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What is the relationship between images 
and the language we use to describe them?
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Most previous approaches with learned representations either

Modeling the Visual-Semantic Hierarchy

• Use symmetric similarity in the embedding space                     
e.g. (Frome et al, 2013; Socher et al, 2014; Karpathy and Li, 2015)

Our approach:

• Impose a partial-order prior by embedding into an ordered space.

• Learn an unconstrained binary relation, e.g. (Socher et al, 2013)
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• 120k images

•  Each image has 5 human-written captions.

•  We use 110k images for training, 5k for validation and test.

MS-COCO Ranking Benchmark



• a group of people walking down a small walkway.
• a girl walking on a path near a person on a bench.
• young lady walking down a path on the right is a couple setting on a park bench.
• a woman with a large, brown purse walks down a path while two people sit on a bench.
• people walking and sitting along a road dividing a green park and a cemetery.



Evaluation (Image Search)

•Take each caption from the test set, and rank all test images 
by decreasing S(c,i) (i.e. increasing order-violation error E)

Recall@k: % of captions for which the GT image was in the first k 
Mean r: mean rank of first ground-truth image
Med r: median rank of first ground-truth image
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(See our paper for full results)
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“a woman and little boy are 
walking and holding arms 

on a soccer field”

“a man in a mask is 
holding an umbrella”

Image Search Examples: Success
Query Top Images
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“the man is trying to eat three 
hot dogs are the same time”

GT Image:

Query Top Images
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“king” - “man” + “woman” ~ queen
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Code available at github.com/ivendrov/order-embedding

http://github.com/ivendrov/order-embedding

