Density Modeling of Images with Generalized Divisive Normalization

Johannes Ballé Valero Laparra Eero P. Simoncelli

New York University Howard Hughes Medical Institute

Why unsupervised learning?

find structure in unlabeled data understand sensory representation

Density estimation (parametric density)

$$p_x(x) = \frac{1}{Z(\theta)} \exp(-f(x;\theta))$$

Density estimation (parametric density)

$$p_{x}(x) = \frac{1}{Z(\theta)} \exp(-f(x;\theta))$$
$$Z(\theta) = \int \exp(-f(x;\theta)) dx$$

Density estimation (parametric density)

 $x \sim p_x$

$$x \rightarrow g(x; \theta) \rightarrow y$$

$$p_x(x) = \left| \frac{\partial g(x; \theta)}{\partial x} \right| \mathcal{N}(g(x; \theta))$$

$$x \longrightarrow g(x; \theta) \longrightarrow y$$
$$-\log p_x(x) = -\log \left| \frac{\partial g(x; \theta)}{\partial x} \right| - \frac{1}{2} \left\| g(x; \theta) \right\|_2^2 + C$$

$$x \longrightarrow g(x; \theta) \longrightarrow y$$
$$-\log p_x(x) = -\log \left| \frac{\partial g(x; \theta)}{\partial x} \right| - \frac{1}{2} ||g(x; \theta)||_2^2 + C$$

minimize wrt. $\boldsymbol{\theta}$ using stochastic gradient descent

Marginal distribution of linear filter responses

Burt & Adelson, 1981 Field, 1987 Mallat, 1989 image ©CC-BY-NC 2.0 acevvvedo@flickr

Marginal distribution of linear filter responses

Burt & Adelson, 1981 Field, 1987 Mallat, 1989 image ©CC-BY-NC 2.0 acevvvedo@flickr

Marginal distribution of linear filter responses

Joint distribution of linear filter responses

$$y_0 = \frac{x_0}{\left(\beta_0 + \gamma_0 |x_0|^{\alpha_0}\right)^{\varepsilon_0}}$$

$$y_1 = \frac{x_1}{\left(\beta_1 + \gamma_1 |x_1|^{\alpha_1}\right)^{\varepsilon_1}}$$

Improved Gaussianization

1. Iterated marginal Gaussianization

Improved Gaussianization

1. Iterated marginal Gaussianization

2. Joint Gaussianization (inspired by biology)

figures: Cajal; Carandini & Heeger, 2012

$$y_0 = \frac{x_0}{\left(\beta_0 + \gamma_0 |x_0|^{\alpha_0}\right)^{\varepsilon_0}}$$

$$y_1 = \frac{x_1}{\left(\beta_1 + \gamma_1 |x_1|^{\alpha_1}\right)^{\varepsilon_1}}$$

$$y_{0} = \frac{x_{0}}{\left(\beta_{0} + \gamma_{0}|x_{0}|^{\alpha_{0}}\right)^{\varepsilon_{0}}}$$

$$y_{1} = \frac{x_{1}}{\left(\beta_{1} + \gamma_{1}|x_{1}|^{\alpha_{1}}\right)^{\varepsilon_{1}}}$$

$$y_0 = \frac{x_0}{\left(\beta_0 + \gamma_{01} |x_1|^{\alpha_{01}} + \gamma_{00} |x_0|^{\alpha_{00}}\right)^{\varepsilon_0}}$$

$$y_{1} = \frac{x_{1}}{\left(\beta_{1} + \gamma_{10}|x_{0}|^{\alpha_{10}} + \gamma_{11}|x_{1}|^{\alpha_{11}}\right)^{\varepsilon_{1}}}$$

Variety of shapes, joint density of filter responses

elliptical

?

marginally independent

Lyu & Simoncelli, 2009 Sinz et al., 2009

modelhistogram estimate

Generalized divisive normalization (GDN)

Special cases/related models:

- Independent Component Analysis, Cardoso, 2003
- Independent Subspace Analysis, Hyvärinen & Hoyer, 2000
- Weighted normalization model, Schwartz & Simoncelli, 2001
- Topographic ICA, Hyvärinen et al., 2001
- Radial Gaussianization, Lyu & Simoncelli, 2009
- *L_p*-nested symmetric distributions, Sinz & Bethge, 2010
- "Two-layer model", Köster & Hyvärinen, 2010

Parameter estimation (multiple layers)

$$x \rightarrow g(x; \theta) \rightarrow y$$

$$-\log p_x(x) = -\log \left| \frac{\partial g(x; \theta)}{\partial x} \right| - \frac{1}{2} \left\| g(x; \theta) \right\|_2^2 + C$$

minimize wrt. θ using stochastic gradient descent

Parameter estimation (multiple layers)

$$-\log p_{x}(x) = -\log \left| \frac{\partial g(x; \theta)}{\partial x} \right| - \frac{1}{2} \left\| g(x; \theta) \right\|_{2}^{2} + C$$

$$\overbrace{-\log \left| \frac{\partial g_{0}(x_{0}; \theta)}{\partial x_{0}} \right| - \log \left| \frac{\partial g_{1}(x_{1}; \theta)}{\partial x_{1}} \right| - \dots}$$

minimize wrt. θ using stochastic gradient descent

One layer of joint GDN > many layers of marginal GDN

original

increasing Euclidean distance in pixel representation

original

increasing Euclidean distance in Gaussianized representation

Pixel representation

data: TID 2008

Multi-scale GDN representation

data: TID 2008

Multi-scale GDN representation

SSIM: Wang et al., 2004 data: TID 2008

- Gaussianization: Methodology for density estimation and unsupervised learning of a representation
- GDN: joint nonlinearity applied across feature maps
 - inspired by nonlinearities of biological neurons
 - generalizes sigmoids used in ANNs
 - capable of Gaussianizing image data
- one layer of GDN > many layers of marginal nonlinearities
- accounts for human judgements of image quality (more so than SSIM, the de facto standard)