor decomp.

Preserves Global Optimum (infinite samples)

arg max p(z; 6) = arg min||T(x) — T(0) &

=

T'(x): empirical tensor, T'(#): low rank tensor based on .



Guaranteed Learning through Tensor Methods
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@ Replace the objective function

~ Max Likelihood vs. Best Tensor decomp.

Preserves Global Optimum (infinite samples)

arg max p(z; 6) = arg min||T(x) — T(0) &

=

T(z): empirical tensor, T'(f): low rank tensor based on 6.

Finding globally opt tensor decomposition

Y Simple algorithms succeed under mild and natural
conditions for many learning problems.



Guaranteed Learning through Tensor Methods
.+ Replace the objective function

" Max Likelihood vs. Best Tensor decomp.
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Preserves Global Optimum (infinite samples)
o

arg max p(z; 6) = arg min||T(x) — T(0) &

T(z): empirical tensor, T'(f): low rank tensor based on 6.
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Dataset. 1
Finding globally opt tensor decomposition

Y Simple algorithms succeed under mild and natural
conditions for many learning problems.

Dataiet 2
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Matrix Decomposition: Discovering Latent Factors
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Matrix Decomposition: Discovering Latent Factors
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o ldentifying hidden factors influencing the observations

@ Characterized as matrix decomposition



Matrix Decomposition: Discovering Latent Factors
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@ Decomposition is not necessarily unique.

@ Decomposition cannot be overcomplete.



Tensor: Shared Matrix Decomposition
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@ Shared decomposition with different scaling factors

@ Combine matrix slices as a tensor



Tensor Decomposition
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@ Outer product notation:

T=uuvw+u®0vQW
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Til,iz,is = Uijy * Vip * Wiy + Ujy - Vi = Wig



Tensor Decomposition
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Uniqueness of Tensor Decomposition [J. Kruskal 1977]

@ Above tensor decomposition: unique when rank one
pairs are linearly independent

@ Matrix case: when rank one pairs are orthogonal
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Tensor Decomposition
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Finding Best Tensor Decomposition? Overcome Non-convexity?




Notion of Tensor Contraction

Extends the notion of matrix product

Matrix product Tensor Contraction
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Symmetric Tensor Decomposition
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A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition
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T(Uv v, ) = <,U’ U1>2U1 + <’U’ U2>2U2

Tensor Power Method
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A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition

-8--8-

T(Uv v, ) = <,U’ U1>2U1 + <’U’ U2>2U2

Tensor Power Method

T(U,’U,‘)
UV
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Orthogonal Tensors
) ’171 1 172.
) T(vl,vl, ) = )\11}1.

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition
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A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition
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Tensor Power Method

T(U,’U,‘)
UV
|7

(’U? U, )” '

Exponential no. of stationary points for power method:
T(v,v,-) = Mv

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition
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T(Uv v, ) = <U? U1>2U1 + <’U’ U2>2U2

Tensor Power Method

T(v,v,-)
T,

Exponential no. of stationary points for power method:
T(v,v,-) = v Stable Unstable

Other statitionary points

B &

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Symmetric Tensor Decomposition

-8--8-

T(Uv v, ) = <U? U1>2U1 + <’U’ U2>2U2

Tensor Power Method

T(va")
V=
T
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Exponential no. of stationary points for power method:
T(v,v,-) = Mv

‘ For power method on orthogonal tensor, no spurious stable points

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

_A”
y 4

A
A -
-HEEN - EEE-

T=v 40, ...

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

Orthogonalization

Input tensor T’

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

T(W,W,W) =T

Orthogonalization

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

Orthogonalization

T(W,W,W) =T

viv2 W U1 0

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “

Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

Orthogonalization
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A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

Orthogonalization

v1v2 W V1 Vg

T(W,W,W) =T

Find W using SVD of Matrix Slice

. + N

M=T(,-0)

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.



Non-orthogonal Tensor Decomposition

Orthogonalization

v1v2 W V1 Vg
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T(W,W,W)=T

‘Orthogonalization: invertible when v;’s linearly independent. ‘

‘Guaranteed tensor decomposition: when v;'s linearly independent. ‘

A., R. Ge, D. Hsu, S. Kakade, M. Telgarsky, “Tensor Decompositions for Learning Latent
Variable Models,” JMLR 2014.
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Extracting Topics from Documents
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A., D. P. Foster, D. Hsu, S.M. Kakade, Y.K. Liu.“Two SVDs Suffice: Spectral decompositions
for probabilistic topic modeling and latent Dirichlet allocation,” NIPS 2012.



