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User Information Needs

uUser interests

uUp to date

uTwo information 

discovery paradigms

Áinformation pull

Áinformation push



The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!
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uPush systems
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Ontology-based Publish/Subscribe

uEnhanced semantics

uSubscriptions are SPARQL queries

uPublications are sets of RDF triples



Current State of the Art

uStructural filtering (S-ToPSS, G-ToPSS)

uStructural filtering + arithmetic/string 

operations (iBroker)

uNo structural + full-text filtering

Ácontrary to information pull systems



Applications

uOntology-enabled

Ánews alerts (RSS feeds)

Ádigital libraries

uCuration/monitoring tool for linked 
datasets

uComplement LOD platforms

Ástructural/textual notifications



Our Contribution (1/2)

uExtend SPARQL with full-text pub/sub

ÁBoolean, word proximity, phrase 
operators

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games" ftNEAR[0,2] "rio")}
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Our Contribution (2/2)

uRTF: RDF and Text Filtering

Ástructural filtering

Áfull-text filtering

uFocus on efficiency



Our Contribution (2/2)

uRTF: RDF and Text Filtering

Ástructural filtering

Áfull-text filtering

uFocus on efficiency

Index in a unified 

way (tree -based)
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SPARQL Query to Tuple Conjucts

q.t1 = (? publication , type , article ) 

q.t2 = (? publication , title , ?title , 

ftcontains (" olympic " ftAND " games ")) 

q.t3 = (? publication , title , ?title , 

ftcontains (" olympic " ftAND " games " ftNEAR[0,2] "rio"))

q = q.t 1 q᷈.t2 q᷈.t3



RTF Tree-based Indexing

q.t1 = (? publication , type , article )
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After several tuple insertions
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Algorithm RTFm (No pun intended)
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Collapsing FT nodes 
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Publication Filtering

uNew publications

Ásets of RDF triples

uDFS tree traversal

uEarly pruning of non-matching trees



Experimental Evaluation (1/2)

uAlgorithm iBroker

Áontology pub/sub 

Ástructural filtering and string equality

Áinverted index

Áextended to support Boolean full-text



Experimental Evaluation (2/2)

uDBpedia corpus

Á3.22M publications

Á529 classes

Á2.3K properties

uSynthetic continuous queries



Filtering Results


