
Recurrent	Neural	Networks	

Deep	Learning	Summer	School	2016	
Yoshua	Bengio	

Montreal	Ins<tute	for	Learning	Algorithms	
Université	de	Montréal	

Recurrent Neural Networks

•  Selec1vely	summarize	an	input	sequence	in	a	fixed-size	state	
vector	via	a	recursive	update	

2	

stst�1 st+1

F✓ F✓ F✓

xtxt�1 xt+1x

s
F✓

unfold

è	Generalizes	naturally	to	new	lengths	not	seen	during	training	

shared	over	1me	✓

Recurrent Neural Networks

•  Can	produce	an	output	at	each	1me	step:	unfolding	the	graph	
tells	us	how	to	back-prop	through	1me.	

3	

xtxt�1 xt+1x

unfold

V W
W

W W W

V V V

U U U U

s

o

st�1

ot�1 ot

st st+1

ot+1

Generative RNNs

4	
xtxt�1 xt+1

W
W W W

V V V

U U U

st�1

ot�1 ot

st st+1

ot+1

Lt+1Lt�1 Lt

xt+2

•  An	RNN	can	represent	a	fully-connected	directed	genera<ve	
model:	every	variable	predicted	from	all	previous	ones.	

5	

h(t�1)h(t�1)

W h(t)h(t)

x

(t�1)
x

(t�1)
x

(t)
x

(t)
x

(...)
x

(...)

W W

U U U

h(⌧)h(⌧)

x

(⌧)
x

(⌧)

W

U

o

(⌧)
o

(⌧)y(⌧)y(⌧)

L(⌧)L(⌧)

V

.

Conditional Distributions

•  Sequence	to	vector	

•  Sequence	to	sequence	of	the	
same	length,	aligned	

•  Vector	to	sequence	

•  Sequence	to	sequence		

stst�1 st+1

F✓ F✓ F✓

xtxt�1 xt+1x

s
F✓

unfold

UU

VV

WW

o

(t�1)
o

(t�1)

hh

oo

yy

LL

xx

o

(t)
o

(t)
o

(t+1)
o

(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x

(t�1)
x

(t�1)
x

(t)
x

(t)
x

(t+1)
x

(t+1)

WWWW WW WW

h(...)h(...) h(...)h(...)

VV VV VV

UU UU UU

Unfold

xtxt�1 xt+1

W W W

V V V

U U U

st�1

ot�1 ot

st st+1

ot+1

xt+2

xtxt�1 xt+1

st�1

ot�1 ot

st st+1

ot+1

xt+2

•  During	training,	past	y	
in	input	is	from	training	
data	

•  At	genera1on	1me,	
past	y	in	input	is	
generated	

•  Mismatch	can	cause		
”compounding	error”		

6	

P (yt | ht)

ht

xt

ŷt ⇠ P (yt | ht)

(xt, yt) : next input/output training pair

yt

Test-1me	
path	

Training-
1me	path	

Maximum Likelihood =
Teacher Forcing

Ideas to reduce the train/generate
mismatch in teacher forcing
•  Scheduled	sampling	(S.	Bengio	et	al,	NIPS	2015)	

•  Backprop	through	open-loop	sampling	recurrence	&	minimize	
long-term	cost	(but	which	one?	GAN	would	be	most	natural	à	
Professor	Forcing)	

7	

Related	to	
SEARN	(Daumé	et	al	2009)	
DAGGER	(Ross	et	al	2010)	

Gradually	increase	the	
probability	of	using	
the	model’s	samples	
vs	the	ground	truth	
as	input.	

Increasing the Expressive Power of
RNNs with more Depth

•  ICLR	2014,	How	to	construct	deep	recurrent	neural	networks	
	

8	

yt-1

xt-1

ht-1

xt

ht

yt

xt+1

ht+1

yt+1

xt

ht-1 ht

yt

xt

ht-1 ht

ytOrdinary	RNNs	

+	deep	hid-to-out	
+	deep	hid-to-hid	
+deep	in-to-hid	

+	skip	connec1ons	for	
crea1ng	shorter	paths	

xt

ht-1
ht

yt

z t-1
z t

+	stacking	

Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc.
•  The	unfolded	architecture	needs	not	be	a	straight	chain		

9	

(Mul<dimensional	RNNs,	Graves	et	al	2007)	

Figure 1: 2D RNN Forward pass. Figure 2: 2D RNN Backward pass.

Various statistical models have been proposed for multi-dimensional data, notably
multi-dimensional HMMs. However, multi-dimensional HMMs suffer from two severe
drawbacks: (1) the time required to run the Viterbi algorithm, and thereby calculate
the optimal state sequences, grows exponentially with the number of data points; (2)
the number of transition probabilities, and hence the required memory, grows expo-
nentially with the data dimensionality. Numerous approximate methods have been
proposed to alleviate one or both of these problems, including pseudo 2D and 3D
HMMs [8], isolating elements [12], approximate Viterbi algorithms [10], and depen-
dency tree HMMs [9]. However, none of these methods are able to exploit the full
multi-dimensional structure of the data.

As we will see, multi dimensional recurrent neural networks (MDRNNs) bring
the benefits of RNNs to multi-dimensional data, without suffering from the scaling
problems described above.

Section 2 describes the MDRNN architecture, Section 3 presents two experiments
on image segmentation, and concluding remarks are given in Section 4.

2 Multi-Dimensional Recurrent Neural Networks

The basic idea of MDRNNs is to replace the single recurrent connection found in stan-
dard RNNs with as many recurrent connections as there are dimensions in the data.
During the forward pass, at each point in the data sequence, the hidden layer of the net-
work receives both an external input and its own activations from one step back along
all dimensions. Figure 1 illustrates the two dimensional case.

Note that, although the word sequence usually connotes one dimensional data, we
will use it to refer to data examplars of any dimensionality. For example, an image is
a two dimensional sequence, a video is a three dimensional sequence, and a series of
fMRI brain scans is a four dimensional sequence.

Clearly, the data must be processed in such a way that when the network reaches a
point in an n-dimensional sequence, it has already passed through all the points from
which it will receive its previous activations. This can be ensured by following a
suitable ordering on the points {(x1, x2, ..., xn

)}. One example of a suitable order-
ing is (x1, . . . , xn

) < (x0
1, . . . , x

0
n

) if 9 m 2 (1, . . . , n) such that x
m

< x0
m

and
x

i

= x0
i

8 i 2 (1, . . . ,m� 1). Note that this is not the only possible ordering, and that
its realisation for a particular sequence depends on an arbitrary choice of axes. We will
return to this point in Section 2.1. Figure 3 illustrates the ordering for a 2 dimensional
sequence.

The forward pass of an MDRNN can then be carried out by feeding forward the
input and the n previous hidden layer activations at each point in the ordered input
sequence, and storing the resulting hidden layer activations. Care must be taken at the
sequence boundaries not to feed forward activations from points outside the sequence.

