## MACHINE LEARNING WITH TORCH + AUTOGRAD

# ALEX WILTSCHKO RESEARCH ENGINEER TWITTER 

@AWILTSCH

MATERIAL DEVELOPED WITH SOUMITH CHINTALA HUGO LAROCHELLE RYAN ADAMS
LUKE ALONSO
CLEMENT FARABET

FIRST HALF:
TORCH BASICS \& OVERVIEW OF TRAINING NEURAL NETS

SECOND HALF:
AUTOMATICDIFFERENTIATION AND TORCH-AUTOGRAD


An array programming library for Lua, looks a lot like NumPy and Matlab

## WHAT IS

- Interactive scientific computing framework in Lua

Strings, numbers, tables - a tiny introduction
In [ ]: $\mathrm{a}=$ 'hello'

In [ ]: print(a)

In [ ]: $b=\{ \}$

In [ ]: $b[1]=a$

In [ ]: print(b)

In [ ]: b[2] = 30

In [ ]: for $i=1, \# b$ do -- the \# operator is the length operator in Lua print(b[i])
end

## WHAT IS : torch?

- 150+ Tensor functions
- Linear algebra
- Convolutions
- Tensor manipulation
- Narrow, index, mask, etc.
- Logical operators
- Fully documented: https://github.com/torch/torch7/tree/ master/doc


## WHAT IS itorch?

- Similar to Matlab / Python+Numpy



## $=$

0



## WHAT IS d torch ?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```
-- Scalar & tensor arithmetic
A = torch.eye(3)
b}=
c = 2
print(A*b - c)
    2 -2 -2
-2 2 -2
-2 -2 2
[torch.DoubleTensor of size 3\times3]
```

```
-- Max
print(torch.max(torch.FloatTensor{1,3,5}))
```

5

```
-- Clamp
torch.clamp(torch.range(0,4),0,2)
    0
1
2
2
[torch.DoubleTensor of size 5]
```


## WHAT IS d torch ?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```
-- Boolean fns
A = torch.range(1,5)
print(torch.le(A,3))
    1
    1
1
0
0
[torch.ByteTensor of size 5]
```


## WHAT IS d torch ?

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

## Special functions

```
-- Special functions
require 'cephes'
print(cephes.gamma(0.5))
1.7724538509055
print(cephes.atan2(3,1))
1.2490457723983
```

http://deepmind.github.io/torch-cephes/

## WHAT IS

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

```
-- Sampling from a distribution
require 'randomkit
a = torch.zeros(10000)
randomkit.negative_binomial(a,9,0.3)
```

```
Plot = require 'itorch.Plot
local p = Plot()
    :histogram(a,80,1,80)
    :title("Histogram of Draws From Negative Binomial")
    :draw();
```



Histogram of Draws From Negative Binomial


## WHAT IS

- Inline help

In [10]: ?torch.cmul
Out[10]: ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ [res] torch.cmul([res,] tensor1, tensor2)

Element-wise multiplication of tensor1 by tensor2
The number of elements must match, but sizes do not matter
> $\mathrm{x}=$ torch.Tensor(2, 2):fill(2)
$>y=$ torch.Tensor(4):fill(3)
$>x: c m u l(y)$
$>=x$
66
66
[torch. DoubleTensor of size $2 \times 2$ ]
$z=$ torch.cmul(x, y) returns a new Tensor
torch.cmul(z, $x, y)$ puts the result in $z$.
$\mathrm{y}: \mathrm{cmul}(\mathrm{x})$ multiplies all elements of y with corresponding elements of x .
z:cmul(x, y) puts the result in $\mathbf{z}$
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

## Good docs online <br> http://torch.ch/docs/

## WHAT IS ?torch ?

- Little language overhead compared to Python / Matlab
- JIT compilation via LuaJIT
- Fearlessly write for-loops

Code snippet from a core package
function NarrowTable:updateOutput(input) for $k, v$ in ipairs(self.output) do self.output[k] = nil end for $i=1$,self.length do
self.output[i] = input[self.offset+i-1] end return self.output
end

- Plain Lua is $\sim 10 \mathrm{kLOC}$ of C , small language


## LUA IS DESIGNED TO INTEROPERATE WITH C

FFI allows easy integration with $C$

- The "FFI" allows easy integration with C code
- Been copied by many languages (e.g. cffi in Python)
- No Cython/SWIG required to integrate C code
- Lua originally designed to be embedded!
- World of Warcraft
- Adobe Lightroom
- Redis
- nginx
- Lua originally chosen for embedded machine learning


## WHAT IS torch?

- Easy integration into and from C
- Example: using CuDNN functions

```
for g = 0, self.groups - 1 do
    errcheck('cudnnConvolutionForward', cudnn.getHandle(),
        one:data(),
        self.iDesc[0], input:data() + g*self.input_offset,
        self.weightDesc[0], self.weight:data() + g*self.weight_offset,
        self.convDesc[0], self.fwdAlgType[0],
        self.extraBuffer:data(), self.extraBufferSizeInBytes,
        zero:data(),
        self.oDesc[0], self.output:data() + g*self.output_offset);
```

end

## WHAT IS :torch?

## - Strong GPU support

## CUDA Tensors

Tensors can be moved onto GPU using the :cuda function

```
In [ ]: require 'cutorch';
    a = a:cuda()
    b = b:cuda()
    c = c:cuda()
    c:mm(a,b) -- done on GPU
```



Facebook AI Research


## Etsy Yandex

AMD 気 気

## element

MULTICORE SIIV WARE


## COMMUNITY

## Code for cutting edge models shows up for Torch very quickly

Szagoruyko／loadcaffe
く＞Code（1）Issues 10 § Pull requests 1 国 Wiki～Pulse｜ilı Graphs

Load Caffe networks in Torch7

## facebook／fb．resnet．torch

orch implementation of ResNet from http：／／arxiv．org／abs／1512．03385 and training scripts

## $\square$ Moodstocks／inception－v3．torch

O Watch－ $19 \star$ Unstar $203 \quad$ \＆Fork 69

| ＜＞Code | （1）Issues 1 | 8＇Pull requests 0 | 国 Wiki | $\uparrow$ Pulse | \＆lı Grap |
| :---: | :---: | :---: | :---: | :---: | :---: |

