The Variational Fair Autoencoder

Christos Louizos, Kevin Swersky, Yujia Li Max Welling, Richard Zemel

Motivation

 Consider the task of identifying a person in the following images:

Can be hard since a lot of "noise" obfuscates the predictive information

Motivation (2)

- Determine possible suspects from photos
 - Sensitive information (e.g. race and gender) of the individual should not affect decisions
- Detect Alzheimer on MRI images
 - MRI images from machine 1 and 2
 - Avoid machine related variations for better generalization

Tackling such problems

- Simply excluding these particular bits from the input is not going to work
 - Other dimensions still contain information about these bits
- Transform the data to a new representation
 - Explicitly encode its properties
 - Enforce invariance w.r.t. a-priori known information

Related work

- "Learning Fair Representations"^[1] (LFR)
 - Simple discriminative clustering approach
- Neural networks with a Maximum Mean Discrepancy^[5] penalty^[2, 7, 8]
- "Domain Adversarial Neural Networks"[3] (DANN)
 - A minimax problem

^{[8] &}quot;Learning Transferable Features with Deep Adaptation Networks", Long et al., 2015

^[3]Domain Adversarial Training of Neural Networks", Ganin et al., 2015

Contribution

- Variational Fair Autoencoder (VFAE)
 - A generative model where known/target factors of variation are explicitly removed
 - New representation is invariant w.r.t. this information
 - Better performance on fair classification, domain adaptation and general feature learning tasks

Unsupervised Variational Autoencoder^[4] for invariant representations

: latent variable

: observed variable

- Two independent factors of variation
 - s : observed (discrete) "sensitive"/"nuisance" factors of variation
- \mathbf{z} : continuous latent variable for the remaining information $p_{\theta}(\mathbf{x},\mathbf{z}|\mathbf{s}) = p(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z},\mathbf{s})$ as a neural network generative model (decoder)

 $q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{s})$ as a neural network variational posterior (encoder) since exact inference is intractable

Objective Function

$$\sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{s}_n) \geq \sum_{n=1}^{N} \mathbb{E}_{q_{\phi}(\mathbf{z}_n | \mathbf{x}_n, \mathbf{s}_n)} [\log p_{\theta}(\mathbf{x}_n | \mathbf{z}_n, \mathbf{s}_n)] - KL(q_{\phi}(\mathbf{z}_n | \mathbf{x}_n, \mathbf{s}_n) | | p(\mathbf{z}))$$

Semi-Supervised VAE^[4] for invariant representations

- Unsupervised model may create degenerate representations w.r.t.
 the prediction task (y)
- Enrich generative model so as to correlate z with y

 $p_{\theta}(\mathbf{z_1}, \mathbf{z_2}, \mathbf{x}, \mathbf{y}|\mathbf{s}) = p(\mathbf{y})p(\mathbf{z_2})p_{\theta}(\mathbf{z_1}|\mathbf{z_2}, \mathbf{y})p_{\theta}(\mathbf{x}|\mathbf{z_1}, \mathbf{s})$, as a neural network generative model (decoder)

 $q_{\phi}(\mathbf{z_1},\mathbf{z_2},\mathbf{y}|\mathbf{x},\mathbf{s}) = q_{\phi}(\mathbf{z_1}|\mathbf{x},\mathbf{s})q_{\phi}(\mathbf{y}|\mathbf{z_1})q_{\phi}(\mathbf{z_2}|\mathbf{z_1},\mathbf{y})$ as a neural network variational posterior (encoder)

r.t. Z1

VAE Objective Function

: semi-observed variable

$$\begin{split} \mathcal{F}_{\text{VAE}}(\phi, \theta; \mathbf{x}_n, \mathbf{x}_m, \mathbf{s}_n, \mathbf{s}_m, \mathbf{y}_n) &= \sum_{n=1}^{N} \mathcal{L}_s(\phi, \theta; \mathbf{x}_n, \mathbf{s}_n, \mathbf{y}_n) + \sum_{m=1}^{M} \mathcal{L}_u(\phi, \theta; \mathbf{x}_m, \mathbf{s}_m) + \\ &+ \alpha \sum_{n=1}^{N} \mathbb{E}_{q(\mathbf{z}_{1_n} | \mathbf{x}_n, \mathbf{s}_n)} [-\log q_{\phi}(\mathbf{y}_n | \mathbf{z}_{1_n})] \end{split}$$

Further invariance via posterior regularization

- Model encourages independence between z₁ and s a-priori
- Some dependencies might still remain in the (approximate) posterior q(z₁|s)
 - e.g. if s and y are correlated then q(y|z₁) can "leak" information about s
- Introduce an extra penalty term to avoid information about s as much as possible

Maximum Mean Discrepancy^[5] (MMD)

MMD measures the "distance" between two sets of samples

$$\ell_{\text{MMD}}(\mathbf{X}, \mathbf{X}') = \left\| \frac{1}{N_0} \sum_{i=1}^{N_0} \psi(\mathbf{x}_i) - \frac{1}{N_1} \sum_{j=1}^{N_1} \psi(\mathbf{x}'_j) \right\|^2$$

$$= \frac{1}{N_0^2} \sum_{i=1}^{N_0} \sum_{i'=1}^{N_0} k(\mathbf{x}_i, \mathbf{x}_{i'}) + \frac{1}{N_1^2} \sum_{j=1}^{N_1} \sum_{j'=1}^{N_1} k(\mathbf{x}'_j, \mathbf{x}'_{j'}) - \frac{2}{N_0 N_1} \sum_{i=1}^{N_0} \sum_{j=1}^{N_1} k(\mathbf{x}_i, \mathbf{x}'_j)$$