2

Bidirec<onal	RNNs	(Schuster	and	Paliwal,	1997)		
	

See	Alex	Graves’s	work,	e.g.,	2012		

WU

WU

WU

y	

L	

x1	 x2	 x3	 x4	

V	 V	 V	 V	

o	

Recursive	(tree-structured)	
Neural	Nets:	
	
Frasconi	et	al	97	
Socher	et	al	2011		

Multiplicative Interactions

•  Mul1plica1ve	Integra1on	RNNs:		

•  Replace	

•  By	

•  Or	more	general:	

10	

On Multiplicative Integration with
Recurrent Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce a general simple structural design called “Multiplicative Integra-1

tion” (MI) to improve recurrent neural networks (RNNs). MI changes the way2

of how the information flow gets integrated in the computational building block3

of an RNN, while introducing almost no extra parameters. The new structure4

can be easily embedded into many popular RNN models, including LSTMs and5

GRUs. We empirically analyze its learning behaviour and conduct evaluations on6

several tasks using different RNN models. Our experimental results demonstrate7

that Multiplicative Integration can provide a substantial performance boost over8

many of the existing RNN models.9

1 Introduction10

Recently there has been a resurgence of new structural designs for recurrent neural networks (RNNs)11

[1, 2, 3]. Most of these designs are derived from popular structures including vanilla RNNs, Long12

Short Term Memory networks (LSTMs) [4] and Gated Recurrent Units (GRUs) [5]. Despite of their13

varying characteristics, most of them share a common computational building block, described by the14

following equation:15

�(Wx+Uz + b), (1)

where x 2 Rn and z 2 Rm are state vectors coming from different information sources, W 2 Rd⇥n16

and U 2 Rd⇥m are state-to-state transition matrices, and b is a bias vector. This computational17

building block serves as a combinator for integrating information flow from the x and z by a sum18

operation “+”, followed by a nonlinearity �. We refer it as the additive building block. Additive19

building blocks are widely implemented in various state computations in RNNs (e.g. hidden state20

computations for vanilla-RNNs, gate/cell computations of LSTMs and GRUs).21

In this work, we propose an alternative design for constructing the computational building block by22

changing the procedure of information integration. Specifically, instead of utilizing sum operation23

“+", we propose to use the Hadamard product “�” to fuse Wx and Uz:24

�(Wx�Uz + b) (2)

The result of this modification changes the RNN from first order to second order [6], while introducing25

no extra parameters. We call this information integration design as Multiplicative Integration. The26

effect of multiplication naturally results in a gating type structure, in which Wx and Uz are the gates27

of each other. More specifically, one can think of the state-to-state computation Uz as dynamically28

rescaled by the Wx. Such rescaling does not exist in the additive building block in which Uz is29

independent of x. This relatively simple modification brings about advantages over the additive30

building block as it alters RNN’s gradient properties, which we discuss in detail in the next section,31

as well as verify through extensive experiments.32

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

On Multiplicative Integration with
Recurrent Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce a general simple structural design called “Multiplicative Integra-1

tion” (MI) to improve recurrent neural networks (RNNs). MI changes the way2

of how the information flow gets integrated in the computational building block3

of an RNN, while introducing almost no extra parameters. The new structure4

can be easily embedded into many popular RNN models, including LSTMs and5

GRUs. We empirically analyze its learning behaviour and conduct evaluations on6

several tasks using different RNN models. Our experimental results demonstrate7

that Multiplicative Integration can provide a substantial performance boost over8

many of the existing RNN models.9

1 Introduction10

Recently there has been a resurgence of new structural designs for recurrent neural networks (RNNs)11

[1, 2, 3]. Most of these designs are derived from popular structures including vanilla RNNs, Long12

Short Term Memory networks (LSTMs) [4] and Gated Recurrent Units (GRUs) [5]. Despite of their13

varying characteristics, most of them share a common computational building block, described by the14

following equation:15

�(Wx+Uz + b), (1)

where x 2 Rn and z 2 Rm are state vectors coming from different information sources, W 2 Rd⇥n16

and U 2 Rd⇥m are state-to-state transition matrices, and b is a bias vector. This computational17

building block serves as a combinator for integrating information flow from the x and z by a sum18

operation “+”, followed by a nonlinearity �. We refer it as the additive building block. Additive19

building blocks are widely implemented in various state computations in RNNs (e.g. hidden state20

computations for vanilla-RNNs, gate/cell computations of LSTMs and GRUs).21

In this work, we propose an alternative design for constructing the computational building block by22

changing the procedure of information integration. Specifically, instead of utilizing sum operation23

“+", we propose to use the Hadamard product “�” to fuse Wx and Uz:24

�(Wx�Uz + b) (2)

The result of this modification changes the RNN from first order to second order [6], while introducing25

no extra parameters. We call this information integration design as Multiplicative Integration. The26

effect of multiplication naturally results in a gating type structure, in which Wx and Uz are the gates27

of each other. More specifically, one can think of the state-to-state computation Uz as dynamically28

rescaled by the Wx. Such rescaling does not exist in the additive building block in which Uz is29

independent of x. This relatively simple modification brings about advantages over the additive30

building block as it alters RNN’s gradient properties, which we discuss in detail in the next section,31

as well as verify through extensive experiments.32

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

In the following sections, we first introduce a general formulation of Multiplicative Integration. We33

then compare it to the additive building block on several sequence learning tasks, including character34

level language modelling, speech recognition, large scale sentence representation learning using a35

Skip-Thought model, and teaching machine to read and comprehend for the question answering36

task. The experimental results (together with several existing state-of-the-art models) show that37

various RNN structures (including vanilla RNNs, LSTMs, and GRUs) equipped with Multiplicative38

Integration provide better generalization and easier optimization. Its main advantages include: (1) It39

enjoys better gradient properties due to the gating effect. Most of the hidden units are non-saturated;40

(2) The general formulation of Multiplicative Integration naturally includes the additive building41

block as a special case, and introduces almost no extra parameters compared to the additive building42

block; and (3) Rather than inflexible ad-hoc structural design, it can be easily embedded into most of43

the popular RNN models, including LSTMs and GRUs. It can also be combined with other RNN44

training techniques such as Recurrent Batch Normalization [7]. We further discuss its relationship45

to existing models, including Hidden Markov Models (HMMs) [8], second order RNNs [9, 6] and46

Multiplicative RNNs [10].47

2 Structure Description and Analysis48

2.1 General Formulation of Multiplicative Integration49

The key idea behind Multiplicative Integration is to integrate different information flows Wx and Uz,50

by the Hadamard product “�”. A more general formulation of Multiplicative Integration includes51

two more bias vectors �1 and �2 added to Wx and Uz:52

�((Wx+ �1)� (Uz + �2) + b) (3)
where �1,�2 2 Rd are bias vectors. Notice that such formulation contains the first order terms as53

in a additive building block, i.e., �1 �Uht�1 + �2 �Wxt. In order to make the Multiplicative54

