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Motivation

• Can be hard since a lot of “noise” obfuscates the 

predictive information

• Consider the task of identifying a person in the 

following images:



Motivation (2)

• Determine possible suspects from photos

• Sensitive information (e.g. race and gender) of the 

individual should not affect decisions

• Detect Alzheimer on MRI images

• MRI images from machine 1 and 2

• Avoid machine related variations for better generalization 



Tackling such problems

• Simply excluding these particular bits from the input 

is not going to work

• Other dimensions still contain information about these bits

• Transform the data to a new representation

• Explicitly encode its properties

• Enforce invariance w.r.t. a-priori known information



Related work

[2]“Learning unbiased features”, Li et al.,  2014

[5]“A Kernel Two-Sample Test”, Gretton et al, 2012

[8]“Learning Transferable Features with Deep Adaptation Networks”, Long et al., 2015 

[7]“Deep Domain Confusion: Maximizing for Domain Invariance”, Tzeng et al., 2014 

• Neural networks with a Maximum Mean 

Discrepancy[5] penalty[2, 7, 8]

[3]Domain Adversarial Training of Neural Networks”, Ganin et al., 2015

• “Domain Adversarial Neural Networks”[3] (DANN)

• A minimax problem

[1]“Learning Fair Representations”,Zemel et al., 2013

• “Learning Fair Representations”[1] (LFR)

• Simple discriminative clustering approach



Contribution

• Variational Fair Autoencoder (VFAE)

• A generative model where known/target factors of variation 

are explicitly removed

• New representation is invariant w.r.t. this information

• Better performance on fair classification, domain adaptation 

and general feature learning tasks



Unsupervised Variational Autoencoder[4]

for invariant representations

• Two independent factors of variation

• s : observed (discrete) “sensitive”/“nuisance” factors of 

variation

• z : continuous latent variable for the remaining information 

pθ(x,z|s) = p(z)pθ(x|z,s) as a neural network generative model (decoder)

qφ(z|x,s) as a neural network variational posterior (encoder) since exact

inference is intractable

s z

x

: latent variable

: observed variable

[4]“Semi-Supervised Learning with Deep Generative Models”, Kingma et al., 2014

Objective Function



Semi-Supervised VAE[4] for 

invariant representations

• Unsupervised model may create degenerate representations w.r.t. 

the prediction task (y)

• Enrich generative model so as to correlate z with y

pθ(z1,z2,x,y|s) = p(y)p(z2)pθ(z1|z2,y)pθ(x|z1,s), as a neural network

generative model (decoder)

qφ(z1,z2,y|x,s) = qφ(z1|x,s)qφ(y|z1)qφ(z2|z1,y) as a neural network

variational posterior (encoder)

s z1

x

y z2

: semi-observed variableVAE Objective Function



Further invariance via posterior 

regularization

• Model encourages independence 

between z1 and s a-priori

• Some dependencies might still remain in 

the (approximate) posterior q(z1|s)

• e.g. if s and y are correlated then q(y|z1) can 

“leak” information about s

• Introduce an extra penalty term to avoid 

information about s as much as possible

s z1

x

y z2

Independence between z1 and s a-priori

p(x | z1, s)

p(z1 | y, z2)



Maximum Mean Discrepancy[5]

(MMD)

• MMD measures the “distance” between two sets of 

samples

• For universal kernels (e.g. rbf) it is asymptotically 0 

if both sample sets are “drawn” from the same 

distribution
[5]“A Kernel Two-Sample Test”, Gretton et al, 2012



Fast MMD via Random Fourier 

Features

• Computing MMD is expensive

• Scales quadratically with the mini-batch size due to the Gram matrix

[6]“FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test”, Zhao et al., 2014

• Random Kitchen Sinks to approximate the rbf MMD[6]

• Work with primal space: 

• Scales linearly with the mini-batch size

• Feature expansion is given by:



Variational Fair Autoencoder 

(VFAE)

• We incorporate MMD in the lower bound of our VAE

• We split the samples from q(z1|x,s) according to the state of 

s

• We treat those as samples from the marginal posteriors 

q(z1|s) 

VFAE Objective Function



Experiments

1. Fair classification

2. Domain Adaptation

3. General feature learning



Evaluation criteria

• z1 should provide low (random chance) accuracy on s and high 

accuracy on y

• Measured linearly (Logistic Regression) and non-linearly (Random 

Forest)

• z1 should also not “discriminate” for fair classification[1]

• Ensure unbiased decisions from the classifier

[1]“Learning Fair Representations”,Zemel et al., 2013



Experiments

1. Fair classification

2. Domain Adaptation

3. General feature learning



Fair Classification

• Adult dataset

• y: account > 50.000$, s: gender

• Health dataset

• y: whether admitted to hospital, s: age 

• Learning Fair Representations[1] (LFR) as baseline

[1]“Learning Fair Representations”,Zemel et al., 2013



Fair classification results

Accuracy S Discrimination S Accuracy y



Fair classification results

Accuracy S Discrimination S Accuracy y

(A): original x,  (B): latent z1 without s and MMD, (C): latent z1 with s and without MMD, (D): latent z1 with s and MMD.



Experiments

1. Fair classification

2. Domain Adaptation

3. General feature learning



Domain Adaptation

• Amazon reviews dataset

• y: positive/negative review 

• s: domain (books, dvd, electronics, kitchen)

• Domain Adversarial Neural Networks[3] (DANN) as 

baseline

[3]Domain Adversarial Training of Neural Networks”, Ganin et al., 2015



Domain adaptation results



Experiments

1. Fair classification

2. Domain Adaptation

3. General feature learning



Invariant feature learning

• Extended Yale B dataset

• Face images of 38 people under different 

lightning conditions

• y: person ID

• s: lightning condition of the photo

• A two hidden layer neural network with MMD[2] as 

the baseline

[2]“Learning unbiased features”, Li et al., 2014



Invariant feature learning results



Conclusion & future work

• VFAE provides the better tradeoff in predicting y while 

obfuscating s

• Incorporating MMD in VFAE helps

• Effective in fair classification, domain adaptation and invariant feature 

learning

• Alternative posterior regularization techniques

• Mutual information among the s and z distributions

• Extend to recommender systems

• Recommendations that do not depend to sensitive demographic 

information



Thank you!

Questions?
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reconstruction loss

for z1

reconstruction loss

for x

: transition

: optional transition

: deterministic node

Classification loss

for y


