Massively Multilingual Language Technologies

Building Bridges - Breaking Barriers

A Tribute to Alex Waibel, Professor, Pilot, Entrepreneur, ...

J aime Carbonell (www.cs.cmu.edu/~jgc)
Language Technologies Institute
Carnegie Mellon University

July 2016

The Many Faces of Alex Waibel

"Official" Alex

"Worried" Alex

"Happiest" Alex
"Happier" Alex

Werner Heisenberg v Alex Waibel

\square Heisenberg Uncertainty Principle:
\square It is impossible to measure location and momentum of an object precisely and simultaneously
\square But... it can seem like we can measure them precisely if above the quantum level
\square Waibel Uncertainty Principle:
\square It is impossible to measure location and activity of Alex precisely and simultaneously
\square But... it can seem like Alex is in multiple places doing multiple things at once

Bridging the Linguistic Divide

\square Until recently: Focus was Digital Divide
■ The "digirati": internet connected, laptop,...
■ Smarphones \rightarrow democratization in access
\square Currently: The Linguistic Divide Rules
■ 6,900 languages: Google addresses 1\%

- Almost all information is in the 1%

■ How to democratize linguistic access?

Multilingual Activities at CMU

\square 1975: Speech research started at CMU (Harpy, Hearsay)
\square 1986: Started Center for Machine Translation \rightarrow LTI in 1996
\square 1989: Knowledge-Based MT (domain specific, high accuracy)
\square 1990: Multilingual speech (Sphinx, Janus)
\square 1991: Example-Based MT
\square 1992: Speech-to-speech MT (cStar)
\square 1995: Statistical MT (Janus)
\square 2000: MT for Low-Resource Languages
\square 2006: Context-Based MT
\square 2012: Linguistic-Core MT (for low resource languages)
$\square 45$ Languages: English, Spanish, French, Japanese, German, Arabic, Korean, Chinese, Urdu/Hindi, Russian, Mapudungun,

Low Resource Languages

\square 6,900 languages in 2012 - Ethnologue www.ethnologue.com/ethno_docs/distribution.asp?by=area
\square Only 77 (1.2\%) have over 10M speakers
■ $1^{\text {st }}$ Chinese, $5^{\text {th }}$ Arabic, $7^{\text {th }}$ Bengali, $10^{\text {th }}$ Javanese
\square 3,000 have over 10,000 speakers each
\square 3,000 may not survive past 2100
$\square 5 \mathrm{X}$ to 10X number of dialects (35 for Arabic)
\square \# of L's in some interesting countries:
■ Afghanistan: 52, Pakistan: 77, India 400
■ North Korea: 1, Indonesia 700

Some Linguistics Maps

Some (very) LD Languages in the US

Anishinaabe (Ojibwe, Potawatame, Odawa) Great Lakes

Challenges for General MT

\square Ambiguity Resolution

- Lexical, phrasal, structural
\square Structural divergence
- Reordering, vanishing/appearing words, ...
\square Inflectional morphology
- Spanish 40+ verb conjugations, Arabic has more.
- Mapudungun, Anupiac, ... \rightarrow agglomerative
\square Training Data
- Bilingual corrpora, aligned corpora, annotated corpora, bilingual dictionaries
\square Human informants
- Trained linguists, lexicographers, translators
- Untrained bilingual speakers (e.g. crowd sourcing)
\square Evaluation
■ Automated (BLEU, METEOR, TER) vs HTER vs ...

Context Needed to Resolve Ambiguity

Example：English \rightarrow Japanese
Power line－densen（電線）
Subway line－chikatetsu（地下鉄）
（Be）on line－onrain（オンライン）
（Be）on the line－denwachuu（電話中）
Line up－narabu（並ぶ）
Line one＇s pockets－kanemochi ni naru（金持ちになる）
Line one＇s jacket－uwagi o nijuu ni suru（上着を二重にする）
Actor＇s line－serifu（セリフ）
Get a line on－joho o eru（情報を得る）

Sometimes local context suffices（as above）\rightarrow n－grams help
．．．but sometimes not

CONTEXT: More is Better

\square Examples requiring longer-range context:
■ "The line for the new play extended for 3 blocks."
■ "The line for the new play was changed by the scriptw riter."
■ "The line for the new play got tangled with the other props."

■ "The line for the new play better protected the quarterback."
\square Challenges:
■ Short n-grams (3-4 words) insufficient

- Requires more general syntax \& semantics

Additional Challenges for LD MT

\square Morpho-syntactics is plentiful
■ Beyond inflection: verb-incorporation, agglomeration, ...
\square Data is scarce
■ Insignificant bilingual or annotated data
\square Fluent computational linguists are scarce
■ Field linguists know LD languages best
\square Standardization is scarce
■ Orthographic, dialectal, rapid evolution, ...

Morpho-Syntactics \& Multi-Morphemics

미nupiaq (North Slope Alaska, Lori Levin) ■Tauqsigñ̃iaġvinmunnianitchugut. ■'We won't go to the store.'