[^0]

Efficient Image Captioning code in Torch, runs on GPU

## NeuralTalk2

Recurrent Neural Network captions your images. Now much faster and better than the original NeuralTalk. Compared to the riginal NeuralTalk this implementation is batched, uses Torch, runs on a GPU, and supports CNN finetuning. All of thes ogether result in quite a large increase in training speed for the Language Model ( $\sim 100 \mathrm{x})$, but overall not as much because we also have to forward a VGGNet. However, overall very good models can be trained in 2-3 days, and they show a much better performance.
This is an early code release that works great but is slightly hastily released and probably requires some code reading of inline comments (which I tried to be quite good with in general). I will be improving it over time but wanted to push the code out there because I promised it to too many people.
This current code (and the pretrained model) gets $\sim 0.9$ CIDEr, which would place it around spot \#8 on the codalab eaderboard. I will submit the actual result soon.


You can find a few more example results on the demo page. These results will improve a bit more once the last few bells and whistles are in place (e.g. beam search, ensembling, reranking)

There's also a fun video by @kcimc, where he runs a neuraltalk2 pretrained model in real time on his laptop during a walk in Amsterdam.
4. jcjohnson / neural-style
$\overline{\text { «>Code }}$ © Issues 98 in Pull requests 12 Wiki \& Pulse Lill Graphs
Torch implementation of neural style algorithm

## neural-style

This is a torch implementation of the paper A Neural Algorithm of Arisistic Syyil by Leon A Gatys. Alexander S. Ecker, and
Mattrias Bethge.
The paper presents an algorithm for combining the content of one image with the stye of another image using convolutional
neural networks. Here's a a example that maps the aristicic style of The Stary Night onto a night-time photograph of the


Neural Conversational Model in Torch
This is an attempt at implementing Sequence to Sequence Learning with Neural Networks (seq2seq) and reproducing the results in A Neural Conversational Model (aka the Google chatbot).

The Google chatbot paper became famous after cleverly answering a few philosophical questions, such as:
Human: What is the purpose of living?
Machine: To live forever

## How it works

The model is based on two LSTM layers. One for encoding the input sentence into a "thought vector", and another for decoding that vector into a response. This model is called Sequence-to-sequence or seq2seq


Source: http://googleresearch.blogspot.ca/2015/11/computer-respond-to-this-email.html

# otorch community 

$\square$ soumith / dcgan.torch
«> Code © Issues 5 inPull requests o Wiki ヶPulse Lill Graphs Settings
A torch implementation of http://arxiv.org/abs/1511.06434 - Edit


## TORCH - WHERE DOES IT FIT?

How big is its ecosystem?
Smaller than Python for general data science
Strong for deep learning
Switching from Python to Lua can be smooth


## TORCH - WHERE DOES IT FIT?

Is it for research or production? It can be for both But mostly used for research.

## There is no silver bullet



## CORE PHILOSOPHY

- Interactive computing
- No compilation time
- Imperative programming
- Write code like you always did, not computation graphs in a "mini-language" or DSL
- Minimal abstraction
- Thinking linearly
- Maximal Flexibility
- No constraints on interfaces or classes


## TENSORS AND STORAGES

- Tensor = n-dimensional array
- Row-major in memory

Tensor


Storage
$\square$

## TENSORS AND STORAGES

- Tensor = n-dimensional array
- Row-major in memory


$$
\text { size: } 4 \times 6
$$ stride: $6 \times 1$

Storage
$\square$

## TENSORS AND STORAGES

- Tensor = n-dimensional array
- 1-indexed

Tensor


## TENSORS AND STORAGES

- Tensor = n-dimensional array
- Tensor: size, stride, storage, storageOffset

Tensor


## TENSORS AND STORAGES

- Tensor = n-dimensional array
- Tensor: size, stride, storage, storageOffset

Tensor

| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 2 | 3 | 4 | 5 | 6 |



Storage

## TENSORS AND STORAGES

In [1]: require 'torch';

In [2]: a = torch. DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory a:uniform() -- fills a with uniform noise with mean $=0$, stdv $=1$

In [3]: print(a)

| Out [3] $:$ | 0.4332 | 0.5716 | 0.5750 | 0.8167 | 0.1997 | 0.6187 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0.7775 | 0.3575 | 0.0749 | 0.4028 | 0.0532 | 0.4481 |
|  | 0.5088 | 0.1795 | 0.6948 | 0.5700 | 0.7679 | 0.6176 |
|  | 0.9225 | 0.7270 | 0.2223 | 0.1087 | 0.2717 | 0.8853 |
|  | [torch. DoubleTensor of size $4 \times 6$ ] |  |  |  |  |  |



Storage
$\square$

## TENSORS AND STORAGES

In [1]: require 'torch';

In [2]: a = torch.DoubleTensor(4, 6) -- DoubleTensor, uninitialized memory
a:uniform() -- fills a with uniform noise with mean $=0$, stdv $=1$

In [3]: print(a)
Out[3]: $0.43320 .5716 \quad 0.5750 \quad 0.8167 \quad 0.19970 .6187$
$\begin{array}{llllll}0.7775 & 0.3575 & 0.0749 & 0.4028 & 0.0532 & 0.4481\end{array}$
$\begin{array}{llllll}0.5088 & 0.1795 & 0.6948 & 0.5700 & 0.7679 & 0.6176\end{array}$
$\begin{array}{llllll}0.9225 & 0.7270 & 0.2223 & 0.1087 & 0.2717 & 0.8853\end{array}$
[torch.DoubleTensor of size 4x6]

In [4]: $\mathrm{b}=\mathrm{a}: \operatorname{select}(1,3)$

In [5]: print(b)
Out[5]: 0.5088
0.1795
0.6948
0.5700
0.7679
0.6176
[torch.DoubleTensor of size 6]