Integration more flexible, we introduce another bias vector ↵ 2 Rd to gate1 the term Wx �Uz,55

obtaining the following formulation:56

�(↵�Wx�Uz + �1 �Uz + �2 �Wx+ b), (4)
Note that the number of parameters of the Multiplicative Integration is about the same as that of the57

additive building block, since the number of new parameters (↵, �1 and �2) are negligible compared58

to total number of parameters. Also, Multiplicative Integration can be easily extended to LSTMs59

and GRUs2, that adopt vanilla building blocks for computing gates and output states, where one can60

directly replace them with the Multiplicative Integration. More generally, in any kind of structure61

where k information flows (k � 2) are involved (e.g. RNN with multiple skip connections [11]62

or in feedforward models like residual networks [12]), one can implement pairwise Multiplicative63

Integration for integrating all k information sources.64

2.2 Gradient Properties65

The Multiplicative Integration has different gradient properties compared to the additive building66

block. For clarity of presentation, we first look at vanilla-RNN and RNN with Multiplicative67

Integration embedded, referred to as MI-RNN. That is, ht = �(Wxt + Uht�1 + b) versus68

ht = �(Wxt �Uht�1 + b). In a vanilla-RNN, the gradient @ht
@ht�n

can be computed as follows:69

@ht

@ht�n
=

tY

k=t�n+1

UT
diag(�

0
k), (5)

where �0
k = �

0
(Wxk +Uhk�1 +b). The equation above shows that the gradient flow through time70

heavily depends on the hidden-to-hidden matrix U, but W and xk appear to play a limited role: they71

only come in the derivative of �0 mixed with Uhk�1. On the other hand, the gradient @ht
@ht�n

of a72

MI-RNN is3:73

@ht

@ht�n
=

tY

k=t�n+1

UT
diag(Wxk)diag(�

0
k), (6)

1If ↵ = 0, the Multiplicative Integration will degenerate to the vanilla additive building block.
2See exact formulations in the Appendix.
3Here we adopt the simplest formulation of Multiplicative Integration for illustration. In the more general

case (Eq. 4), diag(Wxk) in Eq. 6 will become diag(↵�Wxk + �1).

2

(Wu	et	al,	2016,	arXiv:1606.06630)	

Figure 1: (a) Curves of log-L2-norm of gradients for lin-RNN (blue) and lin-MI-RNN (orange). Time gradually
changes from {1, 5, 10}. (b) Validation BPC curves for vanilla-RNN, MI-RNN-simple using Eq. 2, and MI-
RNN-general using Eq. 4. (c) Histogram of vanilla-RNN’s hidden activations over the validation set, most
activations are saturated. (d) Histogram of MI-RNN’s hidden activations over the validation set, most activations
are not saturated.

We next tried different initialization of W and U to test their sensitivities to the scaling. For each129

model, we fix the initialization of U to uniform[�0.02, 0.02] and initialize W to uniform[�rW, rW]130

where rW varies in {0.02, 0.1, 0.3, 0.6}. Table 1, top left panel, shows results. As we increase131

the scale of W, performance of the vanilla-RNN improves, suggesting that the model is able to132

better utilize the input information. On the other hand, MI-RNN is much more robust to different133

initializations, where the scaling has almost no effect on the final performance.134

3.1.3 On different choices of the formulation135

In our third experiment, we evaluated the performance of different computational building blocks,136

which are Eq. 1 (vanilla-RNN), Eq. 2 (MI-RNN-simple) and Eq. 4 (MI-RNN-general)4. From the137

validation curves in Figure 1 (b), we see that both MI-RNN, simple and MI-RNN-general yield much138

better performance compared to vanilla-RNN, and MI-RNN-general has a faster convergence speed139

compared to MI-RNN-simple. We also compared our results to the previously published models140

in Table 1, bottom left panel, where MI-RNN-general achieves a test BPC of 1.39, which is to our141

knowledge the best result for RNNs on this task without complex gating/cell mechanisms.142

3.2 Character Level Language Modeling143

In addition to the Penn-Treebank dataset, we also perform character level language modeling on two144

larger datasets: text85 and Hutter Challenge Wikipedia6. Both of them contain 100M characters from145

Wikipedia while text8 has an alphabet size of 27 and Hutter Challenge Wikipedia has an alphabet146

size of 205. For both datasets, we follow the training protocols in [14] and [1] respectively. We use147

Adam for optimization with the starting learning rate grid-searched in {0.002, 0.001, 0.0005}. If the148

validation BPC (bits-per-character) does not decrease for 2 epochs, we half the learning rate.149

We implemented Multiplicative Integration on both vanilla-RNN and LSTM, referred to as MI-150

RNN and MI-LSTM. The results for the text8 dataset are shown in Table 1, bottom middle panel.151

All five models, including some of the previously published models, have the same number of152

4We perform hyper-parameter search for the initialization of {↵,�1,�2,b} in MI-RNN-general.
5
http://mattmahoney.net/dc/textdata

6
http://prize.hutter1.net/

4

Learning Long-Term
Dependencies with
Gradient Descent is

Difficult

Y.	Bengio,	P.	Simard	&	P.	Frasconi,	IEEE	Trans.	Neural	Nets,	1994	

Simple Experiments from 1991 while I
was at MIT

•  2	categories	of	sequences	
•  Can	the	single	tanh	unit	learn	to	store		for	T	1me	steps	1	bit	of	

informa1on	given	by	the	sign	of	ini1al	input?	

12	

Prob(success	|	seq.	length	T)	

How to store 1 bit? Dynamics with
multiple basins of attraction in some
dimensions
•  Some	subspace	of	the	state	can	store	1	or	more	bits	of	

informa1on	if	the	dynamical	system	has	mul1ple	basins	of	
afrac1on	in	some	dimensions	

13	

Basins	boundary	

Bit=1	

Bit=0	

Note:	gradients	MUST	be	high	near	the	boundary	

Robustly storing 1 bit in the presence
of bounded noise

•  With	spectral	radius	>	1,	noise	can	kick	state	out	of	afractor	

•  Not	so	with	radius<1	

14	

X
β

Γ

Domain of at
(a)

X

β

Domain of at

Γ

(b)

|M’|>1

|M’|<1

|M’|<1

|M’|>1

X
β

Γ

Domain of at
(a)

X

β

Domain of at

Γ

(b)

|M’|>1

|M’|<1

|M’|<1

|M’|>1

UNSTABLE	

CONTRACTIVE	
à	STABLE	

Storing Reliably è Vanishing gradients

•  Reliably	storing	bits	of	informa1on	requires	spectral	radius<1	
•  The	product	of	T	matrices	whose	spectral	radius	is	<	1	is	a	matrix	

whose	spectral	radius	converges	to	0		at	exponen1al	rate	in	T	

•  If	spectral	radius	of	Jacobian	is	<	1	è	propagated	gradients	vanish	

	

15	

Vanishing or Exploding Gradients

•  Hochreiter’s	1991	MSc	thesis	(in	German)	had	independently	
discovered	that	backpropagated	gradients	in	RNNs	tend	to	
either	vanish	or	explode	as	sequence	length	increases	

16	

Why it hurts gradient-based learning

•  Long-term	dependencies	get	a	weight	that	is	exponen1ally	
smaller	(in	T)	compared	to	short-term	dependencies	

17	

Becomes	exponen1ally	smaller	
for	longer	1me	differences,	
when	spectral	radius	<	1	

Vanishing Gradients in Deep Nets are
Different from the Case in RNNs

•  If	it	was	just	a	case	of	vanishing	gradients	in	deep	nets,	
we	could	just	rescale	the	per-layer	learning	rate,	but	
that	does	not	really	fix	the	training	difficul1es.	

