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Human Language Technology (HLT)

Automatic Speech Recognition (ASR)

we want to preserve this  great  idea

Statistical Machine Translation (SMT)

wir wollen diese große Idee erhalten

we want to preserve this great idea

Handwriting Recognition
(Text Image Recognition)

we  want to preserve this  great  idea

tasks:
– speech recognition
– machine translation
– handwriting recognition

unifying view:
– input string → output string
– output string: natural language
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RWTH’s Joint Projects with InterACT: KIT, CMU or HKUST

• VERBMOBIL 1993-2000: funded by German BMBF
toy task (8000-word vocabulary): recognition and translation for appointment scheduling

• TC-STAR 2004-2007: funded by EU
– real-life task, open domain, large vocabulary:

first research system for speech translation (EU parliament)
– partners: KIT Karlsruhe, FBK Trento, LIMSI Paris, UPC Barcelona, IBM-US Research, ...

• GALE 2005-2011: funded by US DARPA
– emphasis on Chinese and Arabic speech and text
– largest project ever on speech and language: 40 Mio USD per year

• BOLT 2011-2015: funded by US DARPA
emphasis on colloquial text for Arabic and Chinese

• QUAERO 2008-2013: funded by OSEO France
European languages, more colloquial speech, handwriting

• EU-BRIDGE 2012-2014: funded by EU
emphasis on recognition and translation of lectures (TED, ...)

• BABEL 2012-2016: funded by US IARPA
speech recognition for low-resource languages (and noisy audio!)
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Evaluation Campaigns: InterACT (KIT)

evaluations of ASR and SMT systems:

• project related evaluations:
– VERBMOBIL
– TC-STAR
– QUAERO
– EU-BRIDGE

• public evaluation campaigns:
– NIST/LDC/DARPA
– IWSLT (organized by InterACT members)
– ACL WMT

• joint submissions with KIT/InterACT:
system combination
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Statistical Approach: No Alternative
(incl. Artificial Neural Networks!)

Probabilistic
Models

Performance Measure
(Loss Function)

Training Criterion

Bayes Decision Rule
(Efficient Algorithm)

Training
Data

Output

Parameter
Estimates

Evaluation

Optimization
(Efficient Algorithm)

Test
Data
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Hidden Markov Models (HMM)

• fundamental problem in ASR:
non-linear time alignment

• Hidden Markov Model:
– linear chain of states s = 1, ..., S

– transitions: forward, loop and skip

• trellis:
– unfold HMM over time t = 1, ..., T

– path: state sequence sT1 = s1...st...sT
– observations: xT

1 = x1...xt...xT
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2 31 5 64

general view:
– two sequences without synchronization: acoustic vectors and states (with labels)
– HMM: mechanism that takes care of the synchronizatiojn (=alignment) problem
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Hidden Markov Models (HMM)

The acoustic model p(X|W ) provides the link between
word sequence hypothesis W and observations sequence X = xT

1 = x1...xt...xT :

• acoustic probability p(xT
1 |W ) using hidden state sequences sT1 :

p(xT
1 |W ) =

∑

sT
1

p(xT
1 , s

T
1 |W ) =

∑

sT
1

∏

t

[p(st|st−1,W ) · p(xt|st,W )]

• two types of distributions:
– transition probability p(s|s′,W ): not important
– emission probability p(xt|s,W ): key quantity

realized by GMM: Gaussian mixtures models (trained by EM algorithm)

• phonetic labels (allophones, sub-phones): (s,W ) → a = asW

p(xt|s,W ) = p(xt|asW )

typical approach: phoneme models in triphone context:
decision trees (CART) for finding equivalence classes

• refinements:
– augmented feature vector: context window around position t

– subsequent LDA (linear discriminant analysis)
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Hybrid Approach: HMM and ANN

consider modelling the acoustic vector xt in an HMM:

• re-write the emission probability for annotation label a and acoustic vector xt

(strictly speaking: an approximation only):

p(xt|a) = p(xt) ·
p(a|xt)

p(a)

