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Density estimation (parametric density)
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Density estimation (parametric density)

tractable?
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Density estimation (parametric transformation)
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Density estimation (parametric transformation)
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“inferred” density:

Gaussianization
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Marginal distribution of linear filter responses
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Marginal distribution of linear filter responses
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Marginal distribution of linear filter responses
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Joint distribution of linear filter responses
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Contour lines, Gaussianized responses
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Contour lines, Gaussianized responses
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Contour lines, Gaussianized responses
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Improved Gaussianization
1. Iterated marginal Gaussianization

Chen & Gopinath, 2001
Laparra et al., 2010
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bipolar cells and ganglion cells41, and to become stronger 
in subsequent stages of visual processing.

Under contrast normalization, responses are no 
longer proportional to local contrast Cj (the output of 
the first normalization stage). Instead, the response Rj 
of neuron j is divided by a constant σ plus a measure of 
overall contrast40: 

Σk αk Ck

Σi wi CiRj = γ
σ + 2

 
(5)

Here, the weights wi (positive or negative) define the 
spatial profile of the summation field (typically, a centre-
surround difference of Gaussians), and the weights αk 
(positive) define the spatial profile of the suppressive field 
(typically, a large Gaussian40). The responses of neurons 
at the output of the retina (as measured in the lateral 
geniculate nucleus (LGN)) are characterized well by this 
equation, in which the normalization in the denomina-
tor corresponds to the standard deviation of contrasts 
over a region of the visual field42. 

A common way to probe contrast normalization is to 
use gratings that vary in overall contrast and size (FIG. 2f). 
As predicted by the model, increasing grating contrast 
leads to response saturation when gratings are shown in 
a large window, but not when they are shown in a small 
window40 (FIG. 2f). For small windows, local contrast is 
zero in most of the suppressive field, so the denomi-
nator has a small role in equation 5. For larger stimuli, 
increasing grating contrast increases local contrast not 
only in the numerator but also in the denominator, and 
responses saturate. Response saturation, therefore, is due 
to contrast and not to the evoked response: it is strongest 
for largest stimuli, which evoke weaker responses than 
smaller stimuli. 

Normalization in the primary visual cortex
Normalization is thought to operate not only in the ret-
ina but also at multiple subsequent stages along the vis-
ual pathway. Indeed, the normalization model was first 
developed to account for the physiological responses of 
neurons in the primary visual cortex (V1)17–19,43–45.

Here, we describe the normalization model for a pop-
ulation of V1 neurons differing in preference for stimu-
lus position and orientation. This characterization of the 
responses of neural populations46–48 encompasses previ-
ous descriptions of single neurons19,43. In the model, the 
responses of a population of V1 neurons are given by:

R(x, θ) = D(x , θ)n

σ n + N(x , θ)n

 
(6)

Here, x and θ indicate the preferred position and orien-
tation of each neuron in the population (the only two 
stimulus attributes that we consider in this simplified 
explanation). The numerator contains the stimulus drive 
D, which results from each neuron’s summation field and 
determines the selectivity for stimulus position and ori-
entation. The normalization factor N in the denominator, 
in turn, is determined by the suppressive field α(x,θ), 
which provides weights with which to pool the stimu-
lus drive received by each of the neurons (BOX 1). The 

Figure 2 | Normalization in the retina. a | Light adaptation operates on light intensity 
to produce a neural estimate of contrast (multiple arrows indicate light intensities from 
multiple locations). b | Responses of a turtle cone photoreceptor to light of increasing 
intensity. The intensity of the coloured squares reflects background intensity. Curves are 
fits of normalization model (equation 2) with n = 1. c | Light adaptation moves the 
operating point to suit images of differing intensity. Histograms on abscissa indicate 
distributions of light intensity for a sinusoidal grating under dim illumination (shown in 
blue) and bright illumination (shown in green). Histograms on ordinate indicate 
distributions of responses, which are more similar to one another than the light  
intensity distributions. d | The same data as in part c plotted as a function of local 
contrast (Weber contrast) rather than light intensity. Light adaptation makes responses 
roughly proportional to local contrast. The linear approximation given by equation 3 is 
shown (indicated by the dotted line). e | Contrast normalization operates on the neural 
estimate of contrast and normalizes it with respect to the standard deviation (sd) of 
nearby contrasts (multiple arrows indicate local contrast from multiple locations).  
f | Effects of contrast normalization. Responses of a neuron in lateral geniculate nucleus 
(which receives input from the retina) as a function of grating contrast and size. deg, 
degrees. Data in part b, from REF. 24. Data in part f, from REF. 40.
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Improved Gaussianization

Heeger, 1992
Schwartz & Simoncelli, 2001

figures: Cajal; Carandini & Heeger, 2012

1. Iterated marginal Gaussianization

2. Joint Gaussianization (inspired by biology)

Chen & Gopinath, 2001
Laparra et al., 2010
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Contour lines, Gaussianized responses
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Variety of shapes, joint density of filter responses

elliptical marginally
independent

?

Lyu & Simoncelli, 2009
Sinz et al., 2009



Contour lines, linear filter responses
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Generalized divisive normalization (GDN)
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Parameter estimation (multiple layers)
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One layer of joint GDN > many layers of marginal GDN
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figure: Hubel, 1995

What are the perceptual properties of the 
representation?
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figure: Hubel, 1995
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Pixel representation

data: TID 2008
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Multi-scale GDN representation

Euclidean distance (Gaussianized representation)
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Multi-scale GDN representation

Euclidean distance (Gaussianized representation)
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• Gaussianization: Methodology for density estimation 
and unsupervised learning of a representation

• GDN: joint nonlinearity applied across feature maps
– inspired by nonlinearities of biological neurons
– generalizes sigmoids used in ANNs
– capable of Gaussianizing image data

• one layer of GDN > many layers of marginal 
nonlinearities

• accounts for human judgements of image quality 
(more so than SSIM, the de facto standard)

Thank you!