	
•  Can’t	do	that	with	RNNs	because	the	weights	are	

shared,	&	total	true	gradient	=	sum	over	different	
“depths”	

18	

W
W

W
W

s t
�
1

s t
s t

+
1

W W W W

st�1 st st+1

1	
2	

3	
4	

To store information robustly the
dynamics must be contractive
•  The	RNN	gradient	is	a	product	of	Jacobian	matrices,	each	

associated	with	a	step	in	the	forward	computa1on.	To	store	
informa1on	robustly	in	a	finite-dimensional	state,	the	dynamics	
must	be	contrac1ve	[Bengio	et	al	1994].		

	
•  Problems:		

•  e-values	of	Jacobians	>	1	à	gradients	explode		
•  or	e-values	<	1	à	gradients	shrink	&	vanish	
•  or	random	à	variance	grows	exponen1ally	

	19	

Storing	bits	
robustly	requires	
e-values<1	

Gradient	
clipping	

RNN Tricks
(Pascanu,	Mikolov,	Bengio,	ICML	2013;	Bengio,	Boulanger	&	Pascanu,	ICASSP	2013)	

•  Clipping	gradients	(avoid	exploding	gradients)	
•  Leaky	integra1on	(propagate	long-term	dependencies)	
•  Momentum	(cheap	2nd	order)	
•  Ini1aliza1on	(start	in	right	ballpark	avoids	exploding/vanishing)	
•  Sparse	Gradients	(symmetry	breaking)	
•  Gradient	propaga1on	regularizer	(avoid	vanishing	gradient)	
•  Gated	self-loops	(LSTM	&	GRU,	reduces	vanishing	gradient)	

20	

Dealing with Gradient Explosion by
Gradient Norm Clipping

21	

(Mikolov	thesis	2012;	
Pascanu,	Mikolov,	Bengio,	ICML	2013)	

error

✓

✓

Conference version (1993) of the 1994
paper by the same authors had a
predecessor of GRU and targetprop

•  Flip-flop	unit	to	store	1	bit,	with	ga1ng	
signal	to	control	when	to	write	

•  Pseudo-backprop	through	it	by	a	form	of	
targetprop	

22	

(The	problem	of	learning	long-term	dependencies	in	recurrent	networks,		
Bengio,	Frasconi	&	Simard		ICNN’1993)	

xtxt�1 xt+1x

unfold

s

o

st�1

ot�1 ot

st st+1

ot+1

W1

W3

W1 W1 W1 W1

W3

st�2

W3 W3 W3

Delays & Hierarchies to Reach Farther
•  Delays	and	mul1ple	1me	scales,	Elhihi	&	Bengio	NIPS	1995,	

Koutnik	et	al	ICML	2014	
•  How	to	do	this	right?	
•  How	to	automaYcally	
and	adapYvely	do	it?	

23	

Hierarchical	RNNs	(words	/	sentences):	
Sordoni	et	al	CIKM	2015,	Serban	et	al	
AAAI	2016		

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Fighting the vanishing gradient:
LSTM & GRU

•  Create	a	path	where	
gradients	can	flow	for	
longer	with	a	self-loop	

•  Corresponds	to	an	
eigenvalue	of	Jacobian	
slightly	less	than	1	

•  LSTM	is	now	heavily	used	
(Hochreiter	&	Schmidhuber	
1997)	

•  GRU	light-weight	version	
(Cho	et	al	2014)	

24	

LSTM:	(Hochreiter	&	Schmidhuber	1997)	(Hochreiter	1991);	first	version	of	
the	LSTM,	called	Neural	Long-
Term	Storage	with	self-loop	

new state ⇡ old state + update

@new state

@old state

⇡ I

Fast Forward 20 years: Attention
Mechanisms for Memory Access

•  Neural	Turing	Machines	(Graves	et	al	2014)	
•  and	Memory	Networks	(Weston	et	al	2014)	
•  Use	a	content-based	afen1on	mechanism	

(Bahdanau	et	al	2014)	to	control	the	read	
and	write	access	into	a	memory	

•  The	afen1on	mechanism	outputs	a	sowmax	
over	memory	loca1ons	

25	

write	

read	

Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies
•  Memory	=	part	of	the	state	
•  Memory-based	networks	are	special	RNNs	
•  A	mental	state	stored	in	an	external	memory	can	stay	for	arbitrarily	

long	dura1ons,	un1l	it	is	overwrifen	(par1ally	or	not)	
•  Forgexng	=	vanishing	gradient.	
•  Memory	=	higher-dimensional	state,	avoiding	or	reducing	the	need	for	

forgexng/vanishing	

26	

passive	copy	

access	

Designing the RNN Architecture

•  Recurrent	depth:	max	path	length	divided	by	sequence	length	
•  Feedforward	depth:	max	length	from	input	to	nearest	output	
•  Skip	coefficient:	shortest	path	length	divided	sequence	length	

27	

(a) (b)

Figure 1: (a) An example of an RNN’s Gc and G
un

. V
in

is denoted by square, V
hid

is denoted by circle and V
out

is denoted by diamond. In Gc, the number on each edge is its corresponding �. The longest path is colored in
red. The longest input-output path is colored in yellow and the shortest path is colored blue. The value of three
measures are dr = 3

2

, df = 3 and s = 2. (b) 5 more examples. (1) and (2) have dr = 2, 3

2

, (3) has df = 5, (4)
and (5) has s = 2, 3

2

.

have m = 1, while some special structures like hierarchical or clockwork RNN [15, 21] have m > 1.89

For example, Figure 1(a) (unfolded graph representation G
un

) shows that the period number of this90

specific RNN is 2.91

The connecting architecture describes how information flows among RNN units. Assume v̄ 2 V

c

92

is a node in G
c

, let In(v̄) denotes the set of incoming nodes of v̄, In(v̄) = {ū|(ū, v̄) 2 E

c

}. In93

the forward pass of the RNN, the transition function F

v̄

takes outputs of nodes In(v̄) as inputs and94

computes a new output. For example, vanilla RNNs units with different activation functions, LSTMs95

and GRUs can all be viewed as units with specific transition functions. We now give the general96

definition of an RNN:97

Definition 2.3. An RNN is a tuple (G
c

,G
un

, {F
v̄

}
v̄2Vc), in which G

un

= (V

un

, E

un

) is the unfolding98

of RNN cyclic graph G
c

, and {F
v̄

}
v̄2Vc is the set of transition functions. In the forward pass, for99

each hidden and output node v 2 V

un

, the transition function F

v̄

takes all incoming nodes of v as the100

input to compute the output.101

An RNN is homogeneous if all the hidden nodes share the same form of the transition function.102

