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Motivation

.- Consider the task of identifying a person in the
following images:
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. Can be hard since a lot of “noise” obfuscates the

predictive information



Motivation (2)

- Determine possible suspects from photos

Sensitive information (e.g. race and gender) of the
iIndividual should not affect decisions

.- Detect Alzheimer on MRI images
MRI images from machine 1 and 2

Avoid machine related variations for better generalization



Tackling such problems

Simply excluding these particular bits from the input
IS not going to work

Other dimensions still contain information about these bits
.- Transform the data to a new representation
- Explicitly encode its properties

- Enforce invariance w.r.t. a-priori known information



Related work

. “Learning Fair Representations”! (LFR)

Simple discriminative clustering approach

- Neural networks with a Maximum Mean
Discrepancy®! penaltyls: /- 8!

. “Domain Adversarial Neural Networks”3! (DANN)

A minimax problem

[1“Learning Fair Representations”,Zemel et al., 2013

[B“A Kernel Two-Sample Test”, Gretton et al, 2012

[2I“_earning unbiased features”, Li et al., 2014

["“Deep Domain Confusion: Maximizing for Domain Invariance”, Tzeng et al., 2014

[ earning Transferable Features with Deep Adaptation Networks”, Long et al., 2015
[BIDomain Adversarial Training of Neural Networks”, Ganin et al., 2015



Contribution

- Variational Fair Autoencoder (VFAE)

A generative model where known/target factors of variation
are explicitly removed

New representation is invariant w.r.t. this information

Better performance on fair classification, domain adaptation
and general feature learning tasks



Unsupervised Variational Autoencoder!?

for Invariant representations
W

Two independent factors of variation \ /

S : observed (discrete) “sensitive’/“nuisance” factors of v

variation |
' . latent variable

z : continuous latent variable for the remaining information @ - observed variable
Pe(X,z|s) = p(z)pe(X|z,s) as a neural network generative model (decoder)

Jo(z|X,s) as a neural network variational posterior (encoder) since exact
Inference is intractable

Objective Function
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[4]“Semi-Supervised Learning with Deep Generative Models”, Kingma et al., 2014



Semi-Supervised VAE! for
Invariant representations

- Unsupervised model may create degenerate representations w.r.t. c

~
the prediction task (y) \ /

- Enrich generative model so as to correlate z with y

~—
Pe(z1,22,X,Y|S) = p(Y)p(z2)ps(z1|z2,¥)pe(X|z1,8), as a neural network /

generative model (decoder)

de(Z1,22,Y|X,S) = Qo(za|X,S)de(Y|z1)de(z2|z1,y) as a neural network
variational posterior (encoder)
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Further invariance via posterior
regularization

- Model encourages independence
between z1 and s a-priori Q

y
- Some dependencies might still remain in \ /
the (approximate) posterior q(z1|s) O oo

- e.g.If sandy are correlated then g(y|z1) can \ I
“leak” information about s &Y iz

Independence between z1 and s a-priori

- Introduce an extra penalty term to avoid
iInformation about s as much as possible



Maximum Mean Discrepancy®!
(MMD)

- MMD measures the “distance” between two sets of
samples
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- For universal kernels (e.g. rbf) it is asymptotically O
If both sample sets are “drawn” from the same
distribution

[5]“A Kernel Two-Sample Test”, Gretton et al, 2012



Fast MMD via Random Fourier
Features

- Computing MMD Iis expensive

. Scales quadratically with the mini-batch size due to the Gram matrix

- Random Kitchen Sinks to approximate the rbf MMDI®]
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- Work with primal space.:

- Scales linearly with the mini-batch size

Feature expansion Is given by:
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[6lFastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test”, Zhao et al., 2014



Variational Fair Autoencoder
(VFAE)

- We incorporate MMD In the lower bound of our VAE

We split the samples from q(z1|x,s) according to the state of
S

We treat those as samples from the marginal posteriors
q(z1[s)

VEAE Objective Function
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Experiments

1. Fair classification
2. Domain Adaptation

3. General feature learning



Evaluation criteria

- z1 should provide low (random chance) accuracy on s and high
accuracy ony

Measured linearly (Logistic Regression) and non-linearly (Random
Forest)

. z1 should also not “discriminate” for fair classification!!!

Ensure unbiased decisions from the classifier
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[1]“Learning Fair Representations”,Zemel et al., 2013



Experiments

1. Fair classification
2. Domain Adaptation

3. General feature learning



Fair Classification

. Adult dataset

y: account > 50.000%, s: gender

Health dataset
y: whether admitted to hospital, s: age

Learning Fair Representations!!! (LFR) as baseline

[1]“Learning Fair Representations”,Zemel et al., 2013



Fair classification results
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Fair classification results
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Experiments

1. Fair classification
2. Domain Adaptation

3. General feature learning



Domain Adaptation

. Amazon reviews dataset

y: positive/negative review

s: domain (books, dvd, electronics, kitchen)

Domain Adversarial Neural Networks®! (DANN) as
baseline

BlIDomain Adversarial Training of Neural Networks”, Ganin et al., 2015



Domain adaptation results

Source - Target

RF LR VFAE | DANN
books - dvd 0.535 | 0.564 | 0.799 | 0.784
books - electronics | 0.541 | 0.562 | 0.792 | 0.733
books - kitchen 0.537 | 0.583 | 0.816 | 0.779
dvd - books 0.537 | 0.563 | 0.755 | 0.723
dvd - electronics 0.538 | 0.566 | 0.786 | 0.754
dvd - kitchen 0.543 | 0.589 | 0.822 | 0.783
electronics - books | 0.562 | 0.590 | 0.727 | 0.713
electronics - dvd 0.556 | 0.586 | 0.765 | 0.738
electronics - kitchen | 0.536 | 0.570 | 0.850 | 0.854
kitchen - books 0.560 | 0.593 | 0.720 | 0.709
kitchen - dvd 0.561 | 0.599 | 0.733 | 0.740
kitchen - electronics | 0.533 | 0.565 | 0.838 | 0.843




Experiments

1. Fair classification
2. Domain Adaptation

3. General feature learning



Invariant feature learning

- Extended Yale B dataset

- Face images of 38 people under different
lightning conditions

- y: person ID
- S: lightning condition of the photo

. A two hidden layer neural network with MMD!”! as
the baseline



Invariant feature learning results

Method Y

Original x 0.952 | 0.961 | 0.78
NN+ MMD | - -
VFAE 0.435 | 0.565 | 0.846




Conclusion & future work

- VFAE provides the better tradeoff in predicting y while
obfuscating s

Incorporating MMD in VFAE helps

Effective In fair classification, domain adaptation and invariant feature
learning

. Alternative posterior regularization techniques

Mutual information among the s and z distributions

- Extend to recommender systems

Recommendations that do not depend to sensitive demographic
Information



Thank you!

Questions?
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