– prior probability p(a): estimated as relative frequencies
– for recognition purposes: the term p(xt) can be dropped

• result: model the label posterior probability by an ANN:

xt → p(a|xt)

rather than the state emission distribution p(xt|a)

• justification:
– easier learning problem: labels a = 1, ..., 5000 vs. vectors xt ∈ IRD=40

– well-known result in pattern recognition/machine learning;
but ignored in ASR due to the mathematical beauty of the EM algorithm
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History: ANN in Acoustic Modelling

• 1988 [Waibel & Hanazawa+ 88]:
phoneme recognition using time-delay neural networks

• 1989 [Bridle 89]:
softmax operation for probability normalization in output layer

• 1990 [Bourlard & Wellekens 90]:
– for squared error criterion, ANN outputs can be interpreted as

class posterior probabilities (rediscovered: Patterson & Womack 1966)
– they advocated the hybrid approach: use the ANN outputs

to replace the emission probabilities in HMMs

• 1993 [Haffner 93]:
sum over label-sequence posterior probabilities in hybrid HMMs

• 1994 [Robinson 94]: recurrent neural network
– competitive results on WSJ task
– his work remained a singularity in ASR

experimental situation:
– until 2011: ANNs were never really competitive with Gaussian mixture models
– after 2011: yes, deep learning [Deng & Hinton 2012]
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History: ANN in Acoustic Modelling

more ANN approaches:

• 1994 [LeCun & Bengio+ 94]:
convolutional neural networks

• 1997 A. Waibel’s team [Fritsch & Finke+ 97]:
hierarchical mixtures of experts

• 1997 [Hochreiter & Schmidhuber 97]:
long short-term memory neural computation
with extensions [Gers & Schraudolph+ 02]

renaissance of ANN: concepts of deep learning and related ideas:

• 2000 [Hermansky & Ellis+ 00]: tandem approach: multiple layers of processing
by combining Gaussian model and ANN for ASR

• 2002 [Utgoff & Stracuzzi 02]: many-layered learning for symbolic processing

• 2006 [Hinton & Osindero+ 06]: introduced what he called deep learning (belief nets)

• 2008 [Graves 08]: good results on LSTM RNN for handwriting task

• 2012 Microsoft Research [Dahl & Yu+ 12]:
– combined Hinton’s deep learning with hybrid approach
– significant improvement by deep MLP on a large-scale task

• since 2012: other teams confirmed significant reductions of WER
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TDNN: Time Delay Neural Network
[Waibel & Hanazawa+ 88]

TDNN: feed-forward multi-layer perceptron with special properties:
– long temporal context
– weight sharing
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TDNN: Time Delay Neural Network

• first (?) publication: [Waibel & Hanazawa+ 88] at ICASSP 1988, New York

• full journal paper: [Waibel & Hanazawa+ 89] in
IEEE Transactions on Acouctics, Speech and Signal Processing 1989

– 2036 citations (Google Scholar)
– 1116 citations on 3 more papers on TDNN 1989/90

• recent work by Dan Povey’s team [Peddinti & Povey+ 15] at Interspeech 2015:
improvements over widely used deep MLP approach
– on many of the standard ASR tasks (WSJ, Switchboard, Librispeech, ...)
– on ASPIRE challenge (IARPA, March 2015):

reverberant speech in farfield speech recognition
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Today vs. 1988-94: What is Different?

most popular and widely used:
feed-forward multi-layer perceptron (FF MLP)

– operations: matrix · vector
– nonlinear activation function

comparison for ASR: today vs. 1988-1994:

• number of hidden layers:
10 (or more) rather than 2-3

• number of output nodes (phonetic labels):
5000 rather than 50

• optimization strategy:
practical experience and heuristics,
e.g. layer-by-layer pretraining

