
C I FA R S U M M E R S C H O O L 2 0 1 6

M A C H I N E L E A R N I N G
W I T H

T O R C H + A U T O G R A D

C I FA R S U M M E R S C H O O L 2 0 1 6

@ AW I LT S C H

A L E X W I LT S C H KO
R E S E A R C H E N G I N E E R
T W I T T E R

C I FA R S U M M E R S C H O O L 2 0 1 6

M AT E R I A L D E V E L O P E D W I T H

S O U M I T H C H I N TA L A
H U G O L A R O C H E L L E
R YA N A DA M S
L U K E A L O N S O
C L E M E N T FA R A B E T

C I FA R S U M M E R S C H O O L 2 0 1 6

F I R S T H A L F :

T O R C H B A S I C S & O V E R V I E W  
O F T R A I N I N G N E U R A L N E T S
S E C O N D H A L F :

A U T O M AT I C D I F F E R E N T I AT I O N  
A N D T O R C H - A U T O G R A D

C I FA R S U M M E R S C H O O L 2 0 1 6

An array programming library for Lua, looks a lot like NumPy and Matlab

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT IS ?
• Interactive scientific computing framework in Lua

C I FA R S U M M E R S C H O O L 2 0 1 6

• 150+ Tensor functions
• Linear algebra
• Convolutions
• Tensor manipulation

• Narrow, index, mask, etc.
• Logical operators

• Fully documented: https://github.com/torch/torch7/tree/
master/doc

WHAT IS ?

https://github.com/torch/torch7/tree/master/doc

C I FA R S U M M E R S C H O O L 2 0 1 6

• Similar to Matlab / Python+Numpy

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT IS ?
Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

C I FA R S U M M E R S C H O O L 2 0 1 6

http://deepmind.github.io/torch-cephes/

Special functions

WHAT IS ?
Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT IS ?
Lots of functions that can operate on tensors, all the basics, slicing, BLAS, LAPACK, cephes, rand

C I FA R S U M M E R S C H O O L 2 0 1 6

• Inline help

Good docs online

http://torch.ch/docs/

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

• Little language overhead compared to Python /
Matlab

• JIT compilation via LuaJIT

• Fearlessly write for-loops
Code snippet from a core package

• Plain Lua is ~10kLOC of C, small language

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

LUA IS DESIGNED TO INTEROPERATE WITH C
FFI allows easy integration with C

• The "FFI" allows easy integration with C code

• Been copied by many languages (e.g. cffi in Python)

• No Cython/SWIG required to integrate C code

• Lua originally designed to be embedded!

• World of Warcraft

• Adobe Lightroom

• Redis

• nginx

• Lua originally chosen for embedded machine learning

C I FA R S U M M E R S C H O O L 2 0 1 6

• Easy integration into and from C

• Example: using CuDNN functions

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

• Strong GPU support

WHAT IS ?

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

Code for cutting edge models shows up for Torch very quickly

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

C I FA R S U M M E R S C H O O L 2 0 1 6

COMMUNITY

C I FA R S U M M E R S C H O O L 2 0 1 6

TORCH - WHERE DOES IT FIT?
How big is its ecosystem?

Smaller than Python for general data science

Strong for deep learning

Switching from Python to Lua can be smooth

C I FA R S U M M E R S C H O O L 2 0 1 6

TORCH - WHERE DOES IT FIT?
Is it for research or production? It can be for both
But mostly used for research.

There is no silver bullet

Slide credit: Yangqing Jia

Industry:
Stability
Scale & speed
Data Integration
Relatively Fixed

Research: 
Flexible

Fast Iteration
Debuggable

Relatively bare bone

Caffe

Torch

Theano

TensorFlowD4J etc.

Neon

C I FA R S U M M E R S C H O O L 2 0 1 6

CORE PHILOSOPHY
• Interactive computing

• No compilation time

• Imperative programming

• Write code like you always did, not computation graphs
in a "mini-language" or DSL

• Minimal abstraction
• Thinking linearly

• Maximal Flexibility
• No constraints on interfaces or classes

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• Tensor = n-dimensional array

• Row-major in memory

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• Tensor = n-dimensional array

• Row-major in memory

size: 4 x 6
stride: 6 x 1

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• Tensor = n-dimensional array

• 1-indexed

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• Tensor = n-dimensional array

• Tensor: size, stride, storage, storageOffset

Size: 6
Stride: 1
Offset:13

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• Tensor = n-dimensional array