3 Measures of Architectural Complexity103

In this section, we develop different measures of RNNs’ architectural complexity, focusing mostly104

on the graph-theoretic properties of RNNs. To analyze an RNN solely from its architectural aspect,105

we make the mild assumption that the RNN is homogeneous. We further assume the RNN to106

be unidirectional. For a bidirectional RNN, it is more natural to measure the complexities of its107

unidirectional components.108

3.1 Recurrent Depth109

Unlike feedforward models where computations are done within one time frame, RNNs map inputs110

to outputs over multiple time steps. In some sense, an RNN undergoes transformations along both111

feedforward and recurrent dimensions. This fact suggests that we should investigate its architectural112

complexity from these two different perspectives. We first consider the recurrent perspective.113

The conventional definition of depth is the maximum number of nonlinear transformations from inputs114

to outputs. Observe that a directed path in an unfolded graph representation G

un

corresponds to a115

sequence of nonlinear transformations. Given an unfolded RNN graph G

un

, 8i, n 2 Z, let D
i

(n) be116

the length of the longest path from any node at starting time i to any node at time i+ n. From the117

recurrent perspective, it is natural to investigate how D
i

(n) changes over time. Generally speaking,118

D
i

(n) increases as n increases for all i. Such increase is caused by the recurrent structure of the RNN119

which keeps adding new nonlinearities over time. Since D
i

(n) approaches 1 as n approaches 1,3120

to measure the complexity of D
i

(n), we consider its asymptotic behaviour, i.e., the limit of Di(n)

n

121

as n ! 1. Under a mild assumption, this limit exists. The following theorem prove such limit’s122

computability and well-definedness:123

Theorem 3.2 (Recurrent Depth). Given an RNN and its two graph representation G
un

and G
c

, we124

denote C(G
c

) to be the set of directed cycles in G
c

. For # 2 C(G
c

), let l(#) denote the length of #125

3Without loss of generality, we assume the unidirectional RNN approaches positive infinity.

3

(Architectural	Complexity	Measures	of	Recurrent	Neural	Networks	
Zhang	et	al	2016,	arXiv:1602.08210)	

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

It makes a difference

•  Impact	of	change	in	recurrent	depth	

•  Impact	of	change	in	skip	coefficient	

28	

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

RNN(tanh) s = 1 s = 5 s = 9 s = 13 s = 21
MNIST 34.9 46.9 74.9 85.4 87.8

s = 1 s = 3 s = 5 s = 7 s = 9
pMNIST 49.8 79.1 84.3 88.9 88.0

LSTM s = 1 s = 3 s = 5 s = 7 s = 9
MNIST 56.2 87.2 86.4 86.4 84.8

s = 1 s = 3 s = 4 s = 5 s = 6
pMNIST 28.5 25.0 60.8 62.2 65.9

Model MNIST pMNIST
iRNN[25] 97.0 ⇡82.0
uRNN[24] 95.1 91.4
LSTM[24] 98.2 88.0

RNN(tanh)[25] ⇡35.0 ⇡35.0
stanh(s = 21, 11) 98.1 94.0

Architecture, s (1), 1 (2), 1 (3), k
2

(4), k
MNIST k = 17 39.5 39.4 54.2 77.8

k = 21 39.5 39.9 69.6 71.8
pMNIST k = 5 55.5 66.6 74.7 81.2

k = 9 55.5 71.1 78.6 86.9

Table 2: Results for MNIST/pMNIST. Top-left: test accuracies with different s for tanh RNN. Top-right: test
accuracies with different s for LSTM. Bottom: compared to previous results. Bottom-right: test accuracies for
architectures (1), (2), (3) and (4) for tanh RNN.

Table 2, bottom-left panel, shows that our simple architecture improves upon the uRNN by 2.6% on305

pMNIST, and achieves almost the same performance as LSTM on the MNIST dataset with only 25%306

number of parameters [24]. Note that obtaining good performance on sequential MNIST requires a307

larger s than that for pMNIST (see Appendix B.4 for more details). LSTMs also showed performance308

boost and much faster convergence speed when using larger s, as displayed in Table 2, top-right309

panel. LSTM with s = 3 already performs quite well and increasing s did not result in any significant310

improvement, while in pMNIST, the performance gradually improves as s increases from 4 to 6. We311

also observed that the LSTM network performed worse on permuted MNIST compared to a tanh312

RNN. Similar result was also reported in [25].313

4.5 Recurrent Skip Coefficients vs. Skip Connections314

We also investigated whether the recurrent skip coefficient can suggest something more than simply315

adding skip connections. We design 4 specific architectures shown in Figure 2(b), right panel. (1) is316

the baseline model with a 2-layer stacked architecture, while the other three models add extra skip317

connections in different ways. Note that these extra skip connections all cross the same time length318

k. In particular, (2) and (3) share quite similar architectures. However, the way in which the skip319

connections are allocated make a big difference on their recurrent skip coefficients: (2) has s = 1, (3)320

has s = k

2

and (4) has s = k. Therefore, even though (2), (3) and (4) all add extra skip connections,321

the fact that their recurrent skip coefficients are different might result in different performance.322

We evaluated these architectures on the sequential MNIST and pMNIST datasets. The results show323

that differences in s indeed cause big performance gaps regardless of the fact that they all have skip324

connections (see Table 2, bottom-right panel). Given the same k, the model with a larger s performs325

better. In particular, model (3) is better than model (2) even though they only differ in the direction of326

the skip connections. It is interesting to see that for MNIST (unpermuted), the extra skip connection327

in model (2) (which does not really increase the recurrent skip coefficient) brings almost no benefits,328

as model (2) and model (1) have almost the same results. This observation highlights the following329

point: when addressing the long term dependency problems using skip connections, instead of only330

considering the time intervals crossed by the skip connection, one should also consider the model’s331

recurrent skip coefficient, which can serve as a guide for introducing more powerful skip connections.332

5 Conclusion333

In this paper, we first introduced a general formulation of RNN architectures, which allows one334

to construct more general RNNs, and provides a solid framework for the architectural complexity335

analysis. We then proposed three architectural complexity measures: recurrent depth, feedforward336

depth, and recurrent skip coefficients, each capturing the complexity in the long term, complexity in337

the short term and the speed of information flow. We also find empirical evidence that increasing338

recurrent depth might yield performance improvements, increasing feedforward depth might not help339

on long term dependency tasks, while increasing the recurrent skip coefficient can largely improve340

performance on long term dependency tasks. These measures and results can provide guidance for341

the design of new recurrent architectures for a particular learning task. Future work could involve342

more comprehensive studies (e.g., providing analysis on more datasets, using different architectures343

with various transition functions) to investigate the effectiveness of the proposed measures.344

8

Near-Orthogonality to Help
Information Propagation

•  Ini1aliza1on	to	orthogonal	recurrent	W	
•  Unitary	matrices:	all	e-values	of	matrix	are	1	

•  Zoneout:	randomly	choose	to	simply	copy	the	state	unchanged	

29	

Figure 1: Zoneout as a special case of droput: h̃
t

is the hidden activation without zoneout, the hidden
state h

t

has zoneout applied stochastically as represented by the dashed line; this can be expressed as
dropout on the corresponding input node, which represents the difference h̃

t

� h

t�1.

