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Neural nets are getting larger ...

but large model = long training time



Deep Learning: Ideal vs Reality 

Ideal World

Step 2: Muscle work,
 Feed data Training

Step 1: Inspiration,
Find a Perfect Architecture

Randomly initialized net 
with a perfect architecture

Problem solved

Perfect net with

perfect weights. 

Reality: the Loop of Experiments 

Training
Training

Redesign the ModelInitial Design

Try another one more 
experiments



Motivation

The Loop 

Training
Training

Redesign 
the Model

Initial 
Design

Try another 
one

more 
experiments

- We usually make a wider / deeper 
net

- As we get more data.
- As we explore new models.

- Happens in general machine 
learning as well

- Best model complexity need
to match the dataset size.

- Model selection problem.

- Ultimate goal: model evolution 
and continuous learning.

- Can we reuse the old model?
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Possible ways to Deal with an Old Net (        )

-  To Eat (dump the model)
    - Break into proteins.., and rebuild from scratch

- To Learn from
- Ask old net to “teach” the new one

Teacher
(trained old model)

Training

Randomly Initialize



Initial Attempt: Learning from Old Model

Decoding
New Model Teacher Model

Ask new model to predict the activations
of each layers of teacher model

-> Intuition: The new model should be as
     smart as old ones in each layer

-> This should let us learn lower layers quicker

-> It did not work, 
    possibly due to too many random
    initialized  components (next slide)

-> It takes time to train a new kid, even 
with a great teacher...



Possible ways to Deal with an Old Net (        )

-  To Eat (dump the model)
    - Break into proteins.., and rebuild from scratch

- To Learn from
- Ask old net to “teach” the new one

- Net2Net
- Use old model to initialize new model.
- In another word, transform old net to new one.



Initial Design

Training

Rebuild the Model

Training

Initial Design

Training

Net2Net Operator

Training

Reuse the Model

Traditional Workflow Net2Net Workflow

Net2Net Workflow



The Obstacle: (Partial) Random Initialized 
Components in the Net

Idealized Experiment on ImageNet 
(Inception-BN) Setup

Copy the First k layers over, 
randomly initialize the rest layersTake a trained model

Training 

More uninitialized components in the model,
-> Less gain we get in initial bootstrap phase



Motivated Solution to the Problem

We want to be at least as good as the old model to start with.

Avoid Adding Randomly  Initialized Components
- Transform to bigger net using Function-preserving Transformations
- Definition of Function-Preserving Transformation:

    -> For any inputs,  the two nets produces identical outputs

A Transformed Equivalent Bigger NetTake a trained model

Continue Training 

Random Weights

+ 0.01

Function Preserving 
Transformation



Two Ways to Expand Model Capacity

Net2WiderNet

Net2DeeperNet

Problem
Find Function Preserving Transformations in both 
cases



Function-Preserving Transformation
for Wider Nets

Ready to Apply for ConvNets (Inception)
-> Each node represent a depth channel in feature map

Original Model Randomly Remap the Nodes
to Wider Model

Connects the weights, divide by 
duplication factor of input node.



Function-Preserving Transformations for 
Deeper Nets (General Idea)

Existing Layer Find Factorization

Approximate 
Factorization of 
Original Layer

Original Model
A Deeper Model

That approximates original model



Function-Preserving Transformations for 
Deeper Nets: Add Identity Layer

Function-Preserving Initializations for Common modules in ConvNets
- Convolution: Identity Filter
- Batch Norm: gamma = stdvar, beta = mean 
- Batch Norm without rescale

- beta = mean/stdvar
- rescale connection in later layer with stdvar

Original Model Layers  that Initialized as 
Identity Mapping

A Deeper Model Contains
Identity Mapping Initialized Layers
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Experimental Setup

- All the experiments are conducted on Inception
  model on ImageNet dataset.

- Use smaller learning rate to match end of schedule of 
source model.

- Terminology:
-Source model   the trained smaller model
-Target model   the new model we want to train



Experiment Results for Net2WiderNet

Baseline

Copy part of nets, randomly initialize rest 

Source An inception with 0.54 
number of channels in inception 
towers as original inception.

Target Standard Inception.



Experiment Results for Net2DeeperNet

Source Standard Inception

Target 
Add four layers of conv to 
each inception tower

Baseline
Training from random 
initialization



Exploring New Design Space

Targets

-  Wider Inception: increase channels
   by 2 times

-  Deeper Inception: add 8 identity
    conv to each inception tower

Source Standard Inception Model



Take-aways

- It is possible to reuse the existing model help
  training bigger models. 

- Avoid adding random components.

- Use Function-preserving transformation 

- Use smaller learning rate when continue training.

- LearningModel Evolution



Thank You