 For universal kernels (e.g. rbf) it is asymptotically 0 if both sample sets are "drawn" from the same distribution

Fast MMD via Random Fourier Features

- Computing MMD is expensive
 - Scales quadratically with the mini-batch size due to the Gram matrix
- Random Kitchen Sinks to approximate the rbf MMD^[6]
 - Work with primal space: $\left\|\frac{1}{N_0}\sum_{i=1}^{N_0}\psi(\mathbf{x}_i)-\frac{1}{N_1}\sum_{i=1}^{N_1}\psi(\mathbf{x}_i')\right\|^2$
 - Scales linearly with the mini-batch size
- Feature expansion is given by:

$$\psi(\mathbf{x}) = \sqrt{\frac{2}{D}} \cos \left(\sqrt{\frac{2}{\gamma}} \mathbf{x} \mathbf{W} + \mathbf{b} \right)$$
$$\mathbf{W} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}); \qquad \mathbf{b} \sim \mathcal{U}[0, 2\pi]$$

Variational Fair Autoencoder (VFAE)

- We incorporate MMD in the lower bound of our VAE
 - We split the samples from q(z₁|x,s) according to the state of
 - We treat those as samples from the marginal posteriors
 q(z₁|s)

VFAE Objective Function

$$\mathcal{F}_{\text{VFAE}}(\phi, \theta; \mathbf{x}_n, \mathbf{x}_m, \mathbf{s}_n, \mathbf{s}_m, \mathbf{y}_n) = \mathcal{F}_{\text{VAE}}(\phi, \theta; \mathbf{x}_n, \mathbf{x}_m, \mathbf{s}_n, \mathbf{s}_m, \mathbf{y}_n) - \beta \ell_{\text{MMD}}(\mathbf{Z}_{1s=0}, \mathbf{Z}_{1s=1})$$

$$\ell_{\text{MMD}}(\mathbf{Z}_{1s=0}, \mathbf{Z}_{1s=1}) = \| \mathbb{E}_{\tilde{p}(\mathbf{x}|\mathbf{s}=0)}[\mathbb{E}_{q(\mathbf{z}_1|\mathbf{x},\mathbf{s}=0)}[\psi(\mathbf{z}_1)]] - E_{\tilde{p}(\mathbf{x}|\mathbf{s}=1)}[\mathbb{E}_{q(\mathbf{z}_1|\mathbf{x},\mathbf{s}=1)}[\psi(\mathbf{z}_1)]]\|^2$$

Experiments

- 1. Fair classification
- 2. Domain Adaptation
- 3. General feature learning

Evaluation criteria

- z₁ should provide low (random chance) accuracy on s and high accuracy on y
 - Measured linearly (Logistic Regression) and non-linearly (Random Forest)
- z₁ should also not "discriminate" for fair classification^[1]
 - Ensure unbiased decisions from the classifier

Discrimination
$$(\mathbf{y}_{s=0}, \mathbf{y}_{s=1}) = \left| \frac{\sum_{n=1}^{N} \mathbb{I}[y_n^{s=0}]}{N_{s=0}} - \frac{\sum_{n=1}^{N} \mathbb{I}[y_n^{s=1}]}{N_{s=1}} \right|$$

Experiments

- 1. Fair classification
- 2. Domain Adaptation
- 3. General feature learning

Fair Classification

- Adult dataset
 - **y**: account > 50.000\$, **s**: gender
- Health dataset
 - y: whether admitted to hospital, s: age
- Learning Fair Representations^[1] (LFR) as baseline

Fair classification results

Fair classification results

Experiments

- 1. Fair classification
- 2. Domain Adaptation
- 3. General feature learning

Domain Adaptation

- Amazon reviews dataset
 - y: positive/negative review
 - s: domain (books, dvd, electronics, kitchen)
- Domain Adversarial Neural Networks^[3] (DANN) as baseline

Domain adaptation results

Source - Target	S		Y	
	RF	LR	VFAE	DANN
books - dvd	0.535	0.564	0.799	0.784
books - electronics	0.541	0.562	0.792	0.733
books - kitchen	0.537	0.583	0.816	0.779
dvd - books	0.537	0.563	0.755	0.723
dvd - electronics	0.538	0.566	0.786	0.754
dvd - kitchen	0.543	0.589	0.822	0.783
electronics - books	0.562	0.590	0.727	0.713
electronics - dvd	0.556	0.586	0.765	0.738
electronics - kitchen	0.536	0.570	0.850	0.854
kitchen - books	0.560	0.593	0.720	0.709
kitchen - dvd	0.561	0.599	0.733	0.740
kitchen - electronics	0.533	0.565	0.838	0.843

Experiments

- 1. Fair classification
- 2. Domain Adaptation
- 3. General feature learning

Invariant feature learning

- Extended Yale B dataset
 - Face images of 38 people under different lightning conditions
 - y: person ID
 - s: lightning condition of the photo
- A two hidden layer neural network with MMD^[2] as the baseline

Invariant feature learning results

Method		v	
	RF	LR	1
Original x	0.952	0.961	0.78
NN + MMD	-	-	0.82
VFAE	0.435	0.565	0.846

Conclusion & future work

- VFAE provides the better tradeoff in predicting y while obfuscating s
 - Incorporating MMD in VFAE helps
 - Effective in fair classification, domain adaptation and invariant feature learning
- Alternative posterior regularization techniques
 - Mutual information among the s and z distributions
- Extend to recommender systems
 - Recommendations that do not depend to sensitive demographic information

Thank you!

Questions?

