Learning to Communicate with Deep Multi-Agent RL

Jakob N. Foerster*, Yannis M. Assael*, Nando de Freitas, Shimon Whiteson

https://arxiv.org/abs/1605.06676

Motivation

"In the beginning was the Word, and the Word was with God..." [1]

"...as one people speaking the same language they have begun to do this, then nothing they plan to do will be impossible..." [2]

"...debates on these questions have been so fiery that in 1866 the French Academy of Sciences banned publications about the origin of human language." [3]

[1] John et al., The Bible, Judea, 90-110 A.D.[2] Yawest et al., Genesis, Judea, 600-500 B.C.[3] Christiansen and Kirby, Language evolution. OUP Oxford, 2003.

Also: Centralised Learning vs Decentralised Execution

Methods

Differentiable Inter-Agent Learning & Reinforced Inter-Agent Learning

Methods

b) DIAL - Differentiable Communication

*DRU(m) = { Logistic($\mathcal{N}(m, \sigma)$), if training, else $\mathbb{1}\{m > 0\}$

UNIVERSITY OF DXFORD

Methods - DRU

Centralised Training

 $\sigma = 0.5$ $\sigma = 1.0$ $\sigma = 2.0$ 1.0 0.8 Output \hat{m} 0.6 0.4 0.2 0.0 -5 0 5 -5 5 -5 0 5 0 Input m

Decentralised Execution

Methods - Architecture

UNIVERSITY OF OXFORD

Multi-Agent: N agents with 1-bit communication channel

State: N-bit array: has i-th prisoner been to IR

Action: 'Tell' / 'None'

Reward: + 1 (freedom) / 0 (episode expires) / -1 (all die)

Observation: 'None' OR switch

<u>RL:</u>

UNIVERSITY OF

Experiments - Switch Complexity Analysis

For n Minions:

$$4^{n(3^{T+1}-3)/2}$$

For 4 Minions:

$$4^{354288}$$

Experiments - Switch

Experiments - Switch Strategy

3 Minions Strategy

Experiments - MNIST Games

Experiments - MNIST Results and Strategy

Results

Jakob Foerster

Experiments - Impact of Noise

Future Work

Conclusions

- Al agents can discover communication protocols through Deep RL
- Gradients used in DIAL allow for faster learning
- Parameter sharing can accelerate learning
- Adding noise to the channel => bimodal distribution
- Protocols can be extracted and understood
- A lot of exciting work to be done here

PS: Code will be published online

Q&A