## TENSORS AND STORAGES

## Underlying storage is shared

```
In [6]: b:fill(3);
In [7]: print(b)
Out[7]: 3
    3
    3
    3
    3
    3
    [torch.DoubleTensor of size 6]
\begin{tabular}{lllllll} 
In [8]: & print(a) \\
Out [8]: & 0.4332 & 0.5716 & 0.5750 & 0.8167 & 0.1997 & 0.6187 \\
& 0.7775 & 0.3575 & 0.0749 & 0.4028 & 0.0532 & 0.4481 \\
& 3.0000 & 3.0000 & 3.0000 & 3.0000 & 3.0000 & 3.0000 \\
& 0.9225 & 0.7270 & 0.2223 & 0.1087 & 0.2717 & 0.8853
\end{tabular}
    [torch.DoubleTensor of size 4x6]
```


## TENSORS AND STORAGES

- GPU support for all operations:
- require 'cutorch'
- torch.CudaTensor = torch.FloatTensor on GPU
- Fully multi-GPU compatible

```
In [ ]: require 'cutorch'
    a = torch.CudaTensor(4, 6):uniform()
    b = a:select(1, 3)
    b:fill(3)
```


## TRAINING CYCLE

Moving parts


CIFAR SUMMER SCHOOL 2016

## TRAINING CYCLE threads



## THE NN PACKAGE



## THE NN PACKAGE

- nn: neural networks made easy
- building blocks of differentiable modules


## $\Rightarrow$ define a model with pre-normalization, to work on raw RGB images:

model:add( nn.SpatialConvolution(3,16,5,5) )
model:add ( nn.Tanh() )
model:add( nn.SpatialMaxPooling(2,2,2,2) )
model:add( nn.SpatialContrastiveNormalization(16, image.gaussian(3)) )
model:add( nn.SpatialConvolution(16,64,5,5) )
model:add (nn.Tanh() )
model:add (nn.SpatialMaxPooling(2,2,2,2) )
model:add( nn.SpatialContrastiveNormalization(64, image.gaussian(3)))
model:add( nn.SpatialConvolution(64,256,5,5) )
model:add ( nn.Tanh() )
model:add( nn.Reshape(256) )
model:add (nn.Linear(256,10))
model:add( nn.LogSoftMax() )


## THE NN PACKAGE

Compose networks like Lego blocks

nn.Parallel


## THE NN PACKAGE

$\Rightarrow$ When training neural nets, autoencoders, linear regression, convolutional networks, and any of these models, we're interested in gradients, and loss functions
$\Rightarrow$ The nn package provides a large set of transfer functions, which all come with three methods:

- upgradeOutput() -- compute the output given the input
$\Rightarrow$ upgradeGradInput() -- compute the derivative of the loss wrt input
- accGradParameters() -- compute the derivative of the loss wrt weights
$\Rightarrow$ The nn package provides a set of common loss functions, which all come with two methods:
- upgradeOutput() -- compute the output given the input
- upgradeGradInput() -- compute the derivative of the loss wrt input


## THE NN PACKAGE

## CUDA Backend via the cunn package

## require 'cunn'

```
-- define model
model = nn.Sequential()
model:add( nn.Linear(100,1000) )
model:add( nn.Tanh() )
model:add( nn.Linear(1000,10) )
model:add( nn.LogSoftMax() )
-- re-cast model as a CUDA mode
model:cuda()
-- define input as a CUDA Tensor
input = torch.CudaTensor(100)
-- compute model's output (is a CudaTensor as well)
output = model:forward(input)
-- alternative: convert an existing DoubleTensor to a CudaTensor:
input = torch.randn(100):cuda()
output = model:forward(input)
```


## THE NNGRAPH PACKAGE

## Graph composition using chaining

In [ ]: -- it is common style to mark inputs with identity nodes for clarity.
input $=$ nn.Identity()()
-- each hidden layer is achieved by connecting the previous one
-- here we define a single hidden layer network
h1 = nn.Tanh()(nn.Linear(20, 10)(input))
output $=$ nn.Linear (10, 1)(h1)
mlp $=$ nn.gModule(\{input\}, \{output\})
$\mathrm{x}=$ torch. $\mathrm{rand}(20)$
dx = torch.rand(1)
mlp:updateOutput(x)
mlp:updateGradInput(x, dx)
mlp:accGradParameters(x, dx)
-- draw graph (the forward graph, '.fg')
-- this will produce an SVG in the runtime directory
graph.dot(mlp.fg, 'MLP', 'MLP')
itorch.image('MLP.svg')

## ADVANCED NEURAL NETWORKS

- nngraph
- easy construction of complicated neural networks



## TORCH-AUTOGRAD BY

- Write imperative programs
- Backprop defined for every operation in the language

```
neuralNet = function(params, x, y)
    local h1 = t.tanh(x * params.W[1] + params.b[1])
    local h2 = t.tanh(h1 * params.W[2] + params.b[2])
    local yHat = h2 - t.log(t.sum(t.exp(h2)))
    local loss = - t.sum(t.cmul(yHat, y))
    return loss
end
-- gradients:
dneuralNet = grad(neuralNet)
-- some data:
x = t.randn(1,100)
y = t.Tensor(1,10):zero() y[1][3] = 1
-- compute loss and gradients wrt all parameters in params:
dparams, loss = dneuralNet(params, x, y)
```


## THE OPTIM PACKAGE



## THE OPTIM PACKAGE

- Stochastic Gradient Descent
- Averaged Stochastic Gradient Descent
- L-BFGS
- Congugate Gradients
- AdaDelta
- AdaGrad
- Adam
- AdaMax
- FISTA with backtracking line search
- Nesterov's Accelerated Gradient method
- RMSprop
- Rprop
- CMAES


## THE OPTIM PACKAGE

A purely functional view of the world

```
config = {
    learningRate = 1e-3,
    momentum = 0.5
}
for i, sample in ipairs(training_samples) do
    local func = function(x)
            -- define eval function
            return f, df_dx
        end
        optim.sgd(func, x, config)
end
```


## THE OPTIM PACKAGE

## Collecting the parameters of your neural net

- Substitute each module weights and biases by one large tensor, making weights and biases point to parts of this tensor



## TORCH AUTOGRAD

Industrial-strength, extremely flexible implementation of automatic differentiation, for all your crazy ideas

## TORCH AUTOGRAD

Industrial-strength, extremely flexible implementation of automatic differentiation, for all your crazy ideas
Inspired by the original Python autograd from Ryan Adams' HIPS group: github.com/hips/autograd
Props to:

- Dougal Maclaurin
- David Duvenaud
- Matt Johnson


## WE WORK ON TOP OF STABLE ABSTRACTIONS

We should take these for granted, to stay sane!

