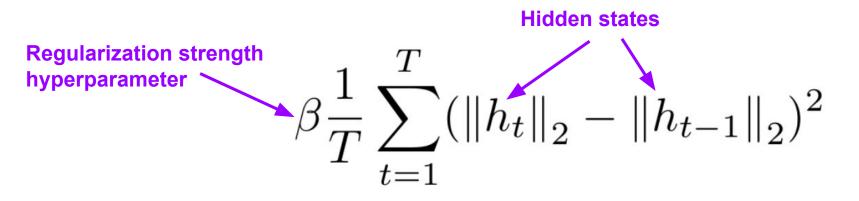

Regularizing RNNs by Stabilizing Activations

David Krueger, Roland Memisevic

Stability: a generic prior for temporal models


• Sequential representation $h := h_0, h_1, ...$ is *stable* if it does not grow exponentially:

$$\|h_t\| \notin \Omega(e^t)$$

The Norm-stabilizer

$$\beta \frac{1}{T} \sum_{t=1}^{T} (\|h_t\|_2 - \|h_{t-1}\|_2)^2$$

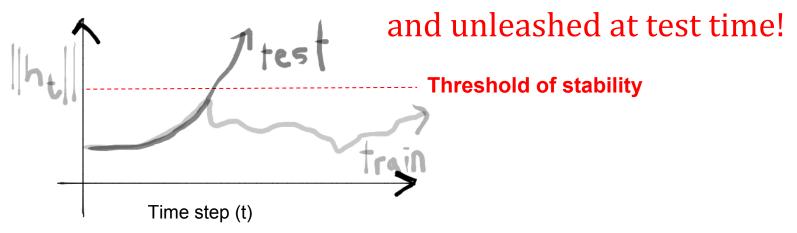
The Norm-stabilizer

(In Theano): hidden_norms = T.sum((hidden_states**2 + 1.e-9), axis=-1)**.5 cost += beta * T.mean((hidden_norms[1:] - hidden_norms[:-1])**2)

Outline:

- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
- Things we're not doing
- Experiments

Outline:


- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
- Things we're not doing
- Experiments

Why is stability important?

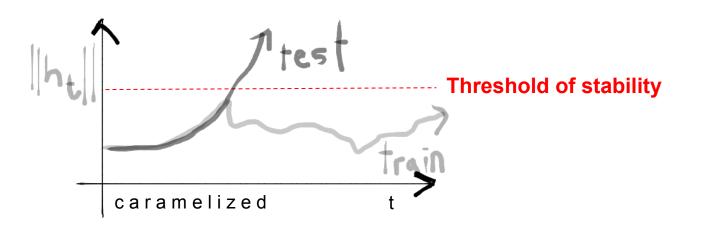
- Instability \Rightarrow past observations too influential
 - Gradients explode
 - Current observations ignored outside *region of stability:* e.g. {h : $\exists x \ s.t. \|\sigma(W_x x + w_h h)\| \le \|h\|$ } for a network with 1 hidden unit

Stability doesn't come for free!

- W_h is exponentiated
- "Explosive potential" of RNN dynamics can be "defused" on training sequences...

Why is stability important? (example)

- Train sequence: "caramel apple"
- Test sequence: "caramelized onions"



Outline:

- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
- Things we're not doing
- Experiments

Why does stability help generalization?

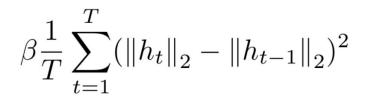
- Explosive potential is always punished/forbidden
 - Even when defused
- Allows generalization to longer sequences

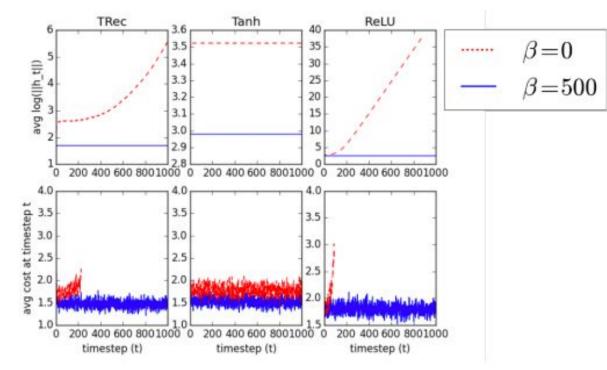
Outline:

- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
 - Enforce or **encourage**
- Things we're not doing
- Experiments

Stability in RNNs

- Most RNNs enforce stability via:
 - Bounded nonlinearities
 - LSTM, GRU, Tanh-RNN
 - Unitary transition matrix
 - Unitary RNN -- Arjovsky, Shah, Bengio (concurrent work)


Stability in RNNs


- Most RNNs enforce stability via:
 - Bounded nonlinearities
 - **Disadvantage:** saturation \Rightarrow no gradient!
 - Unitary transition matrix
 - **Disadvantage:** no forgetting! (...via W_h)

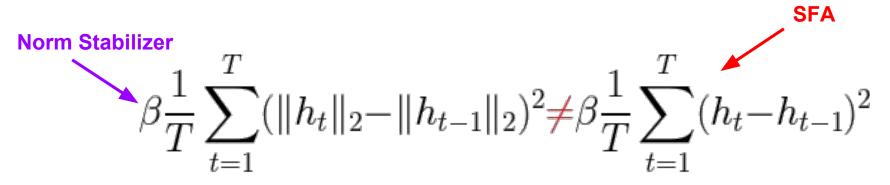
Stability in RNNs

- Most RNNs enforce stability via:
 - Bounded nonlinearities
 - **Disadvantage:** saturation \Rightarrow no gradient!
 - Use ReLU \rightarrow Identity RNN -- Le, Jaitly, Hinton (2015)
 - Disadvantage: can be unstable
 - Unitary transition matrix
 - **Disadvantage:** no forgetting! (...via W_h)

IRNN instability

Outline:

- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
- Things we're not doing
- Experiments


Things we're not doing:

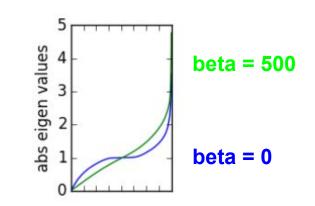
- Slow Feature Analysis (SFA)
- Enforcing stability
- Encouraging stability everywhere
- Encouraging orthogonal W_h

```
More flexibility = good?
```

Things we're not doing (1):

• Slow Feature Analysis (SFA) $\circ h_t = -h_{t-1}$ makes norm-stabilizer happy!