• Tensor: size, stride, storage, storageOffset

Size: 4
Stride: 6
Offset: 3

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

Underlying storage is shared

C I FA R S U M M E R S C H O O L 2 0 1 6

TENSORS AND
STORAGES

• GPU support for all operations:

• require ‘cutorch’

• torch.CudaTensor = torch.FloatTensor on GPU

• Fully multi-GPU compatible

C I FA R S U M M E R S C H O O L 2 0 1 6

TRAINING CYCLE
Moving parts

C I FA R S U M M E R S C H O O L 2 0 1 6

TRAINING CYCLE
threads

nn

nn

optim

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NN PACKAGE

threads

nn

nn

optim

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NN PACKAGE
• nn: neural networks made easy
• building blocks of differentiable modules

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NN PACKAGE

Compose networks
like Lego blocks

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NN PACKAGE

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NN PACKAGE
CUDA Backend via the cunn package
require 'cunn'

C I FA R S U M M E R S C H O O L 2 0 1 6

THE NNGRAPH
PACKAGE

Graph composition using chaining

C I FA R S U M M E R S C H O O L 2 0 1 6

ADVANCED NEURAL
NETWORKS

• nngraph
• easy construction of complicated neural networks

C I FA R S U M M E R S C H O O L 2 0 1 6

TORCH-AUTOGRAD BY
• Write imperative programs
• Backprop defined for every operation in the language

C I FA R S U M M E R S C H O O L 2 0 1 6

THE OPTIM PACKAGE

threads

nn

nn

optim

C I FA R S U M M E R S C H O O L 2 0 1 6

THE OPTIM PACKAGE

C I FA R S U M M E R S C H O O L 2 0 1 6

THE OPTIM PACKAGE
A purely functional view of the world

C I FA R S U M M E R S C H O O L 2 0 1 6

THE OPTIM PACKAGE
Collecting the parameters of your neural net

• Substitute each module weights and biases by one large tensor, making weights and biases
point to parts of this tensor

C I FA R S U M M E R S C H O O L 2 0 1 6

TORCH AUTOGRAD
Industrial-strength, extremely flexible implementation of automatic differentiation, 
for all your crazy ideas

C I FA R S U M M E R S C H O O L 2 0 1 6

TORCH AUTOGRAD
Industrial-strength, extremely flexible implementation of automatic differentiation, 
for all your crazy ideas
Inspired by the original Python autograd from Ryan Adams' HIPS group: github.com/hips/autograd

Props to:

 — Dougal Maclaurin

 — David Duvenaud

 — Matt Johnson

http://github.com/hips/autograd

C I FA R S U M M E R S C H O O L 2 0 1 6

We should take these for granted, to stay sane!

BLAS
LINPACK
LAPACK

Est: 1957 Est: 1979
(now on GitHub!) Est: 1984

Arrays Linear Algebra
Common
Subroutines

WE WORK ON TOP OF STABLE ABSTRACTIONS

C I FA R S U M M E R S C H O O L 2 0 1 6

All gradient-based optimization (that includes neural nets)
relies on Automatic Differentiation (AD)

"Mechanically calculates derivatives as functions
expressed as computer programs, at machine precision,
and with complexity guarantees." (Barak Pearlmutter).

Not finite differences — generally bad numeric stability. We still use it
as "gradcheck" though.
Not symbolic differentiation — no complexity guarantee. Symbolic
derivatives of heavily nested functions (e.g. all neural nets) can
quickly blow up in expression size.

These assume all the other lower-level abstractions in scientific computing
MACHINE LEARNING HAS OTHER ABSTRACTIONS

C I FA R S U M M E R S C H O O L 2 0 1 6

All gradient-based optimization (that includes neural nets)
relies on Automatic Differentiation (AD)

• Rediscovered several times (Widrow and Lehr, 1990)
• Described and implemented for FORTRAN by Speelpenning

in 1980 (although forward-mode variant that is less useful for
ML described in 1964 by Wengert).

• Popularized in connectionist ML as
"backpropagation" (Rumelhart et al, 1986)

• In use in nuclear science, computational fluid dynamics and
atmospheric sciences (in fact, their AD tools are more
sophisticated than ours!)

AUTOMATIC DIFFERENTIATION IS THE  
ABSTRACTION FOR GRADIENT-BASED ML

C I FA R S U M M E R S C H O O L 2 0 1 6

• Rediscovered several times (Widrow and Lehr, 1990)
• Described and implemented for FORTRAN by Speelpenning

in 1980 (although forward-mode variant that is less useful for
ML described in 1964 by Wengert).

