Full -text Support for
Publish/Subscribe

Ontology Systems

Lefteris Zervakis, Christos Tryfonopoulos,
Spiros Skiadopoulos, and Manolis Koubarakis

”ﬁ University of the Peloponnese % National and Kapodistrian University of Athens

User Information Needs

u User interests
u Up to date

u Two Information
discovery paradigms

Ainformation pull
Ainformation push

The Information Pull Paradigm

u One-time queries
Adocument indexing

u Content updates

u Recurring searches

u Cognitive overload!

The Information Pull Paradigm

u One-time queries
Adocument indexing
u Content updates AHery
u Recurring searches
u Cognitive overload!

ltems of
Interest

The Information Pull Paradigm

u One-time queries
Adocument indexing

u Content updates

u Recurring searches

u Cognitive overload!

The Information Pull Paradigm

u One-time queries
Adocument indexing
u Content updates AHery
u Recurring searches
u Cognitive overload!

ltems of
Interest

The Information Pull Paradigm

u One-time queries
Adocument indexing

u Content updates

u Recurring searches

u Cognitive overload!

The Information Push Paradigm

u Continuous queries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems

Apublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

u Continuous gqueries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems
Apublish/subscribe (pub/sub),

alerting, filtering systems =
1..

Continuous
query

The Information Push Paradigm

u Continuous gqueries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems

Apublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

u Continuous gqueries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems
Apublish/subscribe (pub/sub),

alerting, filtering systems =
1..

Notifications

The Information Push Paradigm

u Continuous gqueries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems

Apublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

u Continuous gqueries

u Filtering of new content
Aquery indexing

u Notifications

u Push systems
Apublish/subscribe (pub/sub),

alerting, filtering systems =
1..

Notifications

Ontology-based Publish/Subscribe

u Enhanced semantics
u Subscriptions are SPARQL queries
u Publications are sets of RDF triples

Current State of the Art

u Structural filtering (S-ToPSS, G-ToPSS)

u Structural filtering + arithmetic/string
operations (iBroker)

u No structural + full-text filtering
Acontrary to information pull systems

Applications

u Ontology-enabled
Anews alerts (RSS feeds)
Adigital libraries

u Curation/monitoring tool for linked
datasets

u Complement LOD platforms
A structural/textual notifications

Our Contribution (1/2)

u Extend SPARQL with full-text pub/sub

A Boolean, word proximity, phrase
operators

SELECT ?publication
WHERE {?publication type article.
?publication title ?title.
?publication body ?body.
FILTER ftcontains(?title, "olympic" ftAND "games")
FILTER ftcontains(?body, "olympic” ftAND "games” fINEAR, 5, “ri0")}

Our Contribution (1/2)

u Extend SPARQL W|th fuII text pub/sub

FILTER ftcontains(?body, "olympic” ftAND "games” fINEAR, 5, “ri0")}

Our Contribution (1/2)

u Extend SPARQL with full-text pub/sub

A Boolean, word proximity, phrase
operators

SELECT ?publication
WHERE {?publication type article.
?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games' "rio")}

Our Contribution (1/2)

u Extend SPARQL with full-text pub/sub

A Boolean, word proximity, phrase
operators

SELECT ?publication
WHERE {?publication type article.
?publication title ?title.
?publication body ?body.
FILTER ftcontains(?title, "olympic" ftAND "games")
FILTER ftcontains(?body, "olympic” ftAND "games” fINEAR, 5, “ri0")}

Our Contribution (2/2)

u RTF: RDF and Text Filtering
Astructural filtering
Afull-text filtering

u Focus on efficiency

Our Contribution (2/2)

u RTF: RDF and Text Filtering

Astructural filtering } index in a unified

Afull-text filtering way (tree -based)

u Focus on efficiency

SPARQL Query to Tuple Conjucts

Query d:
SELECT ?publication
WHERE {?publication type article.

?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic” ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

Query d:
SELECT ?publication
WHERE {? oublication type article.

