Identifying drug-targetable key drivers of disease

Expression data

_ Public data

Phenotypes __

UMCG

To-čapture something sm all you need something bi'g
'To capture something small you needed something big'

Minion

C Oxford Nanopore

more data now available

large amounts of data now available

Goal: better diagnose and treat patients

\Leftrightarrow

Genetic risk factors
Disease

$>10,000$ known

Genes unknown
Pathways unknown
Cell-types unknown

Expression quantitative trait locus (eQTL)

Cis-eQTL

Gene X

Trans-eQTL

Far majority of genetic risk factors affect gene expression

Get larger sample-sizes: meta-analysis in 5,3 II samples

Systemic lupus erythematosis risk factor: \square

Local expression effect:

Genome-wide association studies
cis-eQTL mapping
trans-eQTL mapping

Key driver gene identification

Lifelines Deep (I 500 samples)

The opportunities

Trans-meQTL meta-analysis in 3,840 samples

- 34.4\% of 405,709 tested CpG sites are cis-meQTL (FDR < 0.05)
- 31.2% of established GWAS risk factors give trans-meQTL effect (FDR < 0.05). I,907 SNPs affecting I 0,14 I unique CpG sites in trans
- Trans-meQTL replicate in monocytes: 95\% identical allelic direction
- Trans-SNPs affect expression of nearby TFs, subsequent methylation of downstream targets of these TF

Trans-meQTL meta-analysis in 3,840 samples

Trans-meQTL meta-analysis in 3,840 samples

Detecting cell-type dependent eQTLs in whole blood

NOD2 eQTL interaction analysis, STX3 interacts with rs1981760

Context specific cis-eQTL analysis in 2,II6 samples

NOD2 eQTL in whole

 peripheral blood

Leprosy risk SNP rs1981760

NOD2 eQTL interaction analysis, STX3 interacts with rs1981760

Context specific cis-eQTL analysis in 2,II6 samples

Co-expression between top 100

Module 7, Top 100 genes

eQTLs with significant interaction with module 7 top covariate gene SP140

SP140 Module 7 top covariate gene $\begin{array}{cc}\text { Gene } & \text { Positive correlation to SP140 } \\ \text { Cane } & \text { Negative correlation to SP140 }\end{array}$

LRACBB.ENSG00000231999.ENSGOOOOC251289 PDSS2 GPS ZFP28
 (IXPA SLEN5 TXK UNCOONT ATP9B TRGV3 SPATA13 MTF2 PPMIK WDA3 Overlap with ChIP-seq TMOD \square STAT1 6 h after IFNa STAT2 6 h after IFNa \square STAT3

 ARHGAP24 AFF4 MYOISB MYOF AGPAT3 STATIGLS POK2 SELIL3 CDC25B LEEFI-ASTI CRYZ
\qquad C20.LINC00960

Upregulated eQTL genes

Regulatory network reconstruction in 2,I 16 samples

rare variant, rare disease

but is this relevant for my patients?

Patient with a severe disease.
You suspect a genetic cause.
What do you do?

- Targeted gene panel?
- Whole exome sequencing?
- Whole genome sequencing?

Problem:
Many (rare) variants of unknown significance

___ gene expression?
AG

Transcriptome of the Netherlands

- Rare genetic variants also have effects on gene expression
- Rationale BBMRI-NL BIOS Consortium to establish 'Transcriptome of the Netherlands' in 5,000 population based samples
- Generate RNA-seq data on patients. Contrast these expression values to the Transcriptome of the Netherlands.

TRIM51BP gene expression distribution in the Dutch population

Remove non-genetic expression variation

Most expression variation due to:

- Physiological state
- Metabolic state
- Environmental state

RNA blood expression
when you wake up

RNA blood expression after nice diner

Metabolism genes

Strategies

Amplifier can change many aspects of music

A control panel that determines gene expression?

Size of switch: Importance
Setting: State of a certain sample

Wiring: Effect on individual genes

800 'transcriptional components': Component I - 50

Component 1

Component I and 2

Transcriptional Component 1

Transcriptional component 3

Predicted gene functions: www.genenetwork.nl

Gene Network

TP53 Tumar protein p5s

[^0]
GeneNetwork gene function predictions

GWAS on red blood cell traits:

Blood eQTL mapping:

Gene function predicton:
(GeneNetwork.nl, based on
80,000 RNA microarrays)

- Genes known to be involved
in hemoglobin metabolism

Amounts of data

 integrated:GWAS in I 35,000 samples
eQTL mapping in 1,500 samples

Transcriptomics in 80,000 samples

Exome sequencing of individuals, negative for Vel bloodgroup antigen:

Reduced number of red blood cells
Knock-down in zebrafish:

Cvejic et al, Nature Genetics 2013

Exome
sequencing
Wet lab proof

DEPICT: New prioritisation algorithm for GWAS

697 significant adult height associations:

Wood et al, Nature Genetics 2014

DEPICT Method:
Pers et al, Nature Communications 2015

DEPICT used for:
Body mass index (Locke et al, Nature 2015)
Waist hip ratio (Shungin et al, Nature 2015)
Hypospadias (Geller et al, Nature Genetics 2014)
Lipid Levels (Surakka, Nature Genetics 2015)

Components 5I-800

Component 1

Component 165
0010000000000000000

0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$1(1) 00000000000000000$

0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Some component show weird behaviour

TC 165: Strong cytogenetic effects, high autocorrelation

TC 1: No cytogenetic effect, zero autocorrelation
Redo analysis in healthy data
Transcriptional Component \rightarrow

Detection cytogenetic aberration in expression data

Identifying five chromosome duplications

Comparison of arrayCGH and cytogenetic RNA profiles

GSM274996

GSM275008

Known driver genes in amplification and deletion peaks

Average somatic copy number aberration profile of $\mathbf{1 6 , 1 7 2}$ primary tumor samples (GPL570 + GPL96 platforms)

Amount of cytogenetic aberrations

Forest fire: when will a forest burn down entirely?

Complexity: Forest fire

Percentage of land filled with
trees

Complexity: Forest fire

Complexity: Forest fire

TRIM51BP gene expression distribution in the Dutch population

Explosion of publicly available RNA-seq data

9,527 public human RNA-seq runs from ENA

Read alignment, epression quantification, normalization and PCA:
-4,028 runs with low mapping statistics removed

- 521 expression outliers removed

4,978 samples (used for expression clustering)

Total Number of reads

Sequencer read layout

Single end

Cancer sample

No Cancer

Cell-line sample

Tissue

Public RNA-seq data (5,000 samples)

Deelen et al, Genome Medicine 2015

Calling genotypes in RNA-seq data

GATK to call genotypes and output genotype likelihoods, BEAGLE used for imputation towards Genome of the Netherlands

Calling genotypes in RNA-seq data

Ability to call SNP is largely dependent on expressed transcripts

Tissue-specific eQTL mapping for free

Allele specific effects for rare variants

Functional class annotation

Lifelines Deep

lifelinese

- I,500 samples
- Many omics levels
- Genotype data
- Extensive phenotyping

Transcriptome of the Netherlands
Public RNA-seq data

- 5,000 samples
- RNA-seq data
- Genotype data
- Methylation 450k data

- 25,000 samples
- RNA-seq data
- Genotype data
- Enormous opportunities exist when recycling 'big data', permits gaining insight into downstream consequences of (rare) genetic variants
- Workshop: how to conduct these analyses yourself:
- Pointers to the software that is available
- Identifying sample mix-ups
- Correcting for unknown confounders
- Multiple testing correction
- Allele specific expression

Acknowledgements

[^0]: Donnicos image (POF)