• Popularized in connectionist ML as
"backpropagation" (Rumelhart et al, 1986)

• In use in nuclear science, computational fluid dynamics and
atmospheric sciences (in fact, their AD tools are more
sophisticated than ours!)

All gradient-based optimization (that includes neural nets)
relies on Reverse-Mode Automatic Differentiation (AD)

AUTOMATIC DIFFERENTIATION IS THE  
ABSTRACTION FOR GRADIENT-BASED ML

C I FA R S U M M E R S C H O O L 2 0 1 6

• Two main modes:
• Forward mode
• Reverse mode (backprop)

Different applications of the chain rule

AUTOMATIC DIFFERENTIATION IS THE  
ABSTRACTION FOR GRADIENT-BASED ML

FORWARD MODE (SYMBOLIC VIEW)

FORWARD MODE (SYMBOLIC VIEW)

FORWARD MODE (SYMBOLIC VIEW)

FORWARD MODE (SYMBOLIC VIEW)

Left to right:

FORWARD MODE (SYMBOLIC VIEW)

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

c = 1

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

c = 1

dcda = 0

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

c = 1

dcda = 0

d = a * math.sin(b) = 2.728

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

c = 1

dcda = 0

d = a * math.sin(b) = 2.728

ddda = math.sin(b) = 0.909

C I FA R S U M M E R S C H O O L 2 0 1 6

FORWARD MODE (PROGRAM VIEW)
Left-to-right evaluation of partial derivatives (not so great for optimization)

From Baydin 2016

We can write the evaluation of a program in a sequence of operations, 
called a "trace", or a "Wengert list"

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

dada = 1

b = 2

dbda = 0

c = 1

dcda = 0

d = a * math.sin(b) = 2.728

ddda = math.sin(b) = 0.909

return 0.909

REVERSE MODE (SYMBOLIC VIEW)

REVERSE MODE (SYMBOLIC VIEW)

REVERSE MODE (SYMBOLIC VIEW)

REVERSE MODE (SYMBOLIC VIEW)

Right to left:

REVERSE MODE (SYMBOLIC VIEW)

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

c = 1

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

dddd = 1

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

dddd = 1

ddda = dd * math.sin(b) = 0.909

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

REVERSE MODE (PROGRAM VIEW)
Right-to-left evaluation of partial derivatives (the right thing to do for optimization)

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

return 2.728

a = 3

b = 2

c = 1

d = a * math.sin(b) = 2.728

dddd = 1

ddda = dd * math.sin(b) = 0.909

return 0.909, 2.728

From Baydin 2016

C I FA R S U M M E R S C H O O L 2 0 1 6

This is the API ->

A trainable 
neural network  
in torch-autograd

Any numeric 
function can 
go here

These two fn's 
are split only 
for clarity

This is a how 
the parameters 
are updated

C I FA R S U M M E R S C H O O L 2 0 1 6

This is the API ->

A trainable 
neural network  
in torch-autograd

Any numeric 
function can 
go here

These two fn's 
are split only 
for clarity

This is a how 
the parameters 
are updated

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
As torch code is run, we build up a compute graph

mult

add

sub

sq

sum

W input

b

target

C I FA R S U M M E R S C H O O L 2 0 1 6

WE TRACK COMPUTATION VIA OPERATOR
OVERLOADING
Linked list of computation forms a "tape" of computation

C I FA R S U M M E R S C H O O L 2 0 1 6

CALCULATING THE GRADIENT
When it comes time to evaluate partial derivatives, we just 
have to look up the partial derivatives from a table in reverse order on the tape

mult mult

sum sum

multd
d

sum∂

mult∂
∂

C I FA R S U M M E R S C H O O L 2 0 1 6

WHAT'S ACTUALLY HAPPENING?
When it comes time to evaluate partial derivatives, we just 
have to look up the partial derivatives from a table

mult

add

sub

sq

sum

mult

add

sub

sq

sum

Whole-Model
Layer-Based Full Autodiff

mult

add

sub

sq

sum

We can then calculate the derivative of the loss w.r.t. inputs via the chain
rule!

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Autograd gives you derivatives of numeric code, without a special mini-language

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Control flow, like if-statements, are handled seamlessly

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Scalars are good for demonstration, but autograd is most often used with tensor types

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Autograd shines if you have dynamic compute graphs

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Recursion is no problem.  
Write numeric code as you ordinarily would, autograd handles the gradients

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Need new or tweaked partial derivatives? Not a problem.

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Need new or tweaked partial derivatives? Not a problem.

