Analyzing the Behavior of Deep 「QA Models

(EMNLP 2016)

Aishwarya Agrawal

Dhruv Batra

Devi Parikh
[IIVirginiaTech

Visual Question Answering (VQA)

What is Visual Question Answering?

VQA Task

VQA Task

What is the mustache made of?

VQA Task

Al System
What is the mustache made of?

VQA Task

Al System
bananas
What is the mustache made of?

Papers using VQA

Ask Me Anything: Free-form Visual Question Answering Based on Knowledge from External Sources

Simple Baseline for Visual Question Answering

Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, Anthony Dick
School of Computer Science, The University of Adelaide
\{qi.wu01,p.wang, chunhua.shen, anton.vandenhengel, anthony.dick\}@adelaide.edu.au
Bolei Zhou ${ }^{1}$, Yuandong Tian ${ }^{2}$, Sainbayar Sukhbaatar ${ }^{2}$, Arthur Szlam ${ }^{2}$, and Rob Fergus ${ }^{2}$
${ }^{1}$ Massachusetts Institute of Technology
${ }^{2}$ Facebook AI Research

Compositional Memory for Visual Question Answering

${ }^{1}$ Jiangxi Normal University

${ }^{1}$ aiwen.jiang@nicta.com.au

Aiwen Jiang ${ }^{1,2} \quad$ Fang Wang ${ }^{2} \quad$ Fatih Porikli ${ }^{2} \quad$ Yi Li* $^{* 2,3}$

```
\({ }^{2}\) NICTA and ANU \({ }^{2}\) \{fang.wang, fatih.porikli\}@nicta.com.au \({ }^{3}\) yi.li@tema.toyota.com
```


Deep Compositional Question Answering with Neural Module Networks

Jacob Andreas Marcus Rohrbach Trevor Darrell Dan Klein
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
\{jda, rohrbach, trevor, klein\}@\{cs, eecs, eecs, cs\}.berkeley.edu

Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering

Huijuan Xu	Kate Saenko
UMass Lowell	UMass Lowell
hxul@cs.uml.edu	saenko@cs.uml.edu

Where To Look: Focus Regions for Visual Question Answering

Baidu Research - IDL
gaohaoyuan@baidu.com

Baidu Research - IDL University of Southern California
wei.xu@baidu.com nevatia@usc.edu

Stacked Attention Networks for Image Question Answering

Zichao Yang ${ }^{1}$, Xiaodong He ${ }^{2}$, Jianfeng Gao ${ }^{2}$, Li Deng ${ }^{2}$, Alex Smola ${ }^{1}$
${ }^{1}$ Carnegie Mellon University, ${ }^{2}$ Microsoft Research, Redmond, WA 98052, USA
っy@cs.cmu.edu, \{xiaohe, jfgao, deng\}@microsoft.com, alex@smola.org

Papers using VQA

Ask Me Anything: Free-form Visual Question Answering Based on Knowledge from External Sources

Simple Baseline for Visual Question Answering

Qi Wu, Peng Wang, Chunhua Shen, Anton van den Hengel, Anthony Dick School of Computer Science, The University of Adelaide
\{qi.wu01,p.wang, chunhua.shen, anton.vandenhengel, anthony.dick\}@adelaide.edu.au
Bolei Zhou ${ }^{1}$, Yuandong Tian ${ }^{2}$, Sainbayar Sukhbaatar ${ }^{2}$, Arthur Szlam ${ }^{2}$, and Rob Fergus ${ }^{2}$
${ }^{1}$ Massachusetts Institute of Technology
${ }^{2}$ Facebook AI Research

Compositional Memory for Visual Question Answering

Deep Compositional Question Answering with Neural Module Networks

Kevin J. Shih, Saurabh Singh, and Derek Hoiem
University of Illinois at Urbana-Champaign
\{kjshih2, ss1, dhoiem\}@illinois.edu

Stacked Attention Networks for Image Question Answering

Zichao Yang ${ }^{1}$, Xiaodong He^{2}, Jianfeng Gao^{2}, Li Deng 2, Alex Smola ${ }^{1}$
${ }^{1}$ Carnegie Mellon University, ${ }^{2}$ Microsoft Research, Redmond, WA 98052, USA
गy@cs.cmu.edu, \{xiaohe, jfgao, deng\}@microsoft.com, alex@smola.org

Papers using VQA

ORAL SESSION

Image Captioning and Question Answering

Monday, June 27th, 9:00AM - 10:05AM.
These papers will also be presented at the following poster session
1 Deep Compositional Captioning: Describing Novel Object Categories Without Paired Training Data. Lisa Anne Hendricks, Subhashini Venugopalan, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Trevor Darrell

