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Goal

We study how to model the compositionality of natural language that is
agnostic to the domain of the text.

This is important for virtually all Natural Language Processing (NLP)
problems (Neural MT, QA, chat bots, etc.).

Je suis étudiant —

A A A A
Encoder _ Decoder

| am a student — Je suis étudiant

From Luong and Manning(2015)



Goal

We focus primarily on modelling composition for the problem of
semantic similarity.

Other ways are needed.

We must find other ways.

| absolutely do believe there was an iceberg in those waters.
| don't believethere was any iceberg at all anywhere near the Titanic.



Where do we start?

Find some data.

dynamic _ is completelyjunder control

what is more, the relevant cost
| X
im ubrigen st
wi\r sind es den steuerzahlern
we owe it to the taxpayers to keep

die diesbezlgliche kostenentwicklung vdllig

=X

unter kontrolle

schuldig die kos{ten unter kontrolle
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the costs | in check

. zu _ haben
|

From Bannardand Callison-Burch (2005)



The Paraphrase Database

From Ganitkevitch, Van Durme, and Callison-Burch, 2013

be given the opportunity to have the possibility of
a saving businessincome
i can hardly hear you. you 're breakingup .
laying the foundations pave the way
making every effort to do its utmost
do better than that do more

and tens of millions morel!!l



Modelling composition

Since we want to learn representations, we need an encoder:
g: text sentence - fixed length vector

We experimented with 8 encoders.
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Objective function

> max(0,6 - cos(g(x), g (x)) + cos(g(x1), g ()

(x{,x,)EPPDB
+ max(0,6 — cos(g(x1), g(x2)) + cos(g(x1), g(t2))

g(x) = fixed length vector
+ regularization!

Used separate L,
t1 = argmaxy.(. .)ebatch,tx, x, (COS(Q (x1), g(t)) regularization for word
embeddings and
compositional parameters



Objective function

> max(0,6 - cos(g(x), g(x2)) + cos(g(x1), (1))

(x1,x,)EPPDB

\ +max(0, 8 — cos(g(x1), g(xz)) + cos(g(x1), g(t2))

sums over pairs in
Paraphrase Database



Objective function

> max(0,6 - cos(g(x), g(x2)) + cos(g(x1), (1))

(x1,x,)EPPDB

+max(0, 5 — cos(g (1), g(x2)) + cos(g(x1), g(t))

sums over pairs in
Paraphrase Database

cosine similarity of phrases in
positive example



Objective function

> max(0,6 - cos(g(x), g(x2)) + cos(g(x1), (1))

(x1,x,)EPPDB

+max(0, 5 — cos(g (1), g(x2)) + cos(g(f1), g(t))

Sums Over pairs in cosine similarity of phrases in
Paraphrase Database negative examples

cosine similarity of phrases in
positive example



Evaluation

We evaluate on 22 out-of-domain datasets and 2 in-domain.
For model selection, only use an in-domain dataset.

Domains of the 22 datasets include:
web forum posts
tweets
MT output
news
headlines
glosses
image and video captions



In-domain datasets

A sample of PPDB, annotated by Turkers. We compare with two
datasets, from Wieting et al. (2015) and Pavlick et al. (2015).

can not be separated from is inseparable from 5.0
hoped to be able to looked forwardto 3.4
come on, think about it people, please

how do you mean that what worst feelings 1.6



Average Pearson’s correlation on 22 datasets

65
60
Average cc
Pearson’s
Correlation
50
45

63.8

Dependingon task, anywhere from 26-89
systems were submitted which had access
to training data and external resources.

m50%
m75%

Also tried using skip-thought
vectors and averaging GloVe
embeddings, and they were not
stronger than paragram-s|999.
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Average Pearson’s correlation on 22 datasets
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Average Pearson’s correlation on 22 datasets

65

64.3 63.8
60 58 mLSTM (0.g9.)
LSTM (no 0.g.)
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Average Pearson’s correlation on 22 datasets

65 64.3
60
Average
Pearson’s 55 >4.4 LSTM (no 0.g.)
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Average Pearson’s correlation on 22 datasets

65 64.3
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Average Pearson’s correlation on 22 datasets
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Average Pearson’s correlation on 22 datasets

65 64.3

60 ® projection
Average LSTM (no o0.g.)
Pearson’s 55 >4.4 paragram-phrase
Correlation = DAN
50 ® RNN
® iRNN
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Scaling up

68
Average
Pearson’s
Correlation
64

60

64.3

63.8

W paragram-phrase XL
W 75%



Scaling up

68
Average
Pearson’s
Correlation
64

60

67.8

W paragram-phrase XL
M paragram-phrase XXL
W 75%



Reflection

Why did the LSTM do worse?