-Pittsburghimukarthussaqarnavianngilaq
■Pittsburgh+PROP+Trim+SG+kar+tuq+ssaq+qar+n aviar+nngit+v+IND+3SG
■"It is not likely that anyone is going to Pittsburgh"

Morphotactics in Iñupiaq

Type-Token Curve for Mapudungun

- 400,000+ speakers
- Mostly bilingual
- Mostly in Chile
- Pewenche
- Lafkenche
- Nguluche
- Huilliche

Paradigms for Machine Translation Interlingua

Evolutionary Tree of MT Paradigms

Stat-Transfer (STMT): List of Ingredients

\square Framework: Statistical search-based approach with syntactic translation transfer rules that can be acquired from data but also developed and extended by experts
\square SMT-Phrasal Base: Automatic Word and Phrase translation lexicon acquisition from parallel data
\square Transfer-rule Learning: apply ML-based methods to automatically acquire syntactic transfer rules for translation between the two languages
\square Elicitation: use bilingual native informants to produce a small high-quality word-aligned bilingual corpus of translated phrases and sentences
\square Rule Refinement refine the acquired rules via a process of interaction with bilingual informants
\square XFER + Decoder:

- XFER engine produces a lattice of possible transferred structures at all levels
- Decoder searches and selects the best scoring combination

Stat-Transfer (ST) MT Approach

Avenue/Letras STMT Architecture

Syntax-driven Acquisition Process

Automatic Process for Extracting Syntax-driven Rules and Lexicons from sentence-parallel data:

1. Word-align the parallel corpus (GIZA++)
2. Parse the sentences independently for both languages
3. Tree-to-tree Constituent Alignment:
a) Run our new Constituent Aligner over the parsed sentence pairs
b) Enhance alignments with additional Constituent Projections
4. Extract all aligned constituents from the parallel trees
5. Extract all derived synchronous transfer rules from the constituent-aligned parallel trees
6. Construct a "data-base" of all extracted parallel constituents and synchronous rules with their frequencies and model them statistically (assign them relative-likelihood probabilities)

PFA Node Alignment Algorithm Example
-Any constituent or subconstituent is a candidate for alignment -Triggered by word/phrase alignments
-Tree Structures can be highly divergent

PFA Node Alignment Algorithm Example
-Tree-tree aligner enforces equivalence constraints and optimizes over terminal alignment scores (words/phrases)
-Resulting aligned nodes are highlighted in figure
-Transfer rules are partially lexicalized and read off tree.

The Setting

\square MURI Languages

- Kinyarwanda
- Bantu (7.5M speakers)
- Malagasy
- Malayo-Polynesian (14.5M)
- Swahili
- Bantu (5M native, 150M $2^{\text {nd }} / 3^{\text {rd }}$)

Swahili
 Anamwona
 "he is seeing him/her"
 \rightarrow Morpho-syntactics

Active Learning for MT (Vamshi, Carbonell, Vogel)

Active Learning Strategy:

 Diminishing Density Weighted Diversity Sampling$$
\begin{aligned}
& \operatorname{density}(S)=\frac{\sum_{x \in \operatorname{Phrases}(s)} P(x / U L) * e^{\wedge}-[\lambda * \operatorname{count}(x / L)]}{|\operatorname{Phrases}(s)|} \quad \operatorname{diversity}(S)=\frac{\sum_{x \in \operatorname{Phrases}(s)} \alpha^{*} \operatorname{count}(x)}{|\operatorname{Phrases}(s)|} \\
& \alpha=0 i f x \in L \\
& \operatorname{Score}(S)=\frac{\left(1+\beta^{2}\right) \operatorname{density}(S) * \operatorname{diversity}(S)}{\beta^{2} \operatorname{density}(S)+\operatorname{diversity}(S)} \alpha=1 i f x \notin L
\end{aligned}
$$

Experiments:
Language Pair: Spanish-English Batch Size: 1000 sentences each
Translation: Moses Phrase SMT Development Set: 343 sens Test Set: 506 sens

Graph:
X: Performance (BLEU)
Y: Data (Thousand words)

Translation Selection from Mechanical Turk

- Translation Selection:
- Translator Reliabilitv

$$
\begin{aligned}
\operatorname{rel}\left(W_{k}\right) & =\frac{\sum_{t_{j} \in T_{k}} \sum_{n_{i} \in U} \alpha}{\left\|T_{k}\right\|} \\
\alpha & = \begin{cases}1 & t_{k j} \equiv t_{n j} \\
0\end{cases}
\end{aligned}
$$

	Seed	Iterations	
System	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
crowd pick-rand	10.64	18.64	21.07
crowd translation-agreement	10.64	21.81	24.67
crowd translator-agreement	10.64	22.78	24.94
expert translations	10.64	22.34	25.75
crowd all-three	10.64	$2 \overline{25.68}$	26.01

ARI EL: Universal Typological Compendium

Phylogenetic, Geopolitical,
Typological

Lexical Transfer Example (Arabic \rightarrow Swhahili)

Concluding Remarks

\square Massively multilingual research (MT, speech, dialog)

- Of crucial importance for humanity

■ Waibel has been at the very core
\square Research Directions
■ Combining linguistics and Statistics

- Paradigms for cross-language scalability

■ Transfer learning and proactive learning

- Applications: disaster relief, education, eCom, ...

THANK YOU!

J aime Carbonell, CMU