?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic” ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

- 0.t; = (? publication , type , article)

Query d:
SELECT ?publication
WHERE {? publication type article. ‘

?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic” ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

Query d:
SELECT ?publication
WHERE {?publication type article.

‘ ?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic” ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

Query d:
SELECT ?publication
WHERE {?publication type article.

‘ ?publication title ?title.

?publication body ?body.
FILTER ftcontains(?title, "olympic" ffAND "games") |

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

g.t, = (? publication , title , ?title
Query q: ftcontains (" olympic " ftAND " games "))

SELECT ?publication [
WHERE {?publication type article.
‘?ouo ication title ?title. |7
?publication body ?body.
FILTER ftcontains(?title, "olympic" ftAND "games") |-

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

Query d:
SELECT ?publication
WHERE {?publication type article.

?publication title ?title.

‘?ou plication body ?body.
FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

q.t; = (? publication , title , ?title ,
Query (ftcontains (" olympic " ftAND " games " ftNEAR][O,2] "rio"))

SELECT ?publication [1
WHERE {?publication type article.

?publication title ?title.
‘?ou:) ication body ?body. |—
FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"
fINEAR g 5; "rio”)}

SPARQL Query to Tuple Conjucts

g.t; = (? publication , type , article)

g.t, = (? publication , title , ?title ,
ftcontains (" olympic " ftAND " games "))

g.t3 = (? publication , title , ?title ,
ftcontains (" olympic " ftAND " games " fINEAR]O,2] "rio"))

SPARQL Query to Tuple Conjucts

‘q.t1 = (? publication , type , article) ‘

g.t, = (? publication , title , ?title ,
ftcontains (" olympic " ftAND " games "))

g.t3 = (? publication , title , ?title ,
ftcontains (" olympic " ftAND " games " fINEAR]O,2] "rio"))

| q=0q.t," qt,” Qi |

RTF Tree-based Indexing

g.t; = (? publication , type , article)
r)

RTF Tree-based Indexing
g.t; = (? publication , type , article)

-

RTF Tree-based Indexing

g.t, = (? publication , title , ?title , ftcontains (" olympic " ftAND " games "))

?variable

r)

RTF Tree-based Indexing

—

)

g.t, = (? publication , title , ?title , ftcontains (" olympic " ftAND " games "))

?vaﬂapki/

RTF Tree-based Indexing

g.t; = (? publication , body , ?body , ftcontains (" olympic " ftAND " games " ftNEAR [0,2] " rio ")

~)

?variab

RTF Tree-based Indexing

g.t; = (? publication , body , ?body , ftcontains (" olympic " ftAND " games " ftNEAR [0,2] " rio ")

-)

RTF Tree-based Indexing

v.t; = (? publication , body , ?body , ftcontains (" olympic " ftAND " committee ")

r)
?variable)

RTF Tree-based Indexing

v.t; = (? publication , body , ?body , ftcontains (" olympic " ftAND " committee ")

—

RTF Tree-based Indexing
After several tuple insertions

—
?variable)

RTF Tree-based Indexing
Algorithm RTFm (No pun intended)
5

RTF Tree-based Indexing

Collapsing FT nodes

)
’?varlable

@(’@ T
[V.ts] = 7var|able

p-Gyme) - Cual) games)

G G -G
N I D CD L .

v ~Cournal) D

[tht] [Wt]

[V.ts] =

RTF Tree-based Indexing

Algorithm RTFs

)
’?varlable

@(’@ T
[V.ts] = 7var|able

p-Gyme) - Cual) games)

G G -G
N I D CD L .

v ~Cournal) D

[tht] [Wt]

[V.ts] =

Publication Filtering

u New publications
Asets of RDF triples

u DFS tree traversal
u Early pruning of non-matching trees

Experimental Evaluation (1/2)

u Algorithm iBroker
Aontology pub/sub
A structural filtering and string equality
Alnverted index
Aextended to support Boolean full-text

Experimental Evaluation (2/2)

u DBpedia corpus
A3.22M publications
A529 classes
A2.3K properties
u Synthetic continuous queries

Filtering Results