Tensor Methods for Topic Modeling

campus
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@ Linearly independent columns
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Extracting Communities in Social Networks
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A., R. Ge, D. Hsu, S.M. Kakade. “A Tensor Spectral Approach to Learning Mixed Membership
Community Models” COLT 2013.



Tensors vs. Variational Inference
Criterion: Perplexity = exp|[—likelihood].

Learning Topics from PubMed on Spark, 8mil articles
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F. Huang, U.N. Niranjan, M. Hakeem, A, “Online tensor methods for training latent variable models,” JMLR 2014.



Tensors vs. Variational Inference
Criterion: Perplexity = exp|[—likelihood].

Learning Topics from PubMed on Spark, 8mil articles
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Learning network communities on single workstation
Facebook n ~ 20k, Yelp n ~ 40k, DBLP-sub n ~ 1e5, DBLP n ~ 1e6.
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. Huang, U.N. Niranjan, M. Hakeem, A, “Online tensor methods for training latent variable models,” JMLR 2014.



Tensors vs. Variational Inference
Criterion: Perplexity = exp|[—likelihood].

Learning Topics from PubMed on Spark, 8mil articles
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Learning Representations

Sparse coding prevalent in neural signaling.

Neural sparse coding
[Papadopouloull]

A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Learning Representations

Sparse coding prevalent in neural signaling.

Linear Model with
Overcomplete Dictionary

- R

A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Neural sparse coding
[Papadopouloull]

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Learning Representations

Contribution: learn overcomplete incoherent dictionaries

Linear Model with
Overcomplete Dictionary

- R

A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Neural sparse coding
[Papadopouloull]

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Learning Representations

Shift-invariant Dictionary
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A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Learning Representations

- : - Convolutional Model
Shift-invariant Dictionary
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A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Learning Representations

Efficient Tensor Decomposition with Shifted Components

- : - Convolutional Model
Shift-invariant Dictionary

Ox0 9 g :I* +I*

ODOOQDO -

o ¥ & Dictionary

Image

A. Agarwal, A, P. Jain, P. Netrapalli, “Learning Sparsely Used Overcomplete Dictionaries,” COLT 2014.
A, M. Janzamin, R. Ge, “Overcomplete Tensor Decomposition, " COLT 2015.

Huang, A., “Convolutional Dictionary Learning through Tensor Factorization”, Proc. of JMLR 2015.



Fast Text Embeddings through Tensor Methods
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L4 °

Word Embeddings



Fast Text Embeddings through Tensor Methods

Sentence
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Word Embeddings Sentence Embeddings



Fast Text Embeddings through Tensor Methods

Paraphrase Detection on MSR corpus with ~ 5000 Sentences
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Fast Text Embeddings through Tensor Methods

Paraphrase Detection on MSR corpus with ~ 5000 Sentences

Method F score No. of samples
Vector Similarity (Baseline)  75% ~ 4k

Tensor (Proposed) 81% ~ 4k
Skipthought (RNN) 82% ~ 74mil

@ Unsupervised learning of embeddings.

@ No outside info for tensor vs. large book corpus (74 million) for
skipthought

@ Similar story with holographic embeddings for knowledge bases by M.
Nickel et al.



Reinforcement Learning of Partially Observable
Markov Decision Process

Learning in Adaptive Environments
@ Learner changes environment

@ Hidden state estimation.

Agent
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Action a;

Reward r,

Observation y,

Environment

State x4



Reinforcement Learning of Partially Observable
Markov Decision Process

. . . . Agent Action a; Envi n
Learning in Adaptive Environments B T ;wronmen .
: i 2
@ Learner changes environment il <« Rewardn |
. . . o Observation y,
@ Hidden state estimation.

State x4

Partially Observable Markov
Decision Process
@ Design of tensor algorithms @ @
under memoryless policies Q
@ Guaranteed regret bounds:
comparable to fully observed @ @

environment.



Reinforcement Learning of Partially Observable
Markov Decision Process

Playing Atari Game Average Reward vs. Time.
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K. Azizzadenesheli, A. Lazaric, A, “Reinforcement Learning of POMDPs using
Spectral Methods,” 2016.



Reinforcement Learning of Partially Observable
Markov Decision Process
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K. Azizzadenesheli, A. Lazaric, A, “Reinforcement Learning of POMDPs using
Spectral Methods,” 2016.
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@ Tensors in Deep Learning



Local Optima in Backpropagation
“.few researchers dare to train their models from scratch.. small
miscalibration of initial weights leads to vanishing or exploding gradients..
poor convergence..*”

Local optimum._ Global optimum

x

&

Exponential (in dimensions) no. of local optima for backpropagation
(*)

P. Krahenbhl, C. Doersch, J. Donahue, T. Darrell “Data-dependent Initializations of
Convolutional Neural Networks”, ICLR 2016.



