
Net2Net: Rapidly Transferring
Knowledge between Large Networks

Tianqi Chen Ian Goodfellow Jon Shlens

 University of Washington OpenAI Google

Work was done when all the authors were at Google Brain

Outline

- The Problem

- Proposed Methods

- Experimental Results

Outline

- The Problem

- Proposed Methods

- Experimental Results

Neural nets are getting larger ...

but large model = long training time

Deep Learning: Ideal vs Reality

Ideal World

Step 2: Muscle work,
 Feed data Training

Step 1: Inspiration,
Find a Perfect Architecture

Randomly initialized net
with a perfect architecture

Problem solved

Perfect net with

perfect weights.

Reality: the Loop of Experiments

Training
Training

Redesign the ModelInitial Design

Try another one more
experiments

Motivation

The Loop

Training
Training

Redesign
the Model

Initial
Design

Try another
one

more
experiments

- We usually make a wider / deeper
net

- As we get more data.
- As we explore new models.

- Happens in general machine
learning as well

- Best model complexity need
to match the dataset size.

- Model selection problem.

- Ultimate goal: model evolution
and continuous learning.

- Can we reuse the old model?

Outline

- The Problem

- Proposed Methods

- Experimental Results

Possible ways to Deal with an Old Net ()

Possible ways to Deal with an Old Net ()

- To Eat (dump the model)
 - Break into proteins.., and rebuild from scratch

Training

Old Model Randomly Initialize

Possible ways to Deal with an Old Net ()

- To Eat (dump the model)
 - Break into proteins.., and rebuild from scratch

- To Learn from
- Ask old net to “teach” the new one

Teacher
(trained old model)

Training

Randomly Initialize

Initial Attempt: Learning from Old Model

Decoding
New Model Teacher Model

Ask new model to predict the activations
of each layers of teacher model

-> Intuition: The new model should be as
 smart as old ones in each layer

-> This should let us learn lower layers quicker

-> It did not work,
 possibly due to too many random
 initialized components (next slide)

-> It takes time to train a new kid, even
with a great teacher...

Possible ways to Deal with an Old Net ()

- To Eat (dump the model)
 - Break into proteins.., and rebuild from scratch

- To Learn from
- Ask old net to “teach” the new one

- Net2Net
- Use old model to initialize new model.
- In another word, transform old net to new one.

Initial Design

Training

Rebuild the Model

Training

Initial Design

Training

Net2Net Operator

Training

Reuse the Model

Traditional Workflow Net2Net Workflow

Net2Net Workflow

The Obstacle: (Partial) Random Initialized
Components in the Net

Idealized Experiment on ImageNet
(Inception-BN) Setup

Copy the First k layers over,
randomly initialize the rest layersTake a trained model

Training

More uninitialized components in the model,
-> Less gain we get in initial bootstrap phase

Motivated Solution to the Problem

We want to be at least as good as the old model to start with.

Avoid Adding Randomly Initialized Components
- Transform to bigger net using Function-preserving Transformations
- Definition of Function-Preserving Transformation:

 -> For any inputs, the two nets produces identical outputs

A Transformed Equivalent Bigger NetTake a trained model

Continue Training

Random Weights

+ 0.01

Function Preserving
Transformation

Two Ways to Expand Model Capacity

Net2WiderNet

Net2DeeperNet

Problem
Find Function Preserving Transformations in both
cases

Function-Preserving Transformation
for Wider Nets

Ready to Apply for ConvNets (Inception)
-> Each node represent a depth channel in feature map

Original Model Randomly Remap the Nodes
to Wider Model

Connects the weights, divide by
duplication factor of input node.

Function-Preserving Transformations for
Deeper Nets (General Idea)

Existing Layer Find Factorization

Approximate
Factorization of
Original Layer

Original Model
A Deeper Model

That approximates original model

Function-Preserving Transformations for
Deeper Nets: Add Identity Layer

Function-Preserving Initializations for Common modules in ConvNets
- Convolution: Identity Filter
- Batch Norm: gamma = stdvar, beta = mean
- Batch Norm without rescale

- beta = mean/stdvar
- rescale connection in later layer with stdvar

Original Model Layers that Initialized as
Identity Mapping

A Deeper Model Contains
Identity Mapping Initialized Layers

Outline

- The Problem

- Proposed Methods

- Experimental Results

Experimental Setup

- All the experiments are conducted on Inception
 model on ImageNet dataset.

- Use smaller learning rate to match end of schedule of
source model.

- Terminology:
-Source model the trained smaller model
-Target model the new model we want to train

Experiment Results for Net2WiderNet

Baseline

Copy part of nets, randomly initialize rest

Source An inception with 0.54
number of channels in inception
towers as original inception.

Target Standard Inception.

Experiment Results for Net2DeeperNet

Source Standard Inception

Target
Add four layers of conv to
each inception tower

Baseline
Training from random
initialization

Exploring New Design Space

Targets

- Wider Inception: increase channels
 by 2 times

- Deeper Inception: add 8 identity
 conv to each inception tower

Source Standard Inception Model

Take-aways

- It is possible to reuse the existing model help
 training bigger models.

- Avoid adding random components.

- Use Function-preserving transformation

- Use smaller learning rate when continue training.

- LearningModel Evolution

Thank You