Figure 2: Zoneout (left) vs the recurrent dropout strategy of [Semeniuta et al., 2016] in an LSTM.
Dashed lines are zero-masked, and, in zoneout, the corresponding dotted lines are masked with the
corresponding opposite zero-mask.

each hidden state is trained (implicitly) to remember and emphasize all task-relevant aspects of the84

preceding inputs, and to incorporate new inputs into its representation of state.85

In simple RNNs, the hidden state is computed by a standard “linear layer”, i.e., an affine transform86

followed by a nonlinearity, �.87

~

h

t

= �(W
h

~

h

t�1 +W
x

~x

t

+~

b), (1)

and a naive application of dropout simply applied zero-masking to the updated ~h
t

.88

In LSTM networks, the hidden state is divided into memory cells ~h
t

which are intended for internal89

long-term storage, and hidden state, ~h
t

which is used as a transient representation of state at time-step90

t. In LSTM, ~c
t

and ~

h

t

are computed via a set of the four “gates”, including the forget gate, f
t

,91

which directly connects ~c
t

to the memories of the previous time-step ~c

t�1, via an element-wise92

multiplication. Large values of the (ironically named) forget gate cause the cell to remember most93

(but not all) of its previous value. The other gates control the flow of information in (i
t

, g

t

) and out94

(o
t

) of the cell.95

LSTM:96

i

t

, f

t

, o

t

= �(W
x

x

t

+W

h

h

t�1 + b) (2)
g

t

= tanh(W
xc

x

t

+W

hc

+ b

c

) (3)
c

t

= f

t

� c

t�1 + i

t

� g

t

(4)
h

t

= o

t

� tanh(c
t

) (5)

A naive application of dropout in LSTMs zero-masks either or both of the memory cells and97

hidden states; here d

t

represents the dropout mask, which is a Bernoulli random variable sampled98

independently at each time-step during training, and is replaced by the expectation at test time.99

LSTM with dropout applied to memory cells:100

i

t

, f

t

, o

t

= �(W
x

x

t

+W

h

h

t�1 + b) (6)
g

t

= tanh(W
xc

x

t

+W

hc

+ b

c

) (7)
c

t

= d

t

� (f
t

� c

t�1 + i

t

� g

t

) (8)
h

t

= o

t

� tanh(c
t

) (9)

Alternatives abound, however; masks can be applied to any subset of the gates and/or cells/states.101

Recently, Semeniuta et al. [2016] proposed zero-masking the input gate:102

3

(Krueger	et	al	2016,	
submibed)	

(Arjowski,	Amar	&	
Bengio	ICML	2016)	

(Saxe	et	al	2013,	ICLR2014)	

Variational Generative RNNs

•  (Chung	et	al,	NIPS’2015)	
•  Regular	RNNs	have	noise	injected	only	in	input	space	
•  VRNNs	also	allow	noise	(latent	variable)	injected	in	top	hidden	

layer;	more	«	high-level	»	variability	

30	

Injec<ng	higher-level	varia<ons	/	latent	variables	in	RNNs	

Figure 1: Computational graph for VHRED model. Rounded boxes represent (deterministic) real-
valued vectors. Variables z represent latent stochastic variables.

At training time, for n = 1, . . . , N , a sample zn is drawn from the approximate posterior119

N (µposterior(w1, . . . ,wn),⇧posterior(w1, . . . ,wn)) and used to estimate the gradient of the varia-120

tional lower-bound given by Eq. (4). The approximate posterior is parametrized by its own one-layer121

feed-forward neural network, which takes as input the output of the context RNN at the current time122

step, as well as the output of the encoder RNN for the next sub-sequence.123

The VHRED model greatly helps to reduce the problems with the generation process used by the124

RNNLM and HRED model outlined above. The variation of the output sequence is now modelled125

in two ways: at the sequence-level with the conditional prior distribution over z, and at the sub-126

sequence-level (token-level) with the conditional distribution over tokens w1, . . . , wM . The variable z127

helps model long-term output trajectories, by representing high-level information about the sequence,128

which in turn allows the variable hm to primarily focus on summarizing the information up to token129

M . Intuitively, the randomness injected by the variable z corresponds to higher-level decisions, like130

topic or sentiment of the sentence.131

4 Experimental Evaluation132

We consider the problem of conditional natural language response generation for dialogue. This is an133

interesting problem with applications in areas such as customer service, technical support, language134

learning and entertainment [29]. It is also a task domain that requires learning to generate sequences135

with complex structures while taking into account long-term context [17, 27].136

We consider two tasks. For each task, the model is given a dialogue context, consisting of one or137

more utterances, and the goal of the model is to generate an appropriate next response to the dialogue.138

We first perform experiments on a Twitter Dialogue Corpus [22]. The task is to generate utterances139

to append to existing Twitter conversations. The dataset is extracted using a procedure similar to140

Ritter et al. [22], and is split into training, validation and test sets, containing respectively 749, 060,141

93, 633 and 10, 000 dialogues. Each dialogue contains 6.27 utterances and 94.16 tokens on average.142

The dialogues are fairly long compared to recent large-scale language modelling corpora, such as143

the 1 Billion Word Language Model Benchmark [4], which focus on modelling single sentences.144

We also experiment on the Ubuntu Dialogue Corpus [17], which contains about 500, 000 dialogues145

extracted from the #Ubuntu Internet Relayed Chat channel. Users enter the chat channel with a146

Ubuntu-related technical problem, and other users try to help them. For further details see Appendix147

6.1. We chose these corpora because they are large, and have different purposes—Ubuntu dialogues148

are typically goal driven, where as Twitter dialogues typically contain social interaction ("chit-chat").149

4

Variational Hierarchical RNNs for
Dialogue Generation (Serban et al 2016)

•  Lower	level	=	words	of	an	uferance	(turn	of	speech)	
•  Upper	level	=	state	of	the	dialogue	
•  Inject	high-level	choices	

31	

VHRNN
Results
–
Twitter
Dialogues

32	

Table 1: Wins, losses and ties (in %) of the VHRED model against the baselines based on the human
study on Twitter (mean preferences ± 90% confidence intervals)

Short Contexts Long Contexts
Opponent Wins Losses Ties Wins Losses Ties
VHRED vs LSTM 32.3± 2.4 42.5± 2.6 25.2± 2.3 41.9± 2.2 36.8± 2.2 21.3± 1.9
VHRED vs HRED 42.0± 2.8 31.9± 2.6 26.2± 2.5 41.5± 2.8 29.4± 2.6 29.1± 2.6

