
Large Scale Deep Learning with
TensorFlow

Jeff Dean
Google Brain Team

g.co/brain
In collaboration with many other people at Google

http://g.co/brain
http://g.co/brain

Google Brain project started in 2011, with a focus on
pushing state-of-the-art in neural networks. Initial
emphasis:

● use large datasets, and
● large amounts of computation

to push boundaries of what is possible in perception and
language understanding

Background

Overview
● Cover our experience from past ~5 years

○ Research: speech, images, video, robotics, language understanding,
NLP, translation, optimization algorithms, unsupervised learning, …

○ Production: deployed systems for advertising, search, GMail, Photos,
Maps, YouTube, speech recognition, image analysis, user prediction, …

● Focus on neural nets, but many techniques more
broadly applicable

What is the Google Brain Team?

● Research team focused on long term artificial intelligence
research
○ Mix of computer systems and machine learning

research expertise
○ Pure ML research, and research in context of

emerging ML application areas:
■ robotics, language understanding, healthcare, ...

g.co/brain

http://g.co/brain
http://g.co/brain

We Disseminate Our Work in Many Ways

● By publishing our work
○ See papers at research.google.com/pubs/BrainTeam.html

● By releasing TensorFlow, our core machine learning
research system, as an open-source project

● By releasing implementations of our research models in
TensorFlow

● By collaborating with product teams at Google to get our
research into real products

http://research.google.com/pubs/BrainTeam.html

What Do We Really Want?

● Build artificial intelligence algorithms and systems that
learn from experience

● Use those to solve difficult problems that benefit humanity

What do I mean by understanding?

What do I mean by understanding?

What do I mean by understanding?

What do I mean by understanding?

[car parts for sale]

Query

What do I mean by understanding?

[car parts for sale]

Query

Document 1

… car parking available for a small fee.
… parts of our floor model inventory for sale.

Document 2

Selling all kinds of automobile and pickup truck parts,
engines, and transmissions.

Example Needs of the Future
● Which of these eye images shows symptoms of diabetic

retinopathy?

● Find me all rooftops in North America

● Describe this video in Spanish

● Find me all documents relevant to reinforcement learning for
robotics and summarize them in German

● Find a free time for everyone in the Smart Calendar project
to meet and set up a videoconference

● Robot, please fetch me a cup of tea from the snack kitchen

Growing Use of Deep Learning at Google

Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
… many others ...

Across many
products/areas:

of directories containing model description files

Overview
● Discuss TensorFlow, an open source machine learning

system
○ Our primary research and production