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• Current machine performance around 60-66%

• Human performance at 83%

• How to identify where we need progress?

• How to compare strengths and weaknesses? 

• How to develop insights into failure modes?

• Need to understand the behavior of VQA models

Observations
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– Accuracy = 57.02% (on VQA validation split)
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Slide credit: Adapted from Jiasen Lu

With attention model
[Lu et al. 2016]
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Listening to the Entire Question

Experiment

1. Test the model with partial questions of increasing 
lengths 

2. Compute percentage of questions for which partial 
question responses are same as full question responses

58



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

59



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

59



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

41%

59



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

With Attention

60



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

With Attention

60



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9
1

0
 -

 1
4

1
5

 -
 1

9
2

0
 -

 2
4

2
5

 -
 2

9
3

0
 -

 3
4

3
5

 -
 3

9
4

0
 -

 4
4

4
5

 -
 4

9
5

0
 -

 5
4

5
5

 -
 5

9
6

0
 -

 6
4

6
5

 -
 6

9
7

0
 -

 7
4

7
5

 -
 7

9
8

0
 -

 8
4

8
5

 -
 8

9
9

0
 -

 9
4

9
5

 -
 9

9
1

0
0

%
 o

f 
q

u
es

ti
o

n
s 

fo
r 

w
h

ic
h

 r
es

p
o

n
se

s 
re

m
ai

n
 s

am
e

% of question length fed as input to the model

Without Attention

With Attention

49%

60



Listening to the Entire Question

Result

VQA models converge on predicted answer after half the 
question for significant % of questions

61



Listening to the Entire Question

Result

VQA models converge on predicted answer after half the 
question for significant % of questions

Without Attention With Attention

% of questions 41% 49%

61



Listening to the Entire Question

Result

VQA models converge on predicted answer after half the 
question for significant % of questions

Without Attention With Attention

% of questions 41% 49%

61

VQA models often “jump to conclusions”



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention

62



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention
37%

62



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention
37%

54%

62



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention

With Attention

63



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention

With Attention

42%

63



Listening to the Entire Question

0

10

20

30

40

50

60

70

80

90

100
0

 -
 4

5
 -

 9

1
0

 -
 1

4

1
5

 -
 1

9

2
0

 -
 2

4

2
5

 -
 2

9

3
0

 -
 3

4

3
5

 -
 3

9

4
0

 -
 4

4

4
5

 -
 4

9

5
0

 -
 5

4

5
5

 -
 5

9

6
0

 -
 6

4

6
5

 -
 6

9

7
0

 -
 7

4

7
5

 -
 7

9

8
0

 -
 8

4

8
5

 -
 8

9

9
0

 -
 9

4

9
5

 -
 9

9

1
0

0

V
Q

A
 A

cc
u

ra
cy

% of question length fed as input to the model

Without Attention

With Attention

42%

57%

63



Correct Response

GT Ans: yes
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Incorrect Response

GT Ans: spring
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Outline

Do VQA models 

generalize to novel instances?

Do VQA models 
‘listen’ to the entire question?

Do VQA models 
really ‘look’ at the image?

68



Looking at the Image

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

69



Looking at the Image

Q: How many zebras?

Predicted Ans: 2

Q: How many zebras?

Predicted Ans?

69



Looking at the Image

Experiment

70



Looking at the Image

Experiment

1. Compute the % of times (say X), the response does not 
change across images for a given question
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Experiment

1. Compute the % of times (say X), the response does not 
change across images for a given question

2. Plot histogram of X across questions
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significant % of questions
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Results

1. VQA models do not change answers across images for 
significant % of questions

Without Attention With Attention

% of questions 56% 42%
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VQA models are “stubborn”

Attention based models are less “stubborn” than non-
attention based models
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All Correct Responses

Q: What covers the ground?             

Predicted Ans: snow
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Observations

1. Producing same responses across images seems to be 
statistically favorable

2. Label biases in the dataset
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Thanks!

Questions?
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