VHRED vs TF-IDF 51.6± 3.3 17.9± 2.5 30.4± 3.0 47.9± 3.4 11.7± 2.2 40.3± 3.4

Table 2: Twitter examples for the neural network models. The � token indicates a change of turn.
Context Response

jamaica blood!! <url> ⌅ lol. yes [name]!. [name]! ⌅
what’s poppin in toronto homie

VHRED: nothing much. just chillin. what’s good with you?
LSTM: something!!!!!!!
HRED: something!!!!!!

whhhhhhyyyy is it suddenly cold in tallahassee today?? this
is florida! how can i dream of the beach when my fingers are
icey cold?? ⌅ sittin on deck in sun looking at lake travis in
austin! enjoying day b4 birthday

VHRED: the sun is shining!!!
LSTM: i know!!!!!!!!!
HRED: something!!!!!!!

reaches for [name]! ⌅ - approaches him warily - hey there
buddy. - swings him into the air - how you doin? ⌅ tilts his
head and your wariness and reaches for your face [name].

VHRED: - looks up at you and smiles - you’re so cute. - kisses your cheek -
LSTM: - smiles - i’m fine thank you. how are you?
HRED: - grins, looking at you as i look at you -

i think i want an ipad2. but i already have an ibook. want vs.
need. ⌅ if you have an ibook. then you deserve an ipad!

VHRED: that’s what i’m thinking. i’m going to buy a new one.
LSTM: i want one!!!!
HRED: i don’t know what to do with it. i don’t know what to do.

ah echt? dan anrtwoord ik volgende keer via twitter als je me
smst. ⌅ haha doe maar p. goed bezig hoor myrthe d ⌅
goed bezig? die snap ik even niet p

VHRED: haha, ik heb er geen zin in de something, maar ik heb er geen
something meer something
LSTM: haha something something something
HRED: something something something something something something
something something

i love katie waissel more than like, anything in life. ⌅ i
wanna c the show again! i need <number> meet her again! n
i want a b-day tweet nxt week doubt that will happen x

VHRED: me too. i’m going to have to wait for her to come back. i’m so
excited.
LSTM: i’m sure she will. i’m sure she’ll be fine.
HRED: i’m sure she’ll be fine, i’m sure she’ll be fine.

my math teacher over here talkn bout nickels nd i’m tryna
make big money i need to be in calculus ⌅ lol

VHRED: i need to go to the gym and get my hair done lol
LSTM: lol
HRED: how u been

LSTM baseline tends to output much more generic responses (see table 4); since it doesn’t model the202

hierarchical input structure, the LSTM model has a shorter-term memory, and thus must output a203

response based primarily on the end of the last utterance. Such ‘safe’ responses are reasonable for a204

wider range of contexts, meaning that human evaluators are more likely to rate them as appropriate.205

However, we argue that a model that only outputs generic responses is undesirable for dialogue,206

as this leads to uninteresting and less engaging conversations. Conversely, the VHRED model is207

explicitly designed for long contexts, and to output a diverse set of responses due to the sampling208

of the latent variable. Thus, the VHRED model generates longer sentences with more semantic209

content than the LSTM model (see tables 3-4). This can be ‘riskier’ as longer utterances are more210

likely to contain small mistakes, which can lead to lower human preference for a single utterance.211

However, we believe that response diversity is crucial to maintaining interesting conversations — in212

the dialogue literature, generic responses are used primarily as ‘back-off’ strategies in case the agent213

has no interesting response that is relevant to the context [25].214

The above hypotheses are confirmed upon qualitative assessment of the generated responses (table215

2). VHRED generates longer and more meaningful responses compared to the LSTM model, which216

generates mostly generic responses. Additionally, we observed that the VHRED model has learned217

to better model smilies, slang (see first example in table 2) and can even continue conversations218

in different languages (see fth example).3 Such aspects are not measured by the human study.219

Further, VHRED appears to be better at generating stories or imaginative actions compared to the220

generative baseline models (see third example). The last example in table 2 is a case where the221

VHRED generated response is more interesting, yet may be less prefered by humans as it is slightly222

incompatible with the context, compared to the generic LSTM response. In the next section, we back223

3There is a notable amount of Spanish and Dutch conversations in the corpus.

6

Other Fully-Observed Neural
Directed Graphical Models

33	

Neural Auto-Regressive Models

•  Decomposes	the	joint	of	a	fully	observed	
directed	model	in	terms	of	condi1onals	

•  Logis1c	auto-regressive:	(Frey	1997)	

•  First	neural	version:	(Bengio&Bengio	
NIPS’99)	

34	

x1	 x2	 x3	 x4	

P(x1)	 P(x2|x1)	
P(x3|x2	,x1)	P(x4|x3	,	x2	,x1)	

	

x1	 x2	 x3	 x4	

h1	

x1	 x2	 x3	 x4	

P(x1)	 P(x2|x1)	
P(x3|x2	,x1)	P(x4|x3	,	x2	,x1)	

	

h2	 h3	

NADE: Neural AutoRegressive Density
Estimator

•  Introduces	smart	sharing	
between	some	weights	so	that	
the	different	hidden	groups	
use	the	same	weights	to	the	
same	input	but	look	at	more	
and	more	of	the	inputs.	

35	

h1	

x1	 x2	 x3	 x4	

P(x1)	 P(x2|x1)	
P(x3|x2	,x1)	P(x4|x3	,	x2	,x1)	

	

h2	 h3	

W1	
W1	

W1	

W2	

W2	

W3	

(Larochelle	&	Murray	AISTATS	2011)		

Pixel RNNs

•  Similar	to	NADE	and	RNNs	
but	for	2-D	images	

•  Surprisingly	sharp	and	
realis1c	genera1on	

•  Gets	texture	right	but	not	
necessarily	global	structure	

36	

Pixel Recurrent Neural Networks

x1

xi

xn

xn2

Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: Illustration
of a Row LSTM with a kernel of size 3. The dependency field of
the Row LSTM does not reach pixels further away on the sides
of the image. Right: Illustration of the two directions of the Di-
agonal BiLSTM. The dependency field of the Diagonal BiLSTM
covers the entire available context in the image.

Figure 3. In the Diagonal BiLSTM, to allow for parallelization
along the diagonals, the input map is skewed by offseting each
row by one position with respect to the previous row. When the
spatial layer is computed left to right and column by column, the
output map is shifted back into the original size. The convolution
uses a kernel of size 2⇥ 1.

(2015); Uria et al. (2014)). By contrast we model p(x) as
a discrete distribution, with every conditional distribution
in Equation 2 being a multinomial that is modeled with a
softmax layer. Each channel variable xi,⇤ simply takes one
of 256 distinct values. The discrete distribution is represen-
tationally simple and has the advantage of being arbitrarily
multimodal without prior on the shape. Experimentally we
also find the discrete distribution to be easy to learn and
to produce better performance compared to a continuous
distribution (Section 5).

3. Pixel Recurrent Neural Networks

In this section we describe the architectural components
that compose the PixelRNN. In Sections 3.1 and 3.2, we
describe the two types of LSTM layers that use convolu-
tions to compute at once the states along one of the spatial
dimensions. In Section 3.3 we describe how to incorporate
residual connections to improve the training of a PixelRNN
with many LSTM layers. In Section 3.4 we describe the
softmax layer that computes the discrete joint distribution
of the colors and the masking technique that ensures the
proper conditioning scheme. In Section 3.5 we describe the
PixelCNN architecture. Finally in Section 3.6 we describe
the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes
the image row by row from top to bottom computing fea-
tures for a whole row at once; the computation is per-
formed with a one-dimensional convolution. For a pixel
xi the layer captures a roughly triangular context above the
pixel as shown in Figure 2 (center). The kernel of the one-
dimensional convolution has size k ⇥ 1 where k � 3; the
larger the value of k the broader the context that is captured.
The weight sharing in the convolution ensures translation
invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has
an input-to-state component and a recurrent state-to-state
component that together determine the four gates inside the
LSTM core. To enhance parallelization in the Row LSTM
the input-to-state component is first computed for the entire
two-dimensional input map; for this a k ⇥ 1 convolution is
used to follow the row-wise orientation of the LSTM itself.
The convolution is masked to include only the valid context
(see Section 3.4) and produces a tensor of size 4h⇥ n⇥ n,
representing the four gate vectors for each position in the
input map, where h is the number of features in the LSTM
layer.

To compute one step of the state-to-state component of
the LSTM layer, one is given the previous hidden and cell
states hi�1 and ci�1, each of size h ⇥ n ⇥ 1. The new
hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = �(Kss ~ hi�1 + K

is ~ xi)

ci = fi � ci�1 + ii � gi

hi = oi � tanh(ci)

(3)

where xi of size h ⇥ n ⇥ 1 is row i of the input map, and
~ represents the convolution operation and � the element-
wise multiplication. The weights K

ss and K

is are the
kernel weights for the state-to-state and the input-to-state
components, where the latter is precomputed as described
above. In the case of the output, forget and input gates
oi, fi and ii, the activation � is the logistic sigmoid func-
tion, whereas for the content gate gi, � is the tanh func-
tion. Each step computes at once the new state for an en-
tire row of the input map. Since the Row LSTM layer is
unidirectional, it is relatively fast, but it has a considerable
drawback. Due to its roughly triangular shape, the recep-
tive field induced by the layer misses a large portion of the
previously generated context corresponding to the areas on
either side of the current pixel. For example, for a value
of k = 3 for the state-to-state convolution, which we find
gives the best performance in the experiments, the recep-
tive field for the pixels near the center of the image misses
roughly half of the generated context (Figure 2).

Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the

(van	den	Oord	et	al	ICML	2016,	best	paper)	

Pixel Recurrent Neural Networks

occluded completions original occluded completions original

Figure 8. Image completions sampled from a model that was trained on 32x32 ImageNet images. Note that diversity of the completions
is high, which can be attributed to the log-likelihood loss function used in this generative model, as it encourages models with high
entropy. As these are sampled from the model, we can easily generate millions of different completions. It is also interesting to see that
textures such as water, wood and shrubbery are also inputed relative well (see Figure 1).

trained to model the raw RGB pixel values of images. We
treated the pixel values as discrete random variables by us-
ing a softmax layer in the conditional distributions. We em-
ployed masked convolutions to allow PixelRNNs to model
full dependencies between the color channels. We pro-
posed and evaluated architectural improvements in these
models resulting in PixelRNNs with up to 12 LSTM lay-
ers.

We have shown that the PixelRNNs significantly improve
the state of the art on the Binary MNIST and CIFAR-10
datasets. We also provide new benchmarks for generative
image modeling on the ImageNet dataset. Based on the
samples and completions drawn from the models we can
conclude that the PixelRNNs are able to model both spa-
tially local and long-range correlations and are able to pro-
duce images that are sharp and coherent. Given that these
models improve as we make them larger and that there is
practically unlimited data available to train on, more com-
putation and larger models are likely to further improve the
results.

Acknowledgements

The authors would like to thank Shakir Mohamed and Guil-
laume Desjardins for helpful input on this paper and Lu-
cas Theis, Alex Graves, Karen Simonyan, Lasse Espeholt,
Danilo Rezende, Karol Gregor and Ivo Danihelka for in-
sightful discussions.

References
Dinh, Laurent, Krueger, David, and Bengio, Yoshua.

NICE: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

Germain, Mathieu, Gregor, Karol, Murray, Iain, and
Larochelle, Hugo. MADE: Masked autoencoder for dis-
tribution estimation. arXiv preprint arXiv:1502.03509,
2015.

Graves, Alex. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex and Schmidhuber, Jürgen. Offline handwrit-
ing recognition with multidimensional recurrent neural
networks. In Advances in Neural Information Process-

ing Systems, 2009.

Gregor, Karol, Danihelka, Ivo, Mnih, Andriy, Blundell,
Charles, and Wierstra, Daan. Deep autoregressive net-
works. In Proceedings of the 31st International Confer-

ence on Machine Learning, 2014.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, and Wierstra,
Daan. DRAW: A recurrent neural network for image
generation. Proceedings of the 32nd International Con-

ference on Machine Learning, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 1997.

Kalchbrenner, Nal and Blunsom, Phil. Recurrent continu-
ous translation models. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Pro-

cessing, 2013.

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex.
Grid long short-term memory. arXiv preprint

arXiv:1507.01526, 2015.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Krizhevsky, Alex. Learning multiple layers of features
from tiny images. 2009.

Larochelle, Hugo and Murray, Iain. The neural autore-
gressive distribution estimator. The Journal of Machine

Learning Research, 2011.

Forward Computation of the Gradient

•  BPTT	does	not	seem	biologically	plausible	and	is	memory-
expensive	

•  RTRL	(Real-Time	Recurrent	Learning,	Williams	&	Zipser	1989,	Neural	Comp.)	

•  Prac1cally	useful:	online	learning,	no	need	to	store	all	the	past	
states	and	revisit	history	backwards	(which	is	biologically	weird)	

•  Compute	the	gradients	forward	in	1me,	rather	than	backwards	
•  Think	about	mul1plying	many	matrices	lew-to-right	vs	right-to-lew	

•  BUT	exact	computa1on	is	O(nhidden	x	nweights)	instead	of	
O(nweights),	to	recursively	compute	dh(t)/dW	ß	all	params	

•  Recently	proposed,	*approximate*	the	forward	gradient	using	an	
efficient	stochas1c	es1mator	(rank	1	es1mator	of	dh/dW	tensor)
(Training	recurrent	networks	online	without	backtracking,	Ollivier	et	al	arXiv:
1507.07680)	

	37	

Montreal	Ins<tute	for	
Learning	Algorithms	

