

Harvest Project: La Vie

July - October, 2012 Josef Stefan Institute, Ljubljana

PASCAL & Harvest

- PASCAL = Pattern Analysis, Statistical Modeling and Computational Learning
 - A Network of Excellence funded by the EU
 - Promotes the use of ML in domains such as:
 - Machine Vision
 - Speech
 - Haptics
 - Brain-Computer Interface

- Natural Language Processing
- Information Retrieval
- Textual Information Access
- Multimodal integration

Harvest Programme

- Demanding channel to increase the impact of PASCAL on society and the economy
- Applied research projects by teams of 4-8 persons for a duration of 30-90 days
- Some piece of software as the main objective

Project La Vie

- PASCAL Harvest founded project
 - La Vie = Learning Adapted Video Information Enhancer
- Main goal:
 - To provide users with recommendations on suitable lectures for their needs
- Key components:
 - 1. Text extraction and information retrieval
 - 2. Enrichment
 - 3. Topic and user modeling
 - 4. Recommendation
 - 5. Visualization
- We concentrated on English language only!

Text extraction

- Sets of scripts:
 - Retrieving metadata information from internal VL database
 - Retrieving textual information from Wikipedia, DBLP and Google (abstracts and/or articles)
 - Extracting text from slides (PPT, PDF or JPGs using OCR)
 - Extracting text from transcriptions
- Each lecture is represented as:
 - BoW Bag of words (from text extraction)
 - BoC Bag of categories (categories that a particular lecture belongs to)
- Reduced dictionary size from approx. 2 million to 300.000 words
 - Filtering out words that appear in less than 3 different lectures

Enrichment

- Using Enrycher
 - See http://enrycher.ijs.si/
- Trained with our data and taxonomy (categories)
- Proved to be not very usable
 - Categories specified manually by VL admins are much better than automatic categorization
 - Not many usable entities or keywords returned
- Using Enrycher would only make sense if manual tagging was not possible

Topic and user modeling (1)

- User's history
 - Set of lectures a user has seen (represented by a BoW and BoC computed over all lectures that user has seen)
- Lecture content
 - Semantically similar lectures
- Collaborative filter
 - Users that viewed similar lectures

Topic and user modeling (2)

7 features:

- 1. Lecture popularity
 - Number of visits
- 2. Content similarity
 - BoW(L_c) BoW(L_p)
- 3. Category similarity
 - $BoC(L_c) \cdot BoC(L_p)$
- 4. User content similarity (computed on the fly)
 - BoW(Hist(U)) BoW(L_p)
- 5. User category similarity (computed on the fly)
 - $BoC(Hist(U)) \cdot BoC(L_p)$
- 6. Co-visits
 - Number of times of L_c and L_p viewed in the same browsing session
- 7. User similarity
 - Number of users who have watched both L_c and L_p

 L_c = current lecture

 L_p = proposed lecture

U = user

1 table has approx. 70 million entries

(for features 2,3,6 and 7)

Speedups

- Most of the data from the database is stored in Web service memory
 - Currently around 9 GB
- Lecture similarity features (2,3,6 and 7, from the biggest table) are being retrieved from the database
 - Speedup using the PostgreSQL CLUSTER command (query with approx. 10.000 rows: 27 s → 6 ms)
- Distributing load between 2 or more instances of the Web service
 - Using Pound load-balancer

Recommendation (1)

- Using SVM classifier for training:
 - Positive samples: two months of clicks using current recommender
 - Resulting feature weights:

Feature	Weight
Lecture popularity	-0.00003
Content similarity	0.00452
Category similarity	0.00148
User content similarity	0.02724
User category similarity	0.04167
Co-visits	0.00187
User similarity	0.01519

Recommendation (2)

- Final recommendation
 - A linear SVM classifier was used to rank all possible recommendation links:

Given
$$L_c$$
 and U :
For all $Lp \neq L_c$:

 \vec{x} ... feature vector computed for the triplet (Lc, $L_{p_i}U$)

$$score(\vec{x}) = \vec{w} \cdot \vec{x} = \sum_{n=1}^{7} w_n \cdot x_n$$

Lectures with top 10 scores are recommended

Recurring tasks

- Daily update
 - At night, updates database with
 - New lectures added to VL
 - New users (both registered and anonymous)
 - New user history (new lectures viewed)
 - Removing anonymous users being offline for more than 14 days (expired cookies)
- Monthly update
 - Once per month or whenever a considerable amount of lectures have been added to VL
 - Generates a new fixed vocabulary
 - A new database is created (this task requires approx. 3 days)

Evaluation

- Evaluation
 - Using coin flipping between old and new recommender
 - Counting the number of clicks
- Try <u>http://dev.videolectures.net/</u>
 - Our recommendations have /?ref=r00: in links

Visualization

- Using Document Atlas
 - Showing clusters of similar lecture categories
 - Size of dots depends on number of visits
 - Clicking on a dot opens a list of lectures from that category
- Try http://scienceatlas.ijs.si/videoatlas/

