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Context is needed to understand 
language

“ What would you like to do? ”

“ What the heck should I do? ”





“ Bears are bad news. Go through the secret 
passage in the fireplace ”

“ So I’m hidden under the covers, but there’s 
someone at the door. 

It looks like bears.  

What the heck should I do? ”

Context is needed to understand 
language
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Children’s Book Test

Books Questions

Train 98 670,000

Validation 5 8,000

Test 5 10,000



She thought that Mr Baxter had exaggerated the story ____ the train.
Prepositions

a      on      in      about      under      as      for      to      below      eats
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She thought that Mr Baxter had _____ the story on the train
Verbs

She thought that Mr Baxter had exaggerated the story ____ the train.
Prepositions

a      on      in      about      under      as      for      to      below      eats

heard    run   exaggerated    eats    is    rush    fly    have    had    fallen   

She thought that Mr Baxter had exaggerated the _____ on the train
Common Nouns

ball     rock    train    food    paper    story    hell    pen    floor     head  

She thought that Mr _____ had exaggerated the story on the train
Named Entities

Baxter    Cropper    Esther      John     course    finger    manner    objection    spite    paper  

Children’s Book Test



CBT: Importance-weighted evaluation

1 2 3 4

1 2 3 4

More informative
More important?

More training data
Easier
Less informative
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MSR Sentence Completion Challenge (Zweig & Burges 2011)

- Context 
- Different word types 
- More questions and more candidates

MCTest (Richardson et al. 2013)

- Many training examples 
- No production cost -> other languages…

CNN and Daily Mail QA Dataset (Hermann et al. 2015)

- Different word types 
- Can integrate world knowledge (entities not anonymised) 
- Complementary to CBT - see later

What does the CBT add?



Can humans do the CBT?
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What about machines?
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Prepositions Verbs Common Nouns Named Entities

LSTM (query) LSTM (context + query)
n-gram LM + KnesserNey MemNN (word memory)
MemNN (window memory) MemNN (window memory + self-sup)

human performance



Memory Networks 
for machine reading

Weston et al. 2015
Sukhbaatar et al. 2015
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Three ways to represent text in 
memory



1: Lexical Memory
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2: Window Memory
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3: Sentence Memory

‘attention’ 
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context 
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memory & query 
representations

(addressing)

softmax 
distribution

‘correct’ 
memory

(heuristic)

embedding
 matrix

backpropagate

Self-supervision for memory retrieval



Choose the memory* with the correct 
answer in it



Results
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Prepositions Verbs Common Nouns Named Entities

LSTM (query) LSTM (context + query)
MemNN (sentence memory + PE) MemNN (word memory)
MemNN (window memory) MemNN (window memory + self-sup)

human performance

These memories 
are just right!



DeepMind reading 
comprehension benchmark

more like
 a paraphrase

CNN news article
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https://research.facebook.com

https://research.facebook.com


Thanks
Antoine Bordes 
Sumit Chopra 
Jason Weston

Any 
questions?



sparse sentence 
representation

embedding matrix distributed memory 
representation



sparse query 
representation

embedding matrix distributed query
 representation



memory 
representations

(content)

softmax 
distribution

output memory



• Context matters, not used enough

Machine comprehension with the 
CBT

• Evaluations should distinguish frequent and 
semantic words (unlike e.g. perplexity)

• The CBT is a useful new resource for both

For language understanding:



distributed 
query 

representation

memory 
representations

(addressing)

softmax 
distribution



context 
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prediction 

layer

answer 
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Other details
• Temporal Encoding of memory position

• Position Encoding (PE) of words in 
window and sentence memories

Sukhbaatar et al. 2015