• much more computing power

overall result:
– huge improvement by ANN
– WER is (nearly) halved !!
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Recurrent Neural Network: String Processing

principle for string processing over time t = 1, ..., T :
– introduce a memory (or context) component to keep track of history
– quantities: input = observation xt, memory ht−1, output distribution yt
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extensions:
– bidirectional variant [Schuster & Paliwal 1997]
– feedback of output labels
– long short-term memory [Hochreiter & Schmidhuber 97; Gers & Schraudolph+ 02]
– deep structure: several hidden layers
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Direct Model of Label Sequence
(spirit of CTC: connectionist temporal classification)

re-formulate the problem of speech recognition:

• sequence of phonetic labels (e.g. CART): as, s = 1, ..., S

(which fully determines the sequence of words)

• key quantity: (local) label posterior probability calculated by an ANN

pt(a|x
T
1 ) = pt(a|x

t+δ
t−δ)

• model localization effect by alignments, i.e. mappings from time to states:
t → s = st

time t

s
t
a
t
e

s
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Direct Model of Label Sequence

sum over all hidden alignments sT1 :

p(aS
1 |x

T
1 ) =

∑

sT
1

p(aS
1 , s

T
1 |x

T
1 ) = ...

=
∑

sT
1

∏

t

pt

(

ast|x
T
1

)

=
∑

sT
1

∏

t

pt

(

ast|x
t+δ
t−δ

)

open issues:
– how to include the transition probabilities
– how to include the language model
– how to perform end-to-end training

requirement:
avoid the global re-normalization as in discriminative/hybrid HMM
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Comparison with Discriminative/Hybrid HMM

• topology:
conventional HMM structure

• important differences:
– no joint model p(aS

1 , x
T
1 )

– no global re-normalization (e. g. lattice)

• open issues:
– transition probabilities
– language model
– consistent training criterion:

sum over all alignments,
end-to-end training,...

time

A

L

E

X

goal: avoid joint probability p(aS
1 , x

T
1 ) as in discriminative/hybrid HMM
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Comparison with CTC: connectionist temporal classification
[Graves & Fernandez+ 06]

characteristic properties of CTC:

• topology: for each symbol label:
single state + blank state

• no transition probabilities

• training criterion: sum

• ANN structure:
LSTM RNN or ...?

time

A

X

E

L

experiments for CTC and related neural network approaches:
– good results reported
– reason: LSTM RNN?
– direct comparison: to be done
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Direct Model of Label Sequence: Inverted Alignments

time t

s
t
a
t
e

s

– re-interpretation of ASR: segmentation and classification problem
– consider inverted alignments, i.e. from state s to time t:

s → t = ts
– sum over inverted alignments as hidden variables tS1 :

p(aS
1 |x

T
1 ) =

∑

tS
1

p(aS
1 , t

S
1 |x

T
1 ) = ... =

=
∑

tS
1

S
∏

s=1

pts(as|x
T
1 ) =

∑

tS
1

S
∏

s=1

pts(as|x
ts+δ
ts−δ)

experiments: underway
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Mechanism of Attention: Alignment by ANN
(originally introduced for MT [Bahdanau & Cho+ 15])

mechanism of attention:
ANN only

alignment direction:
from state s to time t

occupation probabilities:
α(t|s)

experiments:
ongoing work, many teams

. . . . . . . . . . . .

ys+1 gs+1 cs+1 α(t|s + 1), t = 1, . . . , T

ys gs cs α(t|s), t = 1, . . . , T

ys−1 gs−1 cs−1 α(t|s − 1), t = 1, . . . , T

. . . . . . . . . . . .

h... ht−1 ht ht+1 h...

x... xt−1 xt xt+1 x...
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Summary

Architectural Issues of ANN in ASR Systems:

• starting point: direct model of label sequences:
– use ANN output as label posterior probability
– (try to) avoid global re-normalization (no denominator/lattice)

• open questions:
– how to include transition probabilities?
– how to include language model?
– end-to-end training: suitable training criterion

• some localization is needed: alignments
– inverted alignments vs. traditional alignments
– attention-based mechanism: alternative?

• experimental results: room for improvements
– a large number of ongoing studies
– clear conclusions: difficult
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Congratulations to InterACT and Alex on 25 successful years!

Best wishes for the coming 25 years!
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