2 Generation and Comprehension of Unambiguous Object Descriptions. Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, Kevin Murphy

3 Stacked Attention Networks for Image Question Answering. Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Smola

4 Image Question Answering Using Convolutional Neural Network With Dynamic Parameter Prediction. Hyeonwoo Noh, Paul Hongsuck Seo, Bohyung Han

5 Neural Module Networks.
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein

Papers using VQA

ORAL SESSION

Image Captioning and Question Answering

Monday, June 27th, 9:00AM - 10:05AM.
These papers will also be presented at the following poster session
1 Deep Compositional Captioning: Describing Novel Object Categories Without Paired Training Data. Lisa Anne Hendricks, Subhashini Venugopalan, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Trevor Darrell

2 Generation and Comprehension of Unambiguous Object Descriptions.
Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L. Yuille, Kevin Murphy
3 Stacked Attention Networks for Image Question Answering.
Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Smola
4 Image Question Answering Using Convolutional Neural Network With Dynamic Parameter Prediction. Hyeonwoo Noh, Paul Hongsuck Seo, Bohyung Han

5 Neural Module Networks.
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein

VQA Challenge @ CVPR16

Competition

VQA

VQA Real Image Challenge (Open-Ended)
Organized by vqateam - Current server time: March 22, 2016, 5 a.m. UTC

Current	Next
Real challenge test2015 (oe)	Real test2015 (ce)
Oct. 21, 2015, midnight UTC	Oct. 21, 2015, midnight UTC
Phases Participate	Results Forums $\Rightarrow]$

| Overview Visual Question Answering (VQA)
Evaluation
Terms and Conditions

Recent progress in computer vision and natural language processing has demonstrated that lower-level tasks are much closer to being solved. We believe that the time is ripe to pursue

VQA Challenge @ CVPR16

Observations

Observations

- Current machine performance around 60-66\%

Observations

- Current machine performance around 60-66\%
- Human performance at 83%

Observations

- Current machine performance around 60-66\%
- Human performance at 83%
- How to identify where we need progress?

Observations

- Current machine performance around 60-66\%
- Human performance at 83%
- How to identify where we need progress?
- How to compare strengths and weaknesses?

Observations

- Current machine performance around 60-66\%
- Human performance at 83%
- How to identify where we need progress?
- How to compare strengths and weaknesses?
- How to develop insights into failure modes?

Observations

- Current machine performance around 60-66\%
- Human performance at 83%
- How to identify where we need progress?
- How to compare strengths and weaknesses?
- How to develop insights into failure modes?
- Need to understand the behavior of VQA models

Outline

Do VQA models generalize to novel instances?

Do VQA models 'listen' to the entire quest on?

Do VQA models really 'look' at the image?

Outline

Do VQA models
 generalize to novel instances?

Do VQA models
'listen' to the entire question?

Do VQA models really 'look' at the image?

Outline

Do VQA models
 generalize to novel instances?

Do VQA models
'listen' to the entire auestion?

Do VQA models really 'look' at the image?

Models

Models

- Without attention (baseline model)

Models

- Without attention (baseline model)
- CNN + LSTM (Lu et al. 2015)

Models

- Without attention (baseline model)
- CNN + LSTM (Lu et al. 2015)

- Accuracy $=54.13 \%$ (on VQA validation split)

Models

- Without attention (baseline model)
- CNN + LSTM (Lu et al. 2015)

- Accuracy $=54.13 \%$ (on VQA validation split)
- With attention

Models

- Without attention (baseline model)
- CNN + LSTM (Lu et al. 2015)

- Accuracy = 54.13\% (on VQA validation split)
- With attention
- Hierarchical Co-attention (Lu et al. 2016)

Models

- Without attention (baseline model)
- CNN + LSTM (Lu et al. 2015)

- Accuracy $=54.13 \%$ (on VQA validation split)
- With attention
- Hierarchical Co-attention (Lu et al. 2016)

- Accuracy $=57.02 \%$ (on VQA validation split)

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

Without attention model [Lu et al. 2015]

With attention model [Lu et al. 2016]

Q: what is the color of the bird?

With attention model [Lu et al. 2016]

Q: what is the color of the bird?

With attention model [Lu et al. 2016]

what	is	the	color	of	the	bird	$?$

Q
Q: what is the color of the bird?

With attention model [Lu et al. 2016]

With attention model [Lu et al. 2016]

人
Q: what is the color of the bird?