C I FA R S U M M E R S C H O O L 2 0 1 6

AUTOGRAD EXAMPLES
Need new or tweaked partial derivatives? Not a problem.

C I FA R S U M M E R S C H O O L 2 0 1 6

mult

add

sub

sq

sum

mult

add

sub

sq

sum

Whole-Model
Layer-Based Full Autodiff

mult

add

sub

sq

sum

scikit-learn Torch NN
cuda-convnet

Lasagne

Autograd
Theano

TensorFlow

SO WHAT DIFFERENTIATES N.NET LIBRARIES?
The granularity at which they implement autodiff ...

C I FA R S U M M E R S C H O O L 2 0 1 6

SO WHAT DIFFERENTIATES N.NET LIBRARIES?
... which is set by the partial derivatives they define

mult

add

sub

sq

sum

mult

add

sub

sq

sum

Whole-Model
Layer-Based Full Autodiff

mult

add

sub

sq

sum

scikit-learn Torch NN
cuda-convnet

Lasagne

Autograd
Theano

TensorFlow

Why can’t we mix these styles?

We want no limits on the models we can write

NEURAL NET THREE WAYS
The most granular — using individual Torch functions

NEURAL NET THREE WAYS
Composing pre-existing NN layers. If we need layers that have been highly optimized, this is good

NEURAL NET THREE WAYS
We can also compose entire networks together (e.g. image captioning, GANs)

C I FA R S U M M E R S C H O O L 2 0 1 6

IMPACT AT TWITTER
Prototyping without fear

• We try crazier, potentially high-payoff ideas more often, because autograd
makes it essentially free to do so (can write "regular" numeric code, and
automagically pass gradients through it)

• We use weird losses in production: large classification model uses a loss
computed over a tree of class taxonomies

• Models trained with autograd running on large amounts of media at Twitter

• Often "fast enough”, no penalty at test time

• "Optimized mode" is nearly a compiler, but still a work in progress

C I FA R S U M M E R S C H O O L 2 0 1 6

OTHER AUTODIFF IDEAS
Making their way from atmospheric science (and others) to machine learning

• Checkpointing — don't save all of the intermediate values. Recompute them when you
need them (memory savings, potentially speedup if compute is faster than load/store,
possibly good with pointwise functions like ReLU). MXNet I think first to implement this
generally for neural nets.

• Mixing forward and reverse mode — called "cross-country elimination". No need to
evaluate partial derivatives in one direction! For diamond or hour-glass shaped
compute graphs, this will be more efficient than one method alone.

• Stencils — image processing (convolutions) and element-wise ufuncs can be phrased as
stencil operations. More efficient, general-purpose implementations of differentiable
stencils needed (computer graphics do this, Guenter 2007, extending with DeVito et al.,
2016).

• Source-to-source — All neural net autodiff packages use either ahead-of-time compute
graph construction, or operator-overloading. The original method for autodiff (in
FORTRAN, in the 80s) was source transformation. I believe still gold-standard for
performance. Challenge (besides wrestling with host language) is control flow.

• Higher-order gradients — hessian = grad(grad(f)). Not many efficient implementations.
Fully closed versions in e.g. autograd, DiffSharp, Hype.

C I FA R S U M M E R S C H O O L 2 0 1 6

YOU SHOULD BE USING IT
It's easy to try

C I FA R S U M M E R S C H O O L 2 0 1 6

YOU SHOULD BE USING IT
It's easy to try

Anaconda is the de-facto distribution for scientific Python.

Works with Lua & Luarocks now.

https://github.com/alexbw/conda-lua-recipes

https://github.com/alexbw/conda-lua-recipes

C I FA R S U M M E R S C H O O L 2 0 1 6

YOU SHOULD BE USING IT
It's easy to try

Anaconda is the de-facto distribution for scientific Python.

Works with Lua & Luarocks now.

https://github.com/alexbw/conda-lua-recipes

https://github.com/alexbw/conda-lua-recipes

C I FA R S U M M E R S C H O O L 2 0 1 6

PRACTICAL SESSION

We'll work through (all in an iTorch notebook)

 — Torch basics

 — Running code on the GPU

 — Training a CNN on CIFAR-10

 — Using autograd to train neural networks

We have an autograd Slack team: http://autograd.herokuapp.com/

Join #summerschool channel

http://autograd.herokuapp.com/

C I FA R S U M M E R S C H O O L 2 0 1 6

QUESTIONS?

Happy to help at the practical session

Find me at:

@awiltsch

awiltschko@twitter.com

github.com/alexbw

mailto:awiltschko@twitter.com
http://github.com/alexbw