Things we're not doing (2):


- Slow Feature Analysis (SFA)
- Enforcing stability
 - ... just encouraging stability

Things we're not doing (3):

- Slow Feature Analysis (SFA)
- Enforcing stability
- Encouraging stability everywhere
 - $\circ \dots$ just around the data

Things we're not doing (4):

- Slow Feature Analysis (SFA)
- Enforcing stability
- Encouraging stability everywhere
- Encouraging orthogonal W_h
 - \circ See sorted eigen-values \rightarrow

Things we're not doing:

- Slow Feature Analysis (SFA)
- Enforcing stability
- Encouraging stability everywhere
- Encouraging orthogonal W_h

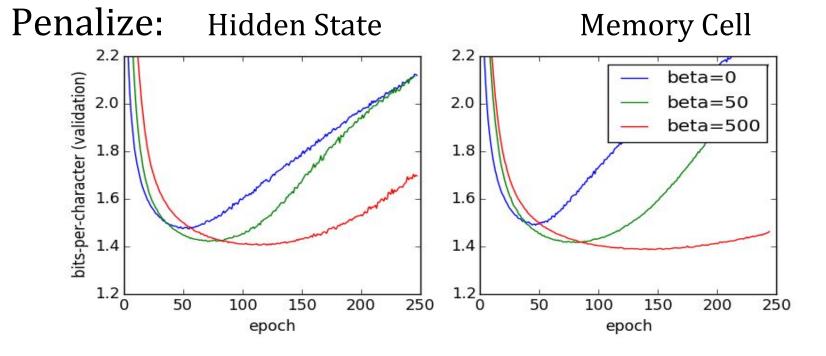
More flexibility = good?

Outline:

- Why is stability important?
- Why does it help generalization?
- How to achieve stability?
- Things we're not doing
- Experiments

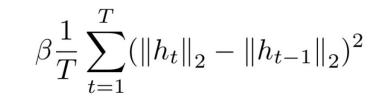
Tasks:

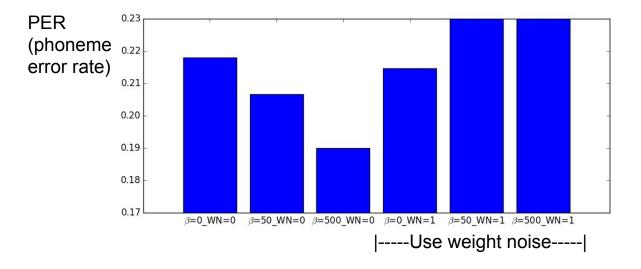
- Character-level language modelling (next-step prediction) on Penn Treebank
- Phoneme recognition on TIMIT
- Adding problem from the original LSTM paper (Hochreiter and Schmidhuber, 1997)


IRNN Performance (Penn Treebank)

 $\beta \frac{1}{T} \sum_{t=1}^{I} (\|h_t\|_2 - \|h_{t-1}\|_2)^2$

		lr = .002, gc = 1	lr = .002	lr = .0002, gc = 1	lr = .0002
Best results	tanh, $\beta = 0$	1.71	1.55	2.15	2.15
	tanh, $\beta = 500$	1.57	2.70	1.79	1.80
	ReLU, $\beta = 0$	1.78	1.69	1.93	1.93
	ReLU, $\beta = 500$	1.74	1.73	1.65	2.04
	TRec, $\beta = 0$	1.62	1.63	1.95	1.88
	TRec, $\beta = 500$	1.48	1.49	1.56	1.56


LSTM Performance (Penn Treebank)


$$\beta \frac{1}{T} \sum_{t=1}^{T} (\|h_t\|_2 - \|h_{t-1}\|_2)^2$$

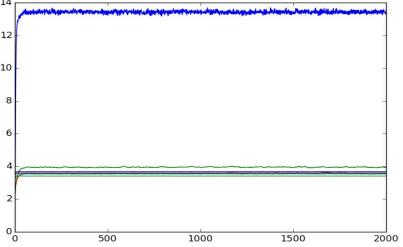
LSTM Performance (TIMIT)

- Use CTC, no beam search
- Average of 5 experiments

Alternative Cost Functions

- Norm-stabilizer performed best
- Worth investigating other approaches to stability

Table 3: Performance (bits-per-character) of various costs designed to encourage norm stability.


	$(\Delta h_t)^2$	$(\Delta \left\ h_t\right\ _2)^2$	$(rac{\Delta \ h_t\ _2}{\ h_t\ _2})^2$	$(\Delta \ h_t\ _1)^2$	$(\ h\ _2 - 5)^2$	$(\ h_0\ _2 - \ h_T\ _2)^2$
$\beta = 50$	1.84		1.60	2.96	1.49	3.81
$\beta = 500$	2.19	1.48	1.50	3.18	1.50	1.54

Thank you!

Any Questions?

LSTM hidden norms:

