Deep Robotic Learning

Sergey Levine University of Washington

(JL)

perception THENHING tiger 13 tiger I tiger cat jaguar lynx 11 -- JE 11 3 3 384 dense dense 13 256 100 Max pooling 256 Max pooling 4096 4096 Max pooling 224 Stride of 4 96 Action \supset С (run away) \cap 1

sensorimotor loop

-- Richard Dawkins

-- Richard Dawkins

-- Richard Dawkins

%

KAIST's DRC-HUBO opening a door

DARPA Robotics Challenge 2015

Philipp Krahenbuhl, Stanford University

Philipp Krahenbuhl, Stanford University

Philipp Krahenbuhl, Stanford University

no direct supervision

no direct supervision actions have consequences

Overview

Training visuomotor policies

Deep robotic learning at scale

Future directions

Overview

Training visuomotor policies

Deep robotic learning at scale

Future directions

general-purpose neural network policy

 \mathbf{o}_t – observation (may or may not be equal to \mathbf{x}_t)

 \mathbf{o}_t – observation (may or may not be equal to \mathbf{x}_t)

policy search (RL)

policy search (RL) complex dynamics

policy search (RL) complex dynamics complex policy

policy search (RL) complex dynamics complex policy HARD

policy search (RL) complex dynamics complex policy HARD

supervised learning

policy search (RL)complex dynamicscomplex policyHARDsupervised learningcomplex dynamics

policy search (RL)complex dynamicscomplex policyHARDsupervised learningcomplex dynamicscomplex policy

supervised learning complex dynamics complex policy

EASY

optimal control

2. use supervised learning

2. use supervised learning

2. use supervised learning

2. use supervised learning

2. use supervised learning

2. use supervised learning

Ìn.

trajectory-centric RL (fully observed) h (Uj) 0.5 supervised learning 0<u>、</u> 150 100 100 80 50 60 40 20

2. use supervised learning

trajectory-centric RL

expectation under $\min_{\theta} E_{\pi_{\theta}}[c(\tau)]$

solve using Bregman ADMM (BADMM), a type of dual decomposition method

solve using Bregman ADMM (BADMM), a type of dual decomposition method

$$\begin{array}{c} \operatorname{run} p(\mathbf{u}_t | \mathbf{x}_t) \\ \operatorname{on \ robot} \\ \operatorname{collect} \mathcal{D} = \{\tau_i\} \end{array}$$

Learning on PR2

[L. et al. ICRA '15]

Learning on PR2

[L. et al. ICRA '15]

training time

test time

L.*, Finn*, Darrell, Abbeel '15

training time

 \mathbf{X}_t $ightarrow \mathbf{u}_t$

test time

L.*, Finn*, Darrell, Abbeel '15

training time

 $\mathbf{x}_t
ightarrow \mathbf{u}_t$

test time

 $\mathbf{o}_t
ightarrow \mathbf{u}_t$

L.*, Finn*, Darrell, Abbeel '15

Learned Visuomotor Policy: Shape sorting cube

Generalization Experiments

Visual Test Position 1 real time

utonomous execution

PRZ

annon the

pose prediction

pose prediction

pose prediction

pose prediction

pose features

pose prediction

pose features

pose prediction

pose features

coat hanger	success rate
pose prediction	55.6%

shape sorting cube	success rate
pose prediction	0%

toy claw hammer	success rate
pose prediction	8.9%

bottle cap	success rate
pose prediction	n/a

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%

shape sorting cube	success rate
pose prediction	0%
pose features	70.4%

toy claw hammer	success rate
pose prediction	8.9%
pose features	62.2%

bottle cap	success rate
pose prediction	n/a
pose features	55.6%

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
<u> </u>	
toy claw hammer	success rate
toy claw hammer pose prediction	success rate 8.9%
toy claw hammer pose prediction pose features	success rate 8.9% 62.2%
toy claw hammer pose prediction pose features end-to-end training	success rate 8.9% 62.2% 91.1%
toy claw hammer pose prediction pose features end-to-end training bottle cap	success rate 8.9% 62.2% 91.1% success rate
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction	success rate 8.9% 62.2% 91.1% success rate n/a
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction pose features	success rate 8.9% 62.2% 91.1% success rate n/a 55.6%

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
toy claw hammer	success rate
pose prediction	8.9%
pose features	62.2%
end-to-end training	91.1%
bottle cap	success rate
pose prediction	n/a
in a confronting of	
pose reatures	55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73
coat hanger	success rate
---	--
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
toy claw hammer	success rate
pose prediction	8.9%
pose features	8.9% 62.2%
pose prediction pose features end-to-end training	8.9% 62.2% 91.1%
pose prediction pose features end-to-end training bottle cap	8.9% 62.2% 91.1% success rate
pose prediction pose features end-to-end training bottle cap pose prediction	8.9% 62.2% 91.1% success rate n/a
pose prediction pose features end-to-end training bottle cap pose prediction pose features	8.9% 62.2% 91.1% success rate n/a 55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
toy claw hammer	success rate
pose prediction	8.9%
pose features	62.2%
end-to-end training	91.1%
hattle can	
Dottle cap	success rate
pose prediction	success rate n/a
pose prediction pose features	success rate n/a 55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
toy claw hammer	success rate
toy claw hammer pose prediction	success rate 8.9%
toy claw hammer pose prediction pose features	success rate 8.9% 62.2%
toy claw hammer pose prediction pose features end-to-end training	success rate 8.9% 62.2% 91.1%
toy claw hammer pose prediction pose features end-to-end training bottle cap	success rate 8.9% 62.2% 91.1% success rate
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction	success rate 8.9% 62.2% 91.1% success rate n/a
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction pose features	success rate 8.9% 62.2% 91.1% success rate n/a 55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
0	
toy claw hammer	success rate
toy claw hammer pose prediction	success rate 8.9%
toy claw hammer pose prediction pose features	success rate 8.9% 62.2%
toy claw hammer pose prediction pose features end-to-end training	success rate 8.9% 62.2% 91.1%
toy claw hammer pose prediction pose features end-to-end training bottle cap	success rate 8.9% 62.2% 91.1% success rate
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction	success rate 8.9% 62.2% 91.1% success rate n/a
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction pose features	success rate 8.9% 62.2% 91.1% success rate n/a 55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

coat hanger	success rate
pose prediction	55.6%
pose features	88.9%
end-to-end training	100%
shape sorting cube	success rate
pose prediction	0%
pose features	70.4%
end-to-end training	96.3%
toy claw hammer	success rate
toy claw hammer pose prediction	success rate 8.9%
toy claw hammer pose prediction pose features	success rate 8.9% 62.2%
toy claw hammer pose prediction pose features end-to-end training	success rate 8.9% 62.2% 91.1%
toy claw hammer pose prediction pose features end-to-end training bottle cap	success rate 8.9% 62.2% 91.1% success rate
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction	success rate 8.9% 62.2% 91.1% success rate n/a
toy claw hammer pose prediction pose features end-to-end training bottle cap pose prediction pose features	success rate 8.9% 62.2% 91.1% success rate n/a 55.6%

network architecture	test error (cm)
softmax + feature points (ours)	1.30 ± 0.73
softmax + fully connected layer	2.59 ± 1.19
fully connected layer	4.75 ± 2.29
max-pooling + fully connected	3.71 ± 1.73

manipulation

with N. Wagener and P. Abbeel

manipulation

with N. Wagener and P. Abbeel

locomotion

constrained GPS 300–400 N pushes

manipulation

with N. Wagener and P. Abbeel

dexterous hands

with V. Kumar and E. Todorov

locomotion

constrained GPS 300–400 N pushes

manipulation

with N. Wagener and P. Abbeel

dexterous hands soft hands

with V. Kumar and E. Todorov

with A. Gupta, C. Eppner, P. Abbeel

locomotion

constrained GPS 300-400 N pushes

manipulation

with N. Wagener and P. Abbeel

dexterous hands soft hands

with V. Kumar and E. Todorov

with A. Gupta, C. Eppner, P. Abbeel

locomotion aerial vehicles

constrained GPS 300-400 N pushes

with G. Kahn, T. Zhang, P. Abbeel

Overview

Training visuomotor policies

Deep robotic learning at scale

Future directions

ingredients for success in learning: supervised learning:

ingredients for success in learning: supervised learning:

ingredients for success in learning: supervised learning: ✓ computation ✓ algorithms

ingredients for success in learning: supervised learning: learning sensorimotor skills: ✓ computation ✓ computation ✓ algorithms ← algorithms ✓ data ingredients for success in learning:supervised learning:learning sensorimotor skills:✓ computation✓ computation✓ algorithms✓ algorithms✓ data? data

ingredients for success in learning: supervised learning: learning sensorimotor skills: ✓ computation ✓ computation ✓ algorithms ← algorithms ✓ data ? data

Grasping with Learned Hand-Eye Coordination

- 800,000 grasp attempts for training (3,000 robot-hours)
- monocular camera (no depth)
- 2-5 Hz update
- no prior knowledge

training

training

testing

training

testing

training

testing

training

testing

training

testing

training

testing

Using Grasp Success Prediction

training

testing

open-loop grasping

closed-loop grasping

open-loop grasping

closed-loop grasping

open-loop grasping

closed-loop grasping

Pinto & Gupta, 2015

open-loop grasping

closed-loop grasping

open-loop grasping

closed-loop grasping

failure rate: 33.7%

open-loop grasping

closed-loop grasping

failure rate: 33.7%

failure rate: 17.5%

open-loop grasping

closed-loop grasping

failure rate: 33.7%

depth + segmentation failure rate: 35%

failure rate: 17.5%

open-loop grasping

closed-loop grasping

failure rate: 33.7%

depth + segmentation failure rate: 35%

failure rate: 17.5%

Grasping Experiments

Overview

Training visuomotor policies

Deep robotic learning at scale

Future directions

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

Finn, L., Abbeel '16

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

can we *learn* the cost with visual features?

Finn, L., Abbeel '16

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

can we *learn* the cost with visual features?

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

can we *learn* the cost with visual features?

Finn, L., Abbeel '16

 $c(\mathbf{x}, \mathbf{u}) =$ $w_1 f_{\text{target}}(\mathbf{x}) +$ $w_2 f_{\text{torque}}(\mathbf{u})$

can we *learn* the cost with visual features?

Finn, L., Abbeel '16

Acknowledgements

BRETT

Chelsea Finn Trevor Darrell Piete

Pieter Abbeel

r3d10

Peter Pastor

Alex Krizhevsky

Deirdre Quillen

Questions?

Bibliography:

Levine, Pastor, Krizhevsky. "Learning Hand-Eye Cordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection." Technical report. 2016.

Finn, Levine, Abbeel. "Guided Cost Learning: Inverse Optimal Control via Policy Optimization." Under review. 2016. Zhang, Kahn, Levine, Abbeel. "Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search." ICRA. 2016.

Kumar, Todorov, Levine. "Optimal Control with Learned Local Models: Application to Dexterous Manipulation." ICRA.2016. Levine*, Finn*, Darrell, Abbeel. "End-to-End Training of Deep Visuomotor Policies." arXiv 1504.00702. 2015. Levine, Wagener, Abbeel. "Learning Contact-Rich Manipulation Skills with Guided Policy Search." ICRA. 2015. Levine, Abbeel. "Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics." Neural Information Processing Systems (NIPS). 2014.

website: http://homes.cs.washington.edu/~svlevine/