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KAIST’s DRC-HUBO opening a door

DARPA Robotics Challenge 2015
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Overview

Deep robotic learning at scale
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Grasping with Learned Hand-Eye Coordination

monocular

* 800,000 grasp

o RGB camera
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(3,000 robot-hours) 7 DoF arm
* monocular camera o

-finger

(no depth) gripper

e 2-5 Hz update
] object

* no prior knowledge bin
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Grasping Experiments
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Overview

i, 7x7 conv
stride 2
RelLU

Future directions
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Learning what Success Means
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Questions?

RGB image conv1

o 5x5 conv
RelLU

Bibliography:

Levine, Pastor, Krizhevsky. “Learning Hand-Eye Cordination for Robotic Grasping with Deep Learning and Large-Scale Data
Collection.” Technical report. 2016.

Finn, Levine, Abbeel. “Guided Cost Learning: Inverse Optimal Control via Policy Optimization.” Under review. 2016.

Zhang, Kahn, Levine, Abbeel. “Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search.”
ICRA. 2016.

Kumar, Todorov, Levine. “Optimal Control with Learned Local Models: Application to Dexterous Manipulation.” ICRA.2016.
Levine*, Finn*, Darrell, Abbeel. “End-to-End Training of Deep Visuomotor Policies.” arXiv 1504.00702. 2015.

Levine, Wagener, Abbeel. “Learning Contact-Rich Manipulation Skills with Guided Policy Search.” ICRA. 2015.

Levine, Abbeel. “Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics.” Neural Information
Processing Systems (NIPS). 2014.

website: http://homes.cs.washington.edu/~svlevine/