Moments of a Neural Network

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Moments of a Neural Network

Elyle] = £(z) = (a2, 0(A] 2))

Moments using score functions S(-)

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Moments of a Neural Network

Elyle] = £(z) = (a2, 0(A] 2))

Moments using score functions S(-)

Ely - Si(z)] := +l

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Moments of a Neural Network

Elyle] = £(z) = (a2, 0(A] 2))

Moments using score functions S(-)

Ely- Sa(z)] = Q. +I-

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Moments of a Neural Network

Elyle] = £(z) = (a2, 0(A] 2))

Moments using score functions S(-)
y &~
E[y - S3(x)] zl- +I..

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Moments of a Neural Network

Elyle] = £(z) = (a2, 0(A] 2))

Moments using score functions S(-)
y &~
E[y - S3(x)] zl- +I..

Given input pdf p(-), | Sm(z) == (=1)™

Gaussian z = Hermite polynomials.

“Score Function Features for Discriminative Learning: Matrix and Tensor Framework” by M.
Janzamin, H. Sedghi, and A. , Dec. 2014.



Tensorizing Neural Networks

@ Multi-linear representation of dense layers of CNNs.
» Tensor train format for low rank approximation of weight matrix.

@ Compact representation: solves memory problem.

Y (i, ip...) =

> G(ir,1)Gliz, j2) .- X (1, d2 - )

J1,J2-

G(i1,41)

(i)
N

G(i2, j2)|

)

|
Results on ImageNet

@ Compression rate
200, 000!

@ Negligible
performance loss.

A. Novikov, D. Podoprikhin, A. Osokin, D. Vetrov, “Tensorizing Neural Networks”, NIPS 2015.



Tensor Analysis for Expressive Power

First level

@ Hierarchical Tucker tensors for -l

representing arithmetic conv
nets.

@ Employs locality, sharing and
pooling. Second level

@ Exponentially more parameters

in shallow net vs. deep net. ql

N. Cohen, O. Sharir, A. Shashua, “On the Expressive Power of Deep Learning: A Tensor
Analysis” COLT 2016.



Tensors in Memory Embeddings
Human Memory Model. Semantic decoding through Tensor Tucker.
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Scaling up and Deploying Tensor Methods
Scaling up

@ Dimensionality reduction through sketching.

@ Communication efficient methods. [
e

Tensor T'

Sketch s

Deployment
@ Multi-platform support: CPU, GPU, Cloud, FPGA ...
@ Extended BLAS kernels: Beyond linear algebra.

@ Many deep learning operations involve tensor contractions.

Wang, Tung, Smola, A. * Guaranteed Tensor Decomposition via Sketching”, NIPS'15.
Cecka, Niranjan, Shi, A," Tensor Contractions with Extended BLAS kernels on CPU and GPU",

under preparation.



Innovations in Non-Convex Methods

Smoothing and Continuation Methods
@ Global approach vs. local search.

@ Unified guarantees for non-convex
problems?

w

H. Mobabhi, “Training RNNs by Diffusion” .



Innovations in Non-Convex Methods

Learning to add using RNN

—SGD —SGD
90 = Diffusion 90 = Diffusion
8ok 801 -
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Generalization Error Generalization Error

H. Mobabhi, “Training RNNs by Diffusion” .



Innovations in Non-Convex Methods

@ Escaping saddle points in high dimensions?
@ Can SGD escape in bounded time?

@ Degeneracy of saddle points in various non-convex problems?

Local optima Saddle points

Local Maxima

Local Minima

Efficient approaches for escaping higher order saddle points in non-convex optimization by A. ,

R. Ge, COLT 2016.



Innovations in Non-Convex Methods

‘Contribution: First method to escape third order saddle‘

@ Escaping saddle points in high dimensions?
@ Can SGD escape in bounded time?

@ Degeneracy of saddle points in various non-convex problems?

Local optima Saddle points

Local Maxima

Local Minima

Efficient approaches for escaping higher order saddle points in non-convex optimization by A. ,

R. Ge, COLT 2016.



Research Connections and Resources

Collaborators

Jennifer Chayes, Christian
Borgs, Prateek Jain, Alekh
Agarwal & Praneeth
Netrapalli (MSR), Srinivas
Turaga (Janelia), Michael
Hawrylycz & Ed Lein
(Allen Brain), Allesandro
Lazaric (Inria), Alex Smola
(CMU), Rong Ge (Duke),
Daniel Hsu (Columbia),
Sham Kakade (UW),
Hossein Mobahi (MIT).

@ Podcast/lectures/papers/software available at
http://newport.eecs.uci.edu/anandkumar/
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