## Arrays


N. D. JOTWANI

Fundamentals of Programming with FORTRAN 77

## 5

Est: 1957

Linear Algebra

BLAS
LINPACK LAPACK

Est: 1979 (now on GitHub!)

Common
Subroutines



Est: 1984

## MACHINE LEARNING HAS OTHER ABSTRACTIONS

These assume all the other lower-level abstractions in scientific computing

All gradient-based optimization (that includes neural nets) relies on Automatic Differentiation (AD)
"Mechanically calculates derivatives as functions expressed as computer programs, at machine precision, and with complexity guarantees." (Barak Pearlmutter).

Not finite differences - generally bad numeric stability. We still use it as "gradcheck" though.
Not symbolic differentiation - no complexity guarantee. Symbolic derivatives of heavily nested functions (e.g. all neural nets) can quickly blow up in expression size.

## AUTOMATIC DIFFERENTIATION IS THE ABSTRACTION FOR GRADIENT-BASED ML

All gradient-based optimization (that includes neural nets) relies on Automatic Differentiation (AD)

- Rediscovered several times (Widrow and Lehr, 1990)
- Described and implemented for FORTRAN by Speelpenning in 1980 (although forward-mode variant that is less useful for ML described in 1964 by Wengert).
- Popularized in connectionist ML as "backpropagation" (Rumelhart et al, 1986)
- In use in nuclear science, computational fluid dynamics and atmospheric sciences (in fact, their AD tools are more sophisticated than ours!)


## AUTOMATIC DIFFERENTIATION IS THE ABSTRACTION FOR GRADIENT-BASED ML

All gradient-based optimization (that includes neural nets) relies on Reverse-Mode Automatic Differentiation (AD)

- Rediscovered several times (Widrow and Lehr, 1990)
- Described and implemented for FORTRAN by Speelpenning in 1980 (although forward-mode variant that is less useful for ML described in 1964 by Wengert).
- Popularized in connectionist ML as "backpropagation" (Rumelhart et al, 1986)
- In use in nuclear science, computational fluid dynamics and atmospheric sciences (in fact, their AD tools are more sophisticated than ours!)


## AUTOMATIC DIFFERENTIATION IS THE ABSTRACTION FOR GRADIENT-BASED ML

- Two main modes:
- Forward mode
- Reverse mode (backprop)

Different applications of the chain rule

## FORWARD MODE (SYMBOLIC VIEW)


$g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K}$
$h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M}$
cow
horse
dog

$\mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

$|\theta| \times J$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)\right.$


## FORWARD MODE (SYMBOLIC VIEW)


$g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K}$
$h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M}$
cow
horse II
dog

$\mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

## cat



## FORWARD MODE (SYMBOLIC VIEW)


$g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K}$
$h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M}$
cow
horse
dog
cat
$\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.$
$\mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$



## FORWARD MODE (SYMBOLIC VIEW)




## FORWARD MODE (SYMBOLIC VIEW)

$$
f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{J} \quad g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K} \quad h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M}
$$



Left to right: $O(|\theta| J K+|\theta| K M+|\theta| M)$


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

$$
a=3
$$

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

$$
a=3
$$

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

$$
a=3
$$

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

$$
a=3
$$

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
\[
a=3
\]
\[
b=2
\]
```

a=3

```
a=3
c=1
c=1
d = a * math.sin(b) = 2.728
```

d = a * math.sin(b) = 2.728

```
    else
        return \(a+b\) * \(c\)
    end
end
print(f(3,2,1))
2.727892280477
function \(f(a, b, c)\)
    if \(b>c\) then
        return \(a\) * math.sin(b) \(\quad b=2\)

\section*{FORWARD MODE (PROGRAM VIEW)}

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"
```

$$
a=3
$$

$$
b=2
$$

```
a=3
```

a=3
c=1
c=1
d = a * math.sin(b) = 2.728

```
d = a * math.sin(b) = 2.728
```

    else
        return \(a+b\) * \(c\)
    end
    end
print(f(3,2,1))
2.727892280477
function $f(a, b, c)$
if $b>c$ then
return $a$ * math.sin(b) $\quad b=2$

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
\[
a=3
\]
d = a * math.sin(b) = 2.728
```

function $f(a, b, c)$
if b > c then
return a * math.sin(b) b=2
else
return $a+b$ * $c$
end
end
print(f(3,2,1))
2.727892280477
return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
\[
a=3
\]
\[
a=3
\]
\(d=a *\) math \(\cdot \sin (b)=2.728\)
```

function $f(a, b, c)$
if b > c then
return $a$ * math.sin(b) $b=2$
else
return $a+b$ * $c$
end
end
print(f(3,2,1))
2.727892280477
return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
a=3
a=3
b = 2
d = a * math.sin(b) = 2.728
```

function $f(a, b, c)$
if $b>c$ then
return a * math.sin(b)
else
return $a+b$ * $c$
end
end
print(f( $3,2,1$ ))
2.727892280477
return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
a=3
b = 2
d = a * math.sin(b) = 2.728
```

function $f(a, b, c)$
if $b>c$ then
return a * math.sin(b)
else
return $a+b$ * $c$
end
end
print(f( $3,2,1$ ))
2.727892280477
return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"
function $f(a, b, c)$
if $b>c$ then
return a * math. $\sin (b) \quad b=2$
else
return $a+b$ * $c$
end
end
print(f( $3,2,1$ ))
2.727892280477

```
a=3
\[
a=3
\]
\[
\text { dada = } 1
\]
\[
b=2
\]
\[
\text { dbda }=0
\]
\[
c=1
\]
\[
d=a * \text { math } \cdot \sin (b)=2.728
\]
d = a * math.sin(b) = 2.728
```

return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"
function $f(a, b, c)$
if $b>c$ then
return a * math. $\sin (b) \quad b=2$
else
return $a+b$ * $c$
end
end
print(f(3,2,1))
2.727892280477

