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Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FH(St—lamt)
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=» Generalizes naturally to new lengths not seen during training
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Recurrent Neural Nebworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.
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CGrenerabtive RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = HP(SCt|CUt—1, Tt—9,...21)
t=1
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Lt = — lOg P($t|xt—17$t—2a c. 5(31)




 Sequence to vector

e Sequence to sequence of the
same length, aligned

* Vector to sequence

t—1 t t+1

Lt—1 qﬂ?t *$t+1 q$t+2
* Seqguence to sequence
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At generation time,
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Mismatch can cause
”“compounding error”

(¢, y¢) : next input/output training pair



Ideas to reduce the train/generate
mismakch in teacher forcing

e Scheduled sampling (S. Bengio et al, NIPS 2015)

\ nSoﬂmaxover Softmax over / REIated tO
Y SEARN (Daumé et al 2009)

DAGGER (Ross et al 2010)

h(1) | —...—— h(t-1) hity —
f f .
X P Gradually increase the
probability of using
A the model’s samples
sampled y(t2)  true y(t-2) }c yit1) vs the ground truth
as input.

* Backprop through open-loop sampling recurrence & minimize
long-term cost (but which one? GAN would be most natural >
Professor Forcing)



Increasing the E:xpressive Power of
KNNs wdzk more De p

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

Ordinary RNNs Vi Vi
Zi i %
+ stacking N % he
h, y
- t

+ skip connections for
creating shorter paths



Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc,

e The unfolded architecture needs not be a straight chain

Bidirectional RNNs (Schuster and Paliwal, 1997)

Recursive (tree-structured)
Neural Nets:

. FORWARD
Frasconi et al 97 STATES

Socher et al 2011 )

\ (i-1,j) (i.)) (i,i-1)

See Alex Graves’s work, e.g., 2012

input layer (i) sional RNNs, Graves et al 2007)




Mut&iptica!:ive Inkeractions

(Wu et al, 2016, arXiv:1606.06630)

e Multiplicative Integration RNNs:

3.0 . : (b) , :
2.7 :;\//Ia:-nFlklll\lal\-l-Rsl?r:ple ]
e Replace O —0— MI-RNN-general
Wx + Uz + b) £%%
¢( ) 8 2.1f
" B e
d(Wx ©Uz+b)
1.5} . —a—
* Or more general: 0 5 10 15 20 25

number of epochs

PlaOWxoUz+ 03, 0Uz+ 6,0 Wz +b)
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Learning Long-Term
Tﬁepemdeme&es wikh
Grradient Descent is

Difficult

Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, 1994



Simple Experiments from 1991 while I
was ab MI

e 2 categories of sequences

e Can the single tanh unit learn to store for T time steps 1 bit of
information given by the sign of initial input?

1
Ty = f(a,) = tanh(a.] w (a) j
a; = wry + hy h i

Prob(success | seq. length T)

55
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How ko store 1 bikt? Dunamics with
multiple basins of attraction in some
dimensions

e Some subspace of the state can store 1 or more bits of
information if the dynamical system has multiple basins of
attraction in some dimensions

Basins

Note: gradients MUST be high near the boundary
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Robustly storing 1 bit in the presence
of bounded wnoise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

Domain of a;

e Not so with radius<1

CONTRACTIVE
-> STABLE



Storing Reliably

Reliably storing bits of information requires spectral radius<1

The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

L= L(sr(sT-1(--- St+1(8¢t5---))))

a_L 0L Ost 0S¢11
Os;  Osp Osp_1  Osy

e |f spectral radius of Jacobian is < 1 =» propagated gradients vanish
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Vanishing or Exploding Gradients

 Hochreiter’s 1991 MSc thesis (in German) had independently
discovered that backpropagated gradients in RNNs tend to
either vanish or explode as sequence length increases

1991: SEPP HOCHREITER'S ANALYSIS OF TH
FUNDAMENTAL DEEP LEARNING PROBLEM

de(t-q)
de(f)