Does it only do well on short sentences?
Did it overfit to the in-domain task?
Was there insufficient parameter tuning?



Length

Average
Pearson’s
Correlation

80
75
70
65
60
55
50

<=4

6 7 8

e=sparagram-phrase e==| STM (no 0.g.)



Overtitting on in-domain data

65
61.6 61.5
60.3 °1 609 gp3
60 M paragram-phrase
Average projection
Spearman’s
NS e DAN
Correlation
M iRNN
M LSTM (no o.g.)
50 &
M LSTM (o.g.)
Also investigated average
45 difference between cosine sim

of positive and negative
examples



Parameter tuning

Hard to show a negative result, but we did a lot of experiments to:
explore hyperparameter space of each model
reduce potential optimization issues




Parameter tuning

Tuned:
optimizer (Adagrad or Adam)
gradient clipping
learning rate
batch-size
Ay Ay
o)
type of sampling

activation function, number of layers (if applicable)



Other use cases?

Yes!

Can improve specific similarity/entailment tasks when used to
initialize/regularize other models.

Can be used as features for at least similarity and entailment
tasks.



Initialization/Regularization
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Initialization/Regularization
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Initialization/Regularization

LSTM (o.g.)
20 Sentiment LSTMs perform really well on
89.2 sentiment classification!
89
>
o 88.1
§ 88 = SoA
&’ normal
init/re
87 86.9 9
86

LSTM sentence models in our transfer learning setting perform
poorly, so this result isn’t too surprising.



Qualitative/Quantitative analysis

Found that a significant part of the power of our embeddings is
due to re-weighting L, norms of words by their importance (i.e. 18

versus of)
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paragram-phrase paragram-simlex
unlike contrary, contrast, opposite than, although, whilst
lookin staring, looking, watching doin, goin, talkin
disagree agree, concur, agreeing disagreement, differ, dispute
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Qualitative/Quantitative analysis

Found that a significant part of the power of our embeddings is
due to re-weighting L, norms of words by their importance (i.e. 18
versus of)

paragram-phrase paragram-simlex
unlike contrary, contrast, opposite than, although, whilst
lookin staring, looking, watching doin, goin, talkin
disagreement, differ, dispute

Spearman’s correlation of}-45.1 between performance and OOV %.



Character n-gram model

Inspired by the Deep Structured Semantic Model or Deep Semantic
Similarity Model (MSR, 2013-2016)

Sentence embedding

Character n-gram embedding matrix

o|jo|.|].lO]|1|.].[121]0O0 Character n-gram count vector

_1,1C, CL, LR, R_, _IC, ICL, CLR, LR_, _ICL, ICLR, CLR_

ICLR



Character n-gram model

Able to model very rare words, context, and still generalizes nicely!

character n-gram embeddings paragram-phrase
not capable incapable, unable, incapacity not, capable, stalled
not possible impossible, impracticable, unable not, stalled, possible
not sufficient insufficient, sufficient, inadequate not, sufficient, stalled

character n-gram embeddings

babyyyyyy
vehicals

huge

babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling
vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car

enormous, tremendous, large, big, vast, overwhelming, immense, giant



Character n-gram model

68
Average
Pearson’s
Correlation
64

60

68.7

M paragram-phrase

M character n-gram



Conclusion

We have shown how, essentially using just using bilingual text, it is possible to
create a strong model of compositionthat is not tied to a specific dataset and is

both fast and easy to use.

We also raise some questions about LSTMs. Why did they not work as well in this
setting? Hopefully this work can lead to even better compositional architectures

that generalize across many domains.

We release code, trained models and resources to replicate and build upon our
models.



Conclusion

We have shown how, essentially using just using bilingual text, it is possible to
create a strong model of composition that is not tied to a specific dataset and is

both fast and easy to use.

We also raise some questions about LSTMs. Why did they not work as well in this
setting? Hopefully this work can lead to even better compositional architectures

that generalize across many domains.

We release code, trained models and resources to replicate and build upon our

models.
Thank Youl!