```
a=3
d = a * math.sin(b) = 2.728
\[
a=3
\]
dada \(=1\)
b \(=2\)
dbda \(=0\)
\(c=1\)
\(d=a *\) math \(\cdot \sin (b)=2.728\)
```

return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
a=3
```

$$
a=3
$$

$$
\text { dada }=1
$$

$$
b=2
$$

$$
\text { dbda = } 0
$$

$$
c=1
$$

$$
\mathrm{dcda}=0
$$

function $f(a, b, c)$
if $b>c$ then
return $a$ * math. $\sin (b) \quad b=2$
else
return $a+b$ * $c$
end
end
print(f( $3,2,1$ ))
2.727892280477
$d=a *$ math $\cdot \sin (b)=2.728$
return 2.728

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"
function $f(a, b, c)$
if $b>c$ then
return a * math.sin(b)

$$
b=2
$$

    else
        return \(a+b\) * \(c\)
    end
    $$
c=1
$$

end
print(f( $3,2,1$ ))
2.727892280477

$$
a=3
$$

else
return a + b * c end

## end

print(f(3,2,1))
2.727892280477
return 2.728

```
a=3
b = 2
```

```
\[
a=3
\]
```

$$
\text { dada }=1
$$

$$
b=2
$$

$$
\mathrm{dbda}=0
$$

$\mathrm{c}=1$
dcda $=0$

$$
d=a * \text { math } \cdot \sin (b)=2.728
$$

$$
d=a * \text { math } \cdot \sin (b)=2.728
$$

$d=a *$ math $\cdot \sin (b)=2.728$

## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

$$
b=2
$$

    else
        return \(a+b\) * \(c\)
    end
    print(f(3,2,1))
2.727892280477

$$
a=3
$$

return a * math.sin(b)
else
return a + b * c end

$$
c=1
$$

## end <br> end

print(f(3,2,1))
2.727892280477
return 2.728

```
a=3
b = 2
```

```
\[
d=a * \text { math } \cdot \sin (b)=2.728
\]
\[
\begin{aligned}
& a=3 \\
& \text { dada }=1 \\
& b=2 \\
& d b d a=0 \\
& c=1 \\
& d c d a=0 \\
& d=a * \text { math. } \sin (b)=2.728 \\
& \text { ddda }=\text { math. } \sin (b)=0.909
\end{aligned}
\]
```


## FORWARD MODE (PROGRAM VIEW)

Left-to-right evaluation of partial derivatives (not so great for optimization)
We can write the evaluation of a program in a sequence of operations, called a "trace", or a "Wengert list"

```
a=3
b = 2
```

```
\[
a=3
\]
```

$$
\text { dada }=1
$$

$$
b=2
$$

$$
\mathrm{dbda}=0
$$

$$
c=1
$$

$$
\text { dcda }=0
$$

$d=a *$ math $\cdot \sin (b)=2.728$
ddda $=$ math.sin(b) $=0.909$
return 0.909

$$
b=2
$$

    else
        return \(a+b\) * \(c\)
    end
    print(f(3,2,1))
2.727892280477

$$
a=3
$$

return a * math.sin(b)
else
return a + b * c end

## end <br> end

print(f(3,2,1))
2.727892280477

## REVERSE MODE (SYMBOLIC VIEW)

$f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{J} \quad g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K} \quad h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M} \quad \mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

cow
horse
dog
cat
$|\theta| \times J$

$\left[\frac{d \boldsymbol{f}}{d \theta}\right]$


## REVERSE MODE (SYMBOLIC VIEW)

$f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{J} \quad g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K} \quad h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M} \quad \mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

cow
horse $\square$
dog
cat
$|\theta| \times J$
$\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)\right.$


## REVERSE MODE (SYMBOLIC VIEW)

$f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{J} \quad g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K} \quad h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M} \quad \mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

cow
horse $\square$
dog
cat


## REVERSE MODE (SYMBOLIC VIEW)

$f_{\theta}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{J} \quad g: \mathbb{R}^{J} \rightarrow \mathbb{R}^{K} \quad h: \mathbb{R}^{K} \rightarrow \mathbb{R}^{M} \quad \mathcal{L}: \mathbb{R}^{M} \rightarrow \mathbb{R}$

$$
\frac{\partial}{\partial \theta} \mathcal{L}\left(h\left(g\left(f_{\theta}(x)\right)\right)=\left[\frac{d \boldsymbol{f}}{d \theta}\right]\left[\frac{d \boldsymbol{g}}{d \boldsymbol{f}}\right]\left[\frac{d \boldsymbol{h}}{d \boldsymbol{g}}\right]\left[\frac{d \mathcal{L}}{d \boldsymbol{h}}\right]\right.
$$

cow
horse
dog
cat


REVERSE MODE (SYMBOLIC VIEW)


Right to left:
$O(K M+J K+\theta J)$


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then 
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then 
        return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then 
        return a * math.sin(b) b=2
    else
        return a + b * c c=1
    end
end
print(f(3,2,1))
2.727892280477
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

```
a = 3
b = 2
c=1
d = a * math.sin(b) = 2.728
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b=2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

```
a = 3
c=1
d = a * math.sin(b) = 2.728
return 2.728
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b=2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

```
a = 3
c=1
d = a * math.sin(b) = 2.728
return 2.728
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b=2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

```
a = 3
c=1
d = a * math.sin(b) = 2.728
return 2.728
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then 
        return a * math.sin(b) b=2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

```
a = 3
    a = 3
c=1
d = a * math.sin(b) = 2.728
return 2.728
```


## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then 
    return a * math.sin(b) b=2
```

$c=1$
$d=a *$ math. $\sin (b)=2.728$
return 2.728

## REVERSE MODE (PROGRAM VIEW)

Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
    return a * math.sin(b) b = 2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

$a=3$
$b=2$

$$
\begin{aligned}
& a=3 \\
& b=2 \\
& c=1
\end{aligned}
$$

$$
c=1
$$

$d=a$ * math. $\sin (b)=2.728$
return 2.728

## REVERSE MODE (PROGRAM VIEW)

## Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

$a=3$
$a=3$
$b=2$
$b=2$
$c=1$
$c=1$
$d=a *$ math. $\sin (b)=2.728$
$\mathrm{d}=\mathrm{a}$ * math. $\sin (\mathrm{b})=2.728$

## REVERSE MODE (PROGRAM VIEW)

## Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b) b=2
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

$a=3$
$a=3$
$b=2$
$c=1$
$c=1$
$d=a *$ math. $\sin (b)=2.728$
return 2.728
$d=a *$ math. $\sin (b)=2.728$
dddd = 1

## REVERSE MODE (PROGRAM VIEW)

## Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

$a=3$
$b=2$
$c=1$
$d=a$ * math. $\sin (b)=2.728$
return 2.728

```
a = 3
b=2
c=1
d = a * math.sin(b) = 2.728
dddd = 1
ddda = dd * math.sin(b) = 0.909
```


## REVERSE MODE (PROGRAM VIEW)

## Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

```
function f(a,b,c)
    if b > c then
        return a * math.sin(b)
    else
        return a + b * c
    end
end
print(f(3,2,1))
2.727892280477
```

$a=3$
$b=2$
$c=1$
$d=a *$ math. $\sin (b)=2.728$
return 2.728

```
a = 3
b=2
c=1
d = a * math.sin(b) = 2.728
dddd = 1
ddda = dd * math.sin(b) = 0.909
return 0.909, 2.728
```


## A trainable

 neural network in torch-autogradAny numeric function can go here

These two fn's are split only for clarity

This is the API ->

This is a how the parameters are updated
torch = require 'torch'
params = \{
W = \{torch. randn $(64 * 64,50)$, torch. $\operatorname{randn}(50,4)\}$,
b $=$ \{torch. $\operatorname{randn}(64 * 64)$, torch. $\operatorname{randn(4)\} }$
\}
function neuralNetwork(params, image)
local h1 = torch.tanh(image*params.W[1] + params.b[1])
local h2 = torch.tanh(h1*params.W[2] + params.b[2])
return torch. $\log$ (torch. sum(torch. $\exp (\mathrm{h} 2)$ ))
end
function loss(params, image, trueLabel)
local prediction = neuraWetwork(params, image)
return torch.sum(torch. pow(prediction-trueLabel,2))
end
grad $=$ require 'autograd'
dloss = grad(loss)
for _, datapoint in dataset() do
-- Calculate our gradients
local gradients = dloss(params, datapoint.image, datapoint.label)
-- Update parameters
for $\mathbf{i = 1}$,\#params.W do
params.W[i] = params.W[i] - 0.01*gradients.W[i]
params.b[i] = params.b[i] - 0.01*gradients.b[i]
end
end

## A trainable

 neural network in torch-autogradAny numeric function can go here

These two fn's are split only for clarity $\quad 16$15
torch $=$ require 'torch'
params = \{
W = \{torch. randn $(64 * 64,50)$, torch. randn $(50,4)\}$,
b $=$ \{torch. randn $(64 * 64)$, torch. randn(4) \}
\}
function neuralNetwork(params, image)
local h1 = torch.tanh(image*params.W[1] + params.b[1])
local h2 = torch.tanh(h1*params.W[2] + params.b[2])
return torch. log(torch.sum(torch.exp(h2)))
end
function loss(params, image, trueLabel)
local prediction = neuraWetwork(params, image)
return torch.sum(torch. pow(prediction-trueLabel,2))
end

## This is the API ->

```
grad = require 'autograd'
dloss = grad(loss)
for _,datapoint in dataset() do
    -- Calculate our gradients
    local gradients = dloss(params, datapoint.image, datapoint.label)
    -- Update parameters
    for i=1,#params.W do
        params.W[i] = params.W[i] - 0.01*gradients.W[i]
        params.b[i] = params.b[i] - 0.01*gradients.b[i]
        end
    end
```


## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch. randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```


target

日 b
input

## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch. randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```



## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch.randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```



## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch. randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```


## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch. randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```


## WHAT'S ACTUALLY HAPPENING?

As torch code is run, we build up a compute graph

```
params = {W=torch. randn(4,4),b=torch. randn(4)}
    input = torch.randn(4)
    target = torch.randn(4)
    function simpleFn(params, input, target)
    local h1 = params.W*input
    local h2 = h1 + params.b
    local h3 = h2 - target
    local h4 = torch.pow(h3,2)
    local h5 = torch.sum(h4)
    return h5
    end
```


## WE TRACK COMPUTATION VIA OPERATOR OVERLOADING

Linked list of computation forms a "tape" of computation
18

```
```

```
1 local origSum = torch.sum
```

```
1 local origSum = torch.sum
    torch.sum = function(arg)
    torch.sum = function(arg)
        -- Check if the argument has been used before in an overloaded function
        -- Check if the argument has been used before in an overloaded function
        if not isNodeType(arg) then
        if not isNodeType(arg) then
            return origSum(arg)
            return origSum(arg)
        else
        else
            -- Run the function
            -- Run the function
            local outputVal = origSum(unpackNode(arg))
            local outputVal = origSum(unpackNode(arg))
            -- Build a data structure that will track computaiton via linked list
            -- Build a data structure that will track computaiton via linked list
            local outputNode = {fn=origSum,parent=arg,val=outputVal}
            local outputNode = {fn=origSum,parent=arg,val=outputVal}
        end
        end
    end
    end
    -- Now overload all other numeric functions...
    -- Now overload all other numeric functions...
    -- sin,cos,tan,sinh,cosh,tanh,add,sub,mul,div,pow
    -- sin,cos,tan,sinh,cosh,tanh,add,sub,mul,div,pow
```

18 -- select,narrow, size,new, zeros, ...

```
```

18 -- select,narrow, size,new, zeros, ...

```

\section*{CALCULATING THE GRADIENT}

When it comes time to evaluate partial derivatives, we just have to look up the partial derivatives from a table in reverse order on the tape


\section*{WHAT'S ACTUALLY HAPPENING?}

When it comes time to evaluate partial derivatives, we just have to look up the partial derivatives from a table


We can then calculate the derivative of the loss w.r.t. inputs via the chain rule!