[ (B ﬁWF'(Ner(t -m))ll

m=|

<(IWlimax,, {IF'(Net)ll})’
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Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies

801} 86} 8@7 0015 8at 80,7

Z * da, OW Z * da;\daz OW

t

Becomes exponentially smaller
for longer time differences,
when spectral radius < 1
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Vanishing Gradients in Deep Neks are
Different from the Case in RNNs -

_|_

e |f it was just a case of vanishing gradients in deep nets, %‘Q
we could just rescale the per-layer learning rate, but .
that does not really fix the training difficulties. =

St—1 St St+1 Jf&)
W W W W e
|
Q

e Can’t do that with RNNs because the weights are
shared, & total true gradient = sum over different =~
“depths”

8Ct 36} 8a,T 8Ct aa,t 8a7

W " 2 D0, W “~ da, da, OW

7<%
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To store information robustly the

dynamics must be contractive

e The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store

information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

[, = L(ST(ST—1<° . 3t—|—1(3t7 . ))))
OL oL aST 88754-1 Storing bits

ast aST aST—l S aSt robustly requires

e-values<1

* Problems: ,
Gradient
* e-values of Jacobians > 1 = gradients explode > clipping
* or e-values < 1 2 gradients shrink & vanish

e or random -2 variance grows exponentially
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RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2"? order)

e |nitialization (start in right ballpark avoids exploding/vanishing)
e Sparse Gradients (symmetry breaking)

e Gradient propagation regularizer (avoid vanishing gradient)

e Gated self-loops (LSTM & GRU, reduces vanishing gradient)
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Dealing with Gradient Explosion by
Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)

A Oerror

g < o

if ||g|| > threshold then
A threihold g

8 < gl
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Conference version (1993) of the 1994
paper by the same authors had a
predecessor of GRU and targetprop

(The problem of learning long-term dependencies in recurrent networks,
Bengio, Frasconi & Simard ICNN’1993)

IV. A TRAINABLE Frip-FLoP
e Flip-flop unit to store 1 bit, with gating
signal to control when to write
Tepy = f2e,uy)

1 if lul<1 and z2>0
orif u>1 (8)
-1 otherwise

f(z,u) -

e Pseudo-backprop through it by a form of
targetoroo

A:B(Af,u)=l Af if |ul<1 (11)

0 otherwise




Delays & Hierarchies ko Reach Farther

e Delays and multiple time scales, Elhihi & Bengio NIPS 1995,
Koutnik et al ICML 2014 é

e How to do this right?

e How to automatically S@
and adaptively do it? 3

Hierarchical RNNs (words / sentences):
Sordoni et al CIKM 2015, Serban et af =~~~
AAAl 2016

23 wow , i keep on bumping into you . i hope your mango



Fighting the vawnishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)
the LSTM, called Neural Long-

Term Storage with self-loop output
new state = old state 4+ update
Create a path where Inew state
gradients can flow for Jold state
longer with a self-loop ~
selt-loop
Corresponds to an
eigenvalue of Jacobian ‘_<t t )
slightly less than 1
LSTM is now heavily used
(Hochreiter & Schmidhuber
1997) é
input input gate forget gate output gate

GRU light-weight version e 6 e

(Cho et al 2014) 4 \
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Fast Forward 20 years: Attention
Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read
and write access into a memory

e The attention mechanism outputs a softmax
over memory locations
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Large Memory Networlkes: Sparse Access
Memory for Long-Term Dependencies

e Memory = part of the state
e Memory-based networks are special RNNs

e A mental state stored in an external memory can stay for arbitrarily
long durations, until it is overwritten (partially or not)

e Forgetting = vanishing gradient.
e Memory = higher-dimensional state, avoiding or reducing the need for
forgetting/vanishing
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Desighing the RNN Architecture

(Architectural Complexity Measures of Recurrent Neural Networks
Zhang et al 2016, arXiv:1602.08210)

e Recurrent depth: max path length divided by sequence length
. : max length from input to nearest output
e Skip coefficient: shortest path length divided sequence length

