Towards Universal Paraphrastic Sentence Embeddings

John Wieting
Joint work with Mohit Bansal, Kevin Gimpel, and
Karen Livescu

Goal

We study how to model the compositionality of natural language that is agnostic to the domain of the text.

This is important for virtually all Natural Language Processing (NLP) problems (Neural MT, QA, chat bots, etc.).

From Luong and Manning (2015)

Goal

We focus primarily on modelling composition for the problem of semantic similarity.

Other ways are needed. We must find other ways.

4.4

I absolutely do believe there was an iceberg in those waters. I don't believe there was any iceberg at all anywhere near the Titanic.

1.2

Where do we start?

Find some data.

From Bannard and Callison-Burch (2005)

The Paraphrase Database

From Ganitkevitch, Van Durme, and Callison-Burch, 2013

```
be given the opportunity to

a saving
business income
i can hardly hear you.
laying the foundations
making every effort
do better than that
have the possibility of
business income
you 're breaking up.
pave the way
to do its utmost
do more
```

and tens of millions more!!!

Modelling composition

Since we want to learn representations, we need an encoder:

 $g: \text{text sentence} \rightarrow \text{fixed length vector}$

We experimented with 8 encoders.

$$\sum_{\langle x_1, x_2 \rangle \in \text{PPDB}} \max(0, \delta - \cos(g(x_1), g(x_2)) + \cos(g(x_1), g(t_1)) \\ + \max(0, \delta - \cos(g(x_1), g(x_2)) + \cos(g(x_1), g(t_2))$$

g(x) =fixed length vector

 $t_1 = \operatorname{argmax}_{t:\langle\cdot,\cdot\rangle\in\operatorname{batch},t\neq x_1,x_2}(\cos(g(x_1),g(t)))$

+ regularization!

Used separate L_2 regularization for word embeddings and compositional parameters

$$\sum_{\langle x_1, x_2 \rangle \in PPDB} \max(0, \delta - \cos(g(x_1), g(x_2)) + \cos(g(x_1), g(t_1))$$

 $+\max(0,\delta-\cos(g(x_1),g(x_2))+\cos(g(x_1),g(t_2))$

sums over pairs in Paraphrase Database

cosine similarity of phrases in positive example

cosine similarity of phrases in positive example

Evaluation

We evaluate on 22 out-of-domain datasets and 2 in-domain.

For model selection, only use an in-domain dataset.

Domains of the 22 datasets include:

web forum posts
tweets
MT output
news
headlines
glosses
image and video captions
....

In-domain datasets

A sample of PPDB, annotated by Turkers. We compare with two datasets, from Wieting et al. (2015) and Pavlick et al. (2015).

can not be separated from	is inseparable from	5.0
hoped to be able to	looked forward to	3.4
come on , think about it	people , please	2.2
how do you mean that	what worst feelings	1.6

Scaling up

Scaling up

Reflection

Why did the LSTM do worse?

Does it only do well on short sentences?

Did it overfit to the in-domain task?

Was there insufficient parameter tuning?

Length

Overfitting on in-domain data

examples

Parameter tuning

Hard to show a negative result, but we did a lot of experiments to:
explore hyperparameter space of each model
reduce potential optimization issues

Parameter tuning

Tuned: optimizer (Adagrad or Adam) gradient clipping learning rate batch-size λ_c, λ_w type of sampling activation function, number of layers (if applicable)

Other use cases?

Yes!

Can improve specific similarity/entailment tasks when used to initialize/regularize other models.

Can be used as features for at least similarity and entailment tasks.

Initialization/Regularization

word-averaging

Initialization/Regularization

word-averaging

Initialization/Regularization

LSTM sentence models in our transfer learning setting perform poorly, so this result isn't too surprising.

Found that a significant part of the power of our embeddings is due to re-weighting L_2 norms of words by their importance (i.e. 18 versus of)

Found that a significant part of the power of our embeddings is due to re-weighting L_2 norms of words by their importance (i.e. 18 versus of)

	paragram-phrase	paragram-simlex
unlike	contrary, contrast, opposite	than, although, whilst
lookin	staring, looking, watching	doin, goin, talkin
disagree	agree, concur, agreeing	disagreement, differ, dispute

Found that a significant part of the power of our embeddings is due to re-weighting L_2 norms of words by their importance (i.e. 18 versus of)

	paragram-phrase	paragram-simlex
unlike	contrary, contrast, opposite	than, although, whilst
lookin	staring, looking, watching	doin, goin, talkin
disagree	agree, concur, agreeing	disagreement, differ, dispute

Spearman's correlation of -45.1 between performance and OOV %.

Found that a significant part of the power of our embeddings is due to re-weighting L_2 norms of words by their importance (i.e. 18 versus of)

	paragram-phrase	paragram-simlex
unlike	contrary, contrast, opposite	than, although, whilst
lookin	staring, looking, watching	doin, goin, talkin
disagree	agree, concur, agreeing	disagreement, differ, dispute

Spearman's correlation of -45.1 between performance and OOV %.

Character n-gram model

Inspired by the Deep Structured Semantic Model or Deep Semantic Similarity Model (MSR, 2013-2016)

Character n-gram model

Able to model very rare words, context, and still generalizes nicely!

	character n-gram embeddings	paragram-phrase
not capable	incapable, unable, incapacity	not, capable, stalled
not possible	impossible, impracticable, unable	not, stalled, possible
not sufficient	insufficient, sufficient, inadequate	not, sufficient, stalled
character n-gram embeddings		
babyyyyyy	babyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling	
vehicals	vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car	
huge	enormous, tremendous, large, big, vast, overwhelming, immense, giant	

Character n-gram model

Conclusion

We have shown how, essentially using just using bilingual text, it is possible to create a strong model of composition that is not tied to a specific dataset and is both fast and easy to use.

We also raise some questions about LSTMs. Why did they not work as well in this setting? Hopefully this work can lead to even better compositional architectures that generalize across many domains.

We release code, trained models and resources to replicate and build upon our models.

Conclusion

We have shown how, essentially using just using bilingual text, it is possible to create a strong model of composition that is not tied to a specific dataset and is both fast and easy to use.

We also raise some questions about LSTMs. Why did they not work as well in this setting? Hopefully this work can lead to even better compositional architectures that generalize across many domains.

We release code, trained models and resources to replicate and build upon our models.

Thank You!