\section*{AUTOGRAD EXAMPLES}

Autograd gives you derivatives of numeric code, without a special mini-language
```

-- Arithmetic is no problem
grad = require 'autograd'
function f(a,b,c)
return a + b * c
end
df = grad(f)
da, val = df(3.5, 2.1, 1.1)
print("Value: "..val)
print("Gradient: "..da)

```

Value: 5.81
Gradient: 1

\section*{AUTOGRAD EXAMPLES}

Control flow, like if-statements, are handled seamlessly
```

-- If statements are no problem
grad = require 'autograd'
function f(a,b,c)
if b > c then
return a * math.sin(b)
else
return a + b * c
end
end
g = grad(f)
da, val = g(3.5, 2.1, 1.1)
print("Value: "..val)
print("Gradient: "..da)

```

Value: 3.0212327832711
Gradient: 0.86320936664887

\section*{AUTOGRAD EXAMPLES}

Scalars are good for demonstration, but autograd is most often used with tensor types
```

-- Of course, works with tensors
grad = require 'autograd'
function f(a,b,c)
if torch.sum(b) > torch.sum(c) then
return torch.sum(torch.cmul(a,torch.sin(b)))
else
return torch.sum(a + torch.cmul(b,c))
end
end
g = grad(f)
a = torch.randn(3,3)
b = torch.eye(3,3)
c = torch.randn(3,3)
da, val = g(a,b,c)
print("Value: "..val)
print("Gradient: ")
print(da)
Value: 0.40072414956087
Gradient:
0.8415 0.0000 0.0000
0.0000 0.8415 0.0000
0.0000 0.0000 0.8415
[torch.DoubleTensor of size 3x3]

```

\section*{AUTOGRAD EXAMPLES}

Autograd shines if you have dynamic compute graphs
```

-- Autograd for loop
function f(a,b)
for i=1,b do
a = a*a
end
return a
end
g = grad(f)
da, val = g(3,2)
print("Value: "..val)
print("Gradient: "..da)

```
Value: 81
Gradient: 108

\section*{AUTOGRAD EXAMPLES}

Recursion is no problem.
Write numeric code as you ordinarily would, autograd handles the gradients
```

-- Autograd recursive function
function f(a,b)
if b == 0 then
return a
else
return f(a*a,b-1)
end
end
g = grad(f)
da, val = g(3,2)
print("Value: "..val)
print("Gradient: "..da)

```

Value: 81
Gradient: 108

\section*{AUTOGRAD EXAMPLES}

Need new or tweaked partial derivatives? Not a problem.
```

-- New ops aren't a problem
function f(a)
return torch.sum(torch.floor(torch.pow(a,3)))
end
g = grad(f)
da, val = g(torch.eye(3))
print("Value: "..val)
print("Gradient:")
print(da)

```
Value: 3
Gradient:
    000
    000
    \(0 \quad 0 \quad 0\)
[torch.DoubleTensor of size 3x3]

\section*{AUTOGRAD EXAMPLES}

Need new or tweaked partial derivatives? Not a problem.
```

_- New ops aren't a problem
grad = require 'autograd'
special = {}
special.floor = function(x) return torch.floor(x) end
-- Overload our new mini-module, called "special"
grad.overload.module("special",special,function(module)
-- Define a gradient for the member function "floor"
module.gradient("floor", {
-- Here's our new partial derivative
-- (if we had two arguments,
-- we'd define two functions)
function(g,ans,x)
return g
end
})
end)

```

\section*{AUTOGRAD EXAMPLES}

Need new or tweaked partial derivatives? Not a problem.
```

function f(a)
return torch.sum(special.floor(torch.pow(a,3)))
end
g = grad(f)
da, val = g(torch.eye(3))
print("Value: "..val)
print("Gradient:")
print(da)

```
Value: 3
Gradient:
    300
    030
    \(0 \quad 0 \quad 3\)
[torch.DoubleTensor of size 3x3]

\section*{SO WHAT DIFFERENTIATES N.NET LIBRARIES?}

The granularity at which they implement autodiff ...

scikit-learn


Torch NN cuda-convnet

Lasagne


CIFAR SUMMER SCHOOL 2016

\section*{SO WHAT DIFFERENTIATES N.NET LIBRARIES?}
... which is set by the partial derivatives they define

scikit-learn
Torch NN cuda-convnet Lasagne

We want no limits on the models we can write


Why can't we mix these styles?

\section*{NEURAL NET THREE WAYS}

\section*{The most granular - using individual Torch functions}
```

-- Define our parameters
local W1 = torch.FloatTensor(784,50):uniform(-1/math.sqrt(50),1/math.sqrt(50))
local B1 = torch.FloatTensor(50):fill(0)
local W2 = torch.FloatTensor(50,50):uniform(-1/math.sqrt(50),1/math.sqrt(50))
local B2 = torch.FloatTensor(50):fill(0)
local W3 = torch.FloatTensor(50,\#classes):uniform(-1/math.sqrt(\#classes),1/math.sqrt(\#classes))
local B3 = torch.FloatTensor(\#classes):fill(0)
local params = {
W = {W1, W2, W3},
B = {B1, B2, B3},
}
-- Define our neural net
local function mlp(params, input, target)
local h1 = torch.tanh(input * params.W[1] + params.B[1])
local h2 = torch.tanh(h1 * params.W[2] + params.B[2])
local h3 = h2 * params.W[3] + params.B[3]
local prediction = autograd.util.logSoftMax(h3)
local loss = autograd.loss.logMultinomialLoss(prediction, target)
return loss, prediction
end