With attention model [Lu et al. 2016]

```
What is the color of the bird ?
```


介
Q: what is the color of the bird?

With attention model [Lu et al. 2016]

```
What is the color of the bird ?
```


介
Q: what is the color of the bird?

With attention model [Lu et al. 2016]

Outline

Do VQA models generalize to novel instances?

Do VQA models 'listen' to the entire quest on?

Do VQA models really 'look' at the image?

Generalization to Novel Instances

Do VQA models make mistakes because test instances are too different from training ones?

Generalization to Novel Instances

Do VQA models make mistakes because test instances are too different from training ones?

1. Lower test accuracy \longrightarrow test QI pairs are too different from training QI pairs?

Generalization to Novel Instances

Do VQA models make mistakes because test instances are too different from training ones?

1. Lower test accuracy \longrightarrow test QI pairs are too different from training QI pairs?
2. Lower test accuracy \longrightarrow test Ql pairs are "familiar" but test labels are too different from training labels?

Generalization to Novel Instances

Do VQA models make mistakes because test instances are too different from training ones?

1. Lower test accuracy \longrightarrow test QI pairs are too different from training QI pairs?
2.

Lower test accuracy \square test Ql pairs are "familiar" but test labels are too different from training labels?

Generalization to Novel Instances

Experiment

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair
2. Compute average distance between k-NN training QI pairs and test QI pair

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair
2. Compute average distance between k-NN training QI pairs and test QI pair
3. Measure correlation between average distance and test accuracy

Generalization to Novel Instances

K-NN Space

Generalization to Novel Instances

K-NN Space
Combined Q+l embedding

Generalization to Novel Instances

K-NN Space

Combined Q+l embedding

Generalization to Novel Instances

K-NN Space

Combined Q+l embedding

Generalization to Novel Instances

K-NN Space

Combined Q+l embedding

Q: what is the color of the bird?

Generalization to Novel Instances

K-NN Space

Combined Q+l embedding

Q: what is the color of the bird?

Generalization to Novel Instances

Results

Generalization to Novel Instances

Results

Significant negative correlation

Generalization to Novel Instances

Results

Significant negative correlation

	Without Attention	With Attention
Correlation	$-0.41(@ \mathrm{k}=50)$	$-0.42(@ \mathrm{k}=15)$

Generalization to Novel Instances

Results

Significant negative correlation

	Without Attention	With Attention
Correlation	$-0.41(@ \mathrm{k}=50)$	$-0.42(@ \mathrm{k}=15)$

VQA models are not very good at generalizing to novel test QI pairs

Generalization to Novel Instances

Results

Significant negative correlation

	Without Attention	With Attention
Correlation	$-0.41(@ \mathrm{k}=50)$	$-0.42(@ \mathrm{k}=15)$

VQA models are not very good at generalizing to novel test QI pairs

VQA models are "myopic"

Generalization to Novel Instances

Results

Generalization to Novel Instances

Results

- Significant percentage of mistakes can be successfully predicted

Generalization to Novel Instances

Results

- Significant percentage of mistakes can be successfully predicted

Without Attention

With Attention
\% of mistakes that can be successfully predicted

Generalization to Novel Instances

Results

- Significant percentage of mistakes can be successfully predicted

Without Attention

With Attention
\% of mistakes that can be successfully predicted

- The analysis provides a way for models to predict their own oncoming failures

Generalization to Novel Instances

Results

- Significant percentage of mistakes can be successfully predicted

Without Attention

With Attention

\% of mistakes that can be successfully predicted

- The analysis provides a way for models to predict their own oncoming failures \rightarrow human-like models

Test Sample

Q: What type of reception is being attended?

Test Sample

Q: What type of reception is being attended?

Predicted Ans: cake

Test Sample

Q: What type of reception is being
attended?

GT Ans: wedding
Predicted Ans: cake

Test Sample

Q: What type of reception is being attended?

GT Ans: wedding

Predicted Ans: cake

Test Sample

Q: What type of reception is being
attended?

GT Ans: wedding

Predicted Ans: cake

Nearest Neighbor Training Samples

Q: What type of
exercise
equipment is
shown?

GT Ans: bike

Test Sample

Q: What type of reception is being
attended?

GT Ans: wedding

Predicted Ans: cake

Nearest Neighbor Training Samples

Q: What type of exercise equipment is shown?

GT Ans: bike

Q: What type of dessert is this man having?

GT Ans: cake

Test Sample

Q: What type of reception is being attended?

GT Ans: wedding

Predicted Ans: cake

Nearest Neighbor Training Samples

Q: What type of exercise equipment is shown?