@ @,8 ,4 @,8 ,4

o¥c! :
o W ‘@#@

n] o pels frp1 fps [
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It makes a difference

Impact of change in recurrent depth

DATASET MODELS\ARCHS sh st bu td
PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-sMALL | 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE | 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63

LSTM-LARGE 1.52 1.53 1.52 1.49

Impact of change in skip coefficient

84

AR ARE

S GPHH

RNN(tanh)| s=1 s=5 s=9 s=13 s=21 LSTM |s=1 s=3 s=5 s=7 s=9
MNIST 349 469 749 854 8§7.8 MNIST | 56.2 87.2 864 864 &84.8
s=1 s=3 s=5 s=7 s=9 s=1 s=3 s=4 s=5 s=6
pMNIST | 49.8 79.1 843 88.9 88.0 pMNIST| 28.5 25.0 60.8 62.2 65.9
_Model MNIST _ pMNIST Architecture,s | (1,1 2),1 (3). & (&), k
1RNNJ25] 97.0 ~82.0 2
MNIST k=17 | 395 394 542 77.8
uRNNJ[24] 95.1 91.4
k=211 395 399 696 718
LSTM[24] 98.2 88.0
N N pMNIST k=5 | 555 666 747 81.2
RNN(tanh)[25] ~35.0 ~35.0 k=0 | 555 7.1 786 869
stanh(s =21, 11) 98.1 94.0 — i : i :

Table 2: Results for MNIST/pMNIST. Top-left: test accuracies with different s for tanh RNN. Top-right: test
accuracies with different s for LSTM. Bottom: compared to previous results. Bottom-right: test accuracies for
architectures (1), (2), (3) and (4) for tanh RNN.

28



Near-Orthogonality to Help
Information Propagation

 Initialization to orthogonal recurrent W (Saxe et al 2013, ICLR2014)

(Arjowski, Amar &
Bengio ICML 2016)

W = D;R,F 'D,IIR, FD;

e Unitary matrices: all e-values of matrix are 1

(Krueger et al 2016,
5 submitted)
t
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Variational Generakive RNNs

‘ Injecting higher-level variations / latent variables in RNNs

30 o be hqomiencs - Vaore v -

(Chung et al, NIPS’2015)
Regular RNNs have noise injected only in input space

VRNNs also allow noise (latent variable) injected in top hidden

layer; more « high-level » variability
Néo-au/—n.; Ar,

”/qu//M
8
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)
f%\ ﬁ (S/l&\O/LtoﬁqJ NTne

[GL‘K\. |( NCL/“C rEM b e h"“‘-L

W “(Wf&tm// m"ﬁa ihoch /o a
wh o M/"\ffa'r"é‘ Ynd !/
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Variational Hierarchical RNNs for
Dialoque Generation (Serban et al 2016)

e Lower level = words of an utterance (turn of speech)
e Upper level = state of the dialogue
* Inject high-level choices w., ... wae _ JT

prediction

context —

S

hidden state 8 -..

0O ©Ceo ©O
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Table 1: Wins, losses and ties (in %) of the VHRED model against the baselines based on the human
study on Twitter (mean preferences + 90% confidence intervals)

Short Contexts Long Contexts
Opponent Wins Losses Ties Wins Losses Ties
VHRED vs LSTM 323+24 425+26 252423 41.9+22 368+22 21.3£1.9
VHRED vs HRED 42.04+2.8 31.9+2.6 262425 41.5+28 294+26 29.1+£26

VHRED vs TF-IDF  51.6 £3.3 17.9+£2.5

30.4+ 3.0 479+34 11.7+22 403+34

VHRNN
Resullbs cme

2: Twitter examples for the neural network models. The — token indicates a change of turn.

Response

jamaica blood!! <url> — lol. yes [name]!. [name]! —
ane what’s poppin in toronto homie

VHRED: nothing much. just chillin. what’s good with you?