```


\section*{NEURAL NET THREE WAYS}

Composing pre-existing NN layers. If we need layers that have been highly optimized, this is good
```

-- Define our layers and their parameters
local params = {}
local linear1, linear2, linear3, acts1, acts2, lsm, lossf
linear1, params.linear1 = autograd.nn.Linear(784, 50)
acts1 = autograd.nn.Tanh()
linear2,params.linear2 = autograd.nn.Linear(50, 50)
acts2 = autograd.nn.Tanh()
linear3, params.linear3 = autograd.nn.Linear(50,\#classes)
lsm = autograd.nn.LogSoftMax()
lossf = autograd.nn.ClassNLLCriterion()
-- Tie it all together
local function mlp(params)
local h1 = acts1(linear1(params.linear1, params.x))
local h2 = acts2(linear2(params.linear2, h1))
local h3 = linear3(params.linear3, h2)
local prediction = lsm(h3)
local loss = lossf(prediction, target)
return loss, prediction
end

```


\section*{NEURAL NET THREE WAYS}

We can also compose entire networks together (e.g. image captioning, GANs)
```

-- Grab the neural network all at once
local f,params = autograd.model.NeuralNetwork({
inputFeatures = 784
hiddenFeatures = {50,\#classes},
classifier = true,
})
lsm = autograd.nn.LogSoftMax()
lossf = autograd.nn.ClassNLLCriterion()
-- Link the model and the loss
local loss = function(params, input, target)
local prediction = lsm(f(params, input))
local loss = lossf(prediction,target)
return loss,prediction
end

```


\section*{IMPACT AT TWITTER}

\section*{Prototyping without fear}
- We try crazier, potentially high-payoff ideas more often, because autograd makes it essentially free to do so (can write "regular" numeric code, and automagically pass gradients through it)
- We use weird losses in production: large classification model uses a loss computed over a tree of class taxonomies
- Models trained with autograd running on large amounts of media at Twitter
- Often "fast enough", no penalty at test time
- "Optimized mode" is nearly a compiler, but still a work in progress

\section*{OTHER AUTODIFF IDEAS}

Making their way from atmospheric science (and others) to machine learning
- Checkpointing - don't save all of the intermediate values. Recompute them when you need them (memory savings, potentially speedup if compute is faster than load/store, possibly good with pointwise functions like ReLU). MXNet I think first to implement this generally for neural nets.
- Mixing forward and reverse mode - called "cross-country elimination". No need to evaluate partial derivatives in one direction! For diamond or hour-glass shaped compute graphs, this will be more efficient than one method alone.
- Stencils - image processing (convolutions) and element-wise ufuncs can be phrased as stencil operations. More efficient, general-purpose implementations of differentiable stencils needed (computer graphics do this, Guenter 2007, extending with DeVito et al., 2016).
- Source-to-source - All neural net autodiff packages use either ahead-of-time compute graph construction, or operator-overloading. The original method for autodiff (in FORTRAN, in the 80s) was source transformation. I believe still gold-standard for performance. Challenge (besides wrestling with host language) is control flow.
- Higher-order gradients - hessian \(=\operatorname{grad}(\operatorname{grad}(f))\). Not many efficient implementations. Fully closed versions in e.g. autograd, DiffSharp, Hype.

\section*{YOU SHOULD BE USING IT}

It's easy to try
```


# \# Install anaconda if you don't have it (instructions here for OS X)

2
wget http://repo.continuum.io/miniconda/Miniconda-latest-Mac0SX-x86_64.sh
sh Miniconda-latest-MacOSX-x86_64.sh -b -p \$HOME/anaconda
\# Add anaconda to your $PATH
    export PATH=$HOME/anaconda/bin:\$PATH
\# Install Lua \& Torch
conda install lua=5.2 lua-science -c alexbw
10
11 \# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
12 \# 2.0 is LuaJIT

```

\section*{YOU SHOULD BE USING IT}

It's easy to try
- Anaconda is the de-facto distribution for scientific Python.
- Works with Lua \& Luarocks now.
- https://github.com/alexbw/conda-lua-recipes
4
7
10
11
1 2
```

```
```


# \# Install anaconda if you don't have it (instructions here for OS X)

```
```


# \# Install anaconda if you don't have it (instructions here for OS X)

2 wget http://repo.continuum.io/miniconda/Miniconda-latest-Mac0SX-x86_64.sh
2 wget http://repo.continuum.io/miniconda/Miniconda-latest-Mac0SX-x86_64.sh
3 sh Miniconda-latest-MacOSX-x86_64.sh -b -p \$HOME/anaconda
3 sh Miniconda-latest-MacOSX-x86_64.sh -b -p \$HOME/anaconda

# \# Add anaconda to your \$PATH

# \# Add anaconda to your \$PATH

6 export PATH=$HOME/anaconda/bin:$PATH
6 export PATH=$HOME/anaconda/bin:$PATH

# \# Install Lua \& Torch

# \# Install Lua \& Torch

9 conda install lua=5.2 lua-science -c alexbw
9 conda install lua=5.2 lua-science -c alexbw

```
# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
```


# Available versions of Lua: 2.0, 5.1, 5.2, 5.3

# 2.0 is LuaJIT

```
# 2.0 is LuaJIT
```


## YOU SHOULD BE USING IT

It's easy to try

- Anaconda is the de-facto distribution for scientific Python.
- Works with Lua \& Luarocks now.
- https://github.com/alexbw/conda-lua-recipes

```
1 # Install anaconda if you don't have it (instructions here for OS X)
2 wget http://repo.continuum.io/miniconda/Miniconda-latest-MacOSX-x86_64.sh
3 sh Miniconda-latest-MacOSX-x86_64.sh -b -p $HOME/anaconda
4
5 # Add anaconda to your $PATH
6 export PATH=$HOME/anaconda/bin:$PATH
# # Install Lua & Torch
9 conda install lua=5.2 lua-science -c alexbw
10
# Available versions of Lua: 2.0, 5.1, 5.2, 5.3
12 # 2.0 is LuaJIT
```


## PRACTICAL SESSION

We'll work through (all in an iTorch notebook)

- Torch basics
- Running code on the GPU
- Training a CNN on CIFAR-10
- Using autograd to train neural networks

We have an autograd Slack team: http://autograd.herokuapp.com/
Join \#summerschool channel

## QUESTIONS?

Happy to help at the practical session
Find me at:
@awiltsch
awiltschko@twitter.com
github.com/alexbw


[^0]:    Rethinking the Inception Architecture for Computer Vision http：／／arxiv．org／abs／1512．00567