GT Ans: bike

Q: What type of dessert is this man having?

Q: What dessert is on the table?

GT Ans: cake

Generalization to Novel Instances

Do VQA models make mistakes because test instances are too different from training ones?

1. Lower test accuracy \longrightarrow test Ql pairs are too different from training QI pairs?
2. Lower test accuracy \longrightarrow test QI pairs are "familiar" but test labels are too different from training labels?

Generalization to Novel Instances

Experiment

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair
2. Compute average distance (in Word2Vec space) between GT answers of k-NN training QI pairs and GT answer of test QI pair

Generalization to Novel Instances

Experiment

1. Find k-NN training QI pairs, for each test QI pair
2. Compute average distance (in Word2Vec space) between GT answers of k-NN training QI pairs and GT answer of test QI pair
3. Measure correlation between average distance and test accuracy

Generalization to Novel Instances

Results

Generalization to Novel Instances

Results

Significant negative correlation

Generalization to Novel Instances

Results

Significant negative correlation

	Without Attention	With Attention
Correlation	$-0.62(@ \mathrm{k}=50)$	$-0.62(@ \mathrm{k}=15)$

Generalization to Novel Instances

Results

Significant negative correlation

	Without Attention	With Attention
Correlation	$-0.62(@ \mathrm{k}=50)$	$-0.62(@ \mathrm{k}=15)$

VQA models tend to regurgitate answers seen during training

Test Sample

Q: What color
are the safety cones?

Test Sample

Q: What color
are the safety cones?

Predicted Ans: orange

Test Sample

Q: What color
are the safety cones?

GT Ans: green

Predicted Ans: orange

Test Sample

Q: What color are the safety cones?

GT Ans: green

Predicted Ans: orange

Test Sample

Q: What color are the safety cones?

GT Ans: green

Predicted Ans: orange

Nearest Neighbor Training Samples

Q: What color are the cones?

GT Ans: orange

Test Sample

Q: What color are the safety cones?

GT Ans: green

Predicted Ans: orange

Nearest Neighbor Training Samples

Q: What color are the cones?

Q: What color is the cone?

GT Ans: orange GT Ans: orange

Test Sample

Q: What color are the safety cones?

GT Ans: green

Predicted Ans: orange

Nearest Neighbor Training Samples

Q: What color are the cones?

Q: What color is the cone?

GT Ans: orange GT Ans: orange

Q: What color are the cones?

GT Ans: orange

Outline

Do VQA models
 generalize to novel instances?

Do VQA models
'listen' to the entire question?

Do VQA models really 'look' at the image?

Listening to the Entire Question

Q: How many horses are on the beach?
Predicted Ans: 2

Listening to the Entire Question

Q: How
Predicted Ans?

Q: How many horses are on the beach?
Predicted Ans: 2

Listening to the Entire Question

Q: How
Q: How many

Predicted Ans?

Q: How many horses are on the beach?
Predicted Ans: 2

Listening to the Entire Question

Q: How many horses are on the beach? Predicted Ans: 2

Q: How
Q: How many
Q: How many horses
Q: How many horses are
Q: How many horses are on
Q: How many horses are on the
Q: How many horses are on the beach

Q: How many horses are on the beach?

Listening to the Entire Question

Q: How many horses are on the beach? Predicted Ans: 2

Q: How Predicted Ans?
Q: How many Predicted Ans?
How many horses
Q: How many horses are
n. How many horses are or

Predicted Ans?

How many horses are on the beach

Listening to the Entire Question

Experiment

Listening to the Entire Question

Experiment

1. Test the model with partial questions of increasing lengths

Listening to the Entire Question

Experiment

1. Test the model with partial questions of increasing lengths
2. Compute percentage of questions for which partial question responses are same as full question responses

Listening to the Entire Question

Listening to the Entire Question

Result

VQA models converge on predicted answer after half the question for significant \% of questions

Listening to the Entire Question

Result

VQA models converge on predicted answer after half the question for significant \% of questions

	Without Attention	With Attention
$\%$ of questions	41%	49%

Listening to the Entire Question

Result

VQA models converge on predicted answer after half the question for significant \% of questions

VQA models often "jump to conclusions"

Listening to the Entire Question

Correct Response

Q: Are A: military
Q: Are they \mathbf{A} : yes
Q: Are they playing A: yes
Q: Are they playing a \mathbf{A} : yes
Q: Are they playing a game? A: yes

GT Ans: yes

Incorrect Response

$$
\begin{gathered}
\text { Q: How A: no } \\
\text { Q: How many A: } 2
\end{gathered}
$$

Q: How many horses A: 2
Q: How many horses are A: 2
Q: How many horses are on A: 2
Q: How many horses are on the A: 2
Q: How many horses are on the beach? A: 2

GT Ans: 6

Incorrect Response

> Q: Is A: kitchen
> Q: Is the A: outside
> Q: Is the bench $\mathbf{A}:$ no
> Q: Is the bench made $A:$ no
> Q: Is the bench made of $A:$ no
> $Q:$ Is the bench made of metal? $\mathbf{A}:$ no

GT Ans: yes

Incorrect Response

Q: What A: umbrella
Q: What season A: summer
Q: What season of \mathbf{A} : summer
Q: What season of year A: summer
Q: What season of year was \mathbf{A} : summer
Q: What season of year was this \mathbf{A} : summer
Q: What season of year was this photo \mathbf{A} : summer
Q: What season of year was this photo taken A: summer
Q: What season of year was this photo taken in? A: summer
GT Ans: spring

Outline

Do VQA models
 generalize to novel instances?

Do VQA models
'listen' to the entire auestion?

Do VQA models really 'look' at the image?

Looking at the Image

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

Looking at the Image

Experiment

Looking at the Image

Experiment

1. Compute the \% of times (say X), the response does not change across images for a given question

Looking at the Image

Experiment

1. Compute the \% of times (say X), the response does not change across images for a given question
2. Plot histogram of X across questions

Looking at the Image

706050403020100

Looking at the Image

Looking at the Image

Results

1. VQA models do not change answers across images for significant \% of questions

Looking at the Image

Results

1. VQA models do not change answers across images for significant \% of questions

	Without Attention	With Attention
$\%$ of questions	56%	42%

Looking at the Image

Results

1. VQA models do not change answers across images for significant \% of questions

\% of questions	Without Attention	With Attention
VQA models are "stubborn"		

Looking at the Image

Results

1. VQA models do not change answers across images for significant \% of questions

Attention based models are less "stubborn" than nonattention based models

Looking at the Image

Looking at the Image

Q: What does the red sign say?

Looking at the Image

Q: What does the red sign say?
Predicted Ans: stop

Looking at the Image

Q: What does the red sign say?
Predicted Ans: stop

Correct Response

Looking at the Image

Q: What does the red sign say?
Predicted Ans: stop
Correct Response
Incorrect Responses

Looking at the Image

Q: What does the red sign say?
Predicted Ans: stop

Correct Response

Incorrect Responses

Looking at the Image

Q: What does the red sign say?
Predicted Ans: stop

Correct Response

Incorrect Responses

Looking at the Image

Looking at the Image

Q: How many zebras?

Looking at the Image

Q: How many zebras?
Predicted Ans: 2

Looking at the Image

Q: How many zebras?
Predicted Ans: 2

Correct Response

Looking at the Image

Q: How many zebras?
Predicted Ans: 2

Correct Response

Incorrect Responses

Looking at the Image

Q: How many zebras?
Predicted Ans: 2

Correct Response

Looking at the Image

Q: How many zebras?
Predicted Ans: 2

Correct Response

Looking at the Image

Looking at the Image

Q: What covers the ground?
Predicted Ans: snow

All Correct Responses

Looking at the Image

Observations

Looking at the Image

Observations

1. Producing same responses across images seems to be statistically favorable

Looking at the Image

Observations

1. Producing same responses across images seems to be statistically favorable
2. Label biases in the dataset

Conclusion

Conclusion

- Novel techniques for characterizing the behavior of deep VQA models

Conclusion

- Novel techniques for characterizing the behavior of deep VQA models
- Today's VQA models -

Conclusion

- Novel techniques for characterizing the behavior of deep VQA models
- Today's VQA models -
- are "myopic"

Conclusion

- Novel techniques for characterizing the behavior of deep VQA models
- Today's VQA models -
- are "myopic"
- often "jump to conclusions"

Conclusion

- Novel techniques for characterizing the behavior of deep VQA models
- Today's VQA models -
- are "myopic"
- often "jump to conclusions"
- are "stubborn"

To be noted

To be noted

- Correct behavior depending on dataset?

To be noted

- Correct behavior depending on dataset?
- Good to know the current behavior

To be noted

- Correct behavior depending on dataset?
- Good to know the current behavior
- Is the behavior desired?

To be noted

- Correct behavior depending on dataset?
- Good to know the current behavior
- Is the behavior desired?
- Anthropomorphic adjectives purely pedagogical

Thanks!

Questions?

