
Full -text Support for

Publish/Subscribe

Ontology Systems
Lefteris Zervakis, Christos Tryfonopoulos,

Spiros Skiadopoulos, and Manolis Koubarakis

University of the Peloponnese National and Kapodistrian University of Athens

User Information Needs

uUser interests

uUp to date

uTwo information

discovery paradigms

Áinformation pull

Áinformation push

The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!

The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!

User

query
z

The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!

z

Items of

interest

The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!

User

query
z

The Information Pull Paradigm

uOne-time queries

Ádocument indexing

uContent updates

uRecurring searches

uCognitive overload!

z

Items of

interest

The Information Push Paradigm

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

Continuous

query
z

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

z

Notifications

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

The Information Push Paradigm

z

Notifications

uContinuous queries

uFiltering of new content

Áquery indexing

uNotifications

uPush systems

Ápublish/subscribe (pub/sub),
alerting, filtering systems

Ontology-based Publish/Subscribe

uEnhanced semantics

uSubscriptions are SPARQL queries

uPublications are sets of RDF triples

Current State of the Art

uStructural filtering (S-ToPSS, G-ToPSS)

uStructural filtering + arithmetic/string

operations (iBroker)

uNo structural + full-text filtering

Ácontrary to information pull systems

Applications

uOntology-enabled

Ánews alerts (RSS feeds)

Ádigital libraries

uCuration/monitoring tool for linked
datasets

uComplement LOD platforms

Ástructural/textual notifications

Our Contribution (1/2)

uExtend SPARQL with full-text pub/sub

ÁBoolean, word proximity, phrase
operators

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games" ftNEAR[0,2] "rio")}

Our Contribution (1/2)

uExtend SPARQL with full-text pub/sub

ÁBoolean, word proximity, phrase
operators

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games" ftNEAR[0,2] "rio")}

Our Contribution (1/2)

uExtend SPARQL with full-text pub/sub

ÁBoolean, word proximity, phrase
operators

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games" ftNEAR[0,2] "rio")}

Our Contribution (1/2)

uExtend SPARQL with full-text pub/sub

ÁBoolean, word proximity, phrase
operators

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games" ftNEAR[0,2] "rio")}

Our Contribution (2/2)

uRTF: RDF and Text Filtering

Ástructural filtering

Áfull-text filtering

uFocus on efficiency

Our Contribution (2/2)

uRTF: RDF and Text Filtering

Ástructural filtering

Áfull-text filtering

uFocus on efficiency

Index in a unified

way (tree -based)

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

q.t1 = (? publication , type , article)

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

q.t2 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games "))

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

SPARQL Query to Tuple Conjucts

Query q:

SELECT ?publication

WHERE {?publication type article.

?publication title ?title.

?publication body ?body.

FILTER ftcontains(?title, "olympic" ftAND "games")

FILTER ftcontains(?body, "olympic" ftAND "games"

ftNEAR[0,2] "rio")}

q.t3 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games " ftNEAR[0,2] "rio"))

SPARQL Query to Tuple Conjucts

q.t1 = (? publication , type , article)

q.t2 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games "))

q.t3 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games " ftNEAR[0,2] "rio"))

SPARQL Query to Tuple Conjucts

q.t1 = (? publication , type , article)

q.t2 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games "))

q.t3 = (? publication , title , ?title ,

ftcontains (" olympic " ftAND " games " ftNEAR[0,2] "rio"))

q = q.t 1 q᷈.t2 q᷈.t3

RTF Tree-based Indexing

q.t1 = (? publication , type , article)

?variable

[q.t1]

article

type

RTF Tree-based Indexing

q.t1 = (? publication , type , article)

?variable

[q.t1]

article

type

RTF Tree-based Indexing

q.t2 = (? publication , title , ?title , ftcontains (" olympic " ftAND " games "))

?variable

[q.t1]

article

type

FT

title

games

olympic

[q.t2]

RTF Tree-based Indexing

q.t2 = (? publication , title , ?title , ftcontains (" olympic " ftAND " games "))

?variable

[q.t1]

article

type

FT

title

games

olympic

[q.t2]

RTF Tree-based Indexing
q.t3

= (? publication , body , ?body , ftcontains (" olympic " ftAND " games " ftNEAR [0,2] " rio ")

?variable

[q.t1]

article

type body

FT

games

rio

[q.t3]

FT

title

games

olympic

olympic

[q.t2]

RTF Tree-based Indexing
q.t3

= (? publication , body , ?body , ftcontains (" olympic " ftAND " games " ftNEAR [0,2] " rio ")

?variable

[q.t1]

article

type body

FT

games

rio

[q.t3]

FT

title

games

olympic

olympic

[q.t2]

RTF Tree-based Indexing
v.t1 = (? publication , body , ?body , ftcontains (" olympic " ftAND " committee ")

?variable

[q.t1]

article

type body

FT

games

rio

[q.t3]

FT

title

games

olympic

olympic

committee

[q.t2] [v.t1]

RTF Tree-based Indexing
v.t1 = (? publication , body , ?body , ftcontains (" olympic " ftAND " committee ")

?variable

[q.t1,v.t4]

article

type

*

[w.t1]

body

FT

olympic

games

rio

committeerio

stadium

[q.t3]

[v.t1]
[w.t3]

abstract

FT

olympic

rio [v.t3]

publisher

?variable

[v.t5]

FT

[v.t2]

title

games

olympic

olympic

committee

president

[q.t2]

[w.t2]

FT

name

wall

the

street

journal[v.t6]

RTF Tree-based Indexing

After several tuple insertions

?variable

[q.t1,v.t4]

article

type

*

[w.t1]

body

FT

olympic

games

rio

committeerio

stadium

[q.t3]

[v.t1]
[w.t3]

abstract

FT

olympic

rio [v.t3]

publisher

?variable

[v.t5]

FT

[v.t2]

title

games

olympic

olympic

committee

president

[q.t2]

[w.t2]

FT

name

wall

the

street

journal[v.t6]

RTF Tree-based Indexing

Algorithm RTFm (No pun intended)

?variable

[q.t1,v.t4]

article

type

*

[w.t1]

body

riostadium [q.t3]

[v.t1]

[w.t3]

abstract

rio[v.t3]

publisher

?variable[v.t5]

FT

[v.t2]

title

games

olympic

olympic

committee

president

[q.t2]

[w.t2]

name

wall

the

street

journal[v.t6]

RTF Tree-based Indexing

Collapsing FT nodes

?variable

[q.t1,v.t4]

article

type

*

[w.t1]

body

riostadium [q.t3]

[v.t1]

[w.t3]

abstract

rio[v.t3]

publisher

?variable[v.t5]

FT

[v.t2]

title

games

olympic

olympic

committee

president

[q.t2]

[w.t2]

name

wall

the

street

journal[v.t6]

RTF Tree-based Indexing

Algorithm RTFs

Publication Filtering

uNew publications

Ásets of RDF triples

uDFS tree traversal

uEarly pruning of non-matching trees

Experimental Evaluation (1/2)

uAlgorithm iBroker

Áontology pub/sub

Ástructural filtering and string equality

Áinverted index

Áextended to support Boolean full-text

Experimental Evaluation (2/2)

uDBpedia corpus

Á3.22M publications

Á529 classes

Á2.3K properties

uSynthetic continuous queries

Filtering Results