T ® whhhhhhyyyy is it suddenly cold in tallahassee today?? this
N"&&er is florida! how can i dream of the beach when my fingers are

icey cold?? — sittin on deck in sun looking at lake travis in

[ ustin! enjoying day b4 birthday
Dialogues

eaches for [name]! — - approaches him warily - hey there
buddy. - swings him into the air - how you doin? — tilts his
head and your wariness and reaches for your face [name].

VHRED: - looks up at you and smiles - you're so cute. - kisses your cheek -
LSTM: - smiles - i’'m fine thank you. how are you?
HRED: - grins, looking at you as i look at you -

i think i want an ipad2. but i already have an ibook. want vs.

need. — if you have an ibook. then you deserve an ipad!

VHRED: that’s what i’m thinking. i’m going to buy a new one.
LSTM: i want one!!!!
HRED: i don’t know what to do with it. i don’t know what to do.

ah echt? dan anrtwoord ik volgende keer via twitter als je me
smst. — haha doe maar p. goed bezig hoor myrthe d —
goed bezig? die snap ik even niet p

VHRED: haha, ik heb er geen zin in de something, maar ik heb er geen
something meer something

LSTM: haha something something something

HRED: something something something something something something
something something

i love katie waissel more than like, anything in life. — i
wanna c the show again! i need <number> meet her again! n
1 want a b-day tweet nxt week doubt that will happen x

VHRED: me too. i’m going to have to wait for her to come back. i’m so
excited.

LSTM: i’m sure she will. i’m sure she’ll be fine.

HRED: i’m sure she’ll be fine, i’m sure she’ll be fine.

my math teacher over here talkn bout nickels nd i’m tryna
make big money i need to be in calculus — lol

32

VHRED: i need to go to the gym and get my hair done lol
LSTM: lol
HRED: how u been
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Other Full
Directed

{u-0Observed Neural
rapku:ad. Models



Neural Au&a-fiegressive Models

P(x) = P(x1,... HP(CUt|CUt 1, L¢—2,...T1) )/_ ; ; E%
e Decomposes the Jomt of a fully observed

X X X Xy
directed model in terms of conditionals ! ? ’

e Logistic auto-regressive: (Frey 1997) P(x.) P(x /X)(x3/x2 [ Xe X0 X)
417237 N2/ 1

P(xi) p(x,|x )P(X3/X2 Xl)P Xq[X3, X5,X1)

X X, X3 Xy

First neural version: (Bengio&Bengio d) O
NIPS’99) X, X
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NADE: Neural AutoRegressive Density
Estimator

P(x,) P(x,1x4) PO P(X4[X3, X3,%3)

O

(Larochelle & Murray AISTATS 2011)

e Introduces smart sharing
between some weights so that

the different hidden groups h,
use the same weights to the
same input but look at more
and more of the inputs.
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?Lxet RNNS (van den Oord et al ICML 2016, best paper)

mgn jupn|
ByE| g

ﬁ!hﬂﬂﬁﬁnlﬂ
BEA w0

e Similar to NADE and RNNs
but for 2-D images

e Surprisingly sharp and
realistic generation

e Gets texture right but not
necessarily global structure



Forward Computation of the Gradient

BPTT does not seem biologically plausible and is memory-

expensive
RTRL (Real-Time Recurrent Learning, Williams & Zipser 1989, Neural Comp.)

* Practically useful: online learning, no need to store all the past
states and revisit history backwards (which is biologically weird)

* Compute the gradients forward in time, rather than backwards
e Think about multiplying many matrices left-to-right vs right-to-left

* BUT exact computation is O(nhidden x nweights) instead of
O(nweights), to recursively compute dh(t)/dW < all params

e Recently proposed, *approximate* the forward gradient using an

efficient stochastic estimator (rank 1 estimator of dh/dW tensor)
(Training recurrent networks online without backtracking, Ollivier et al arXiv:

1507.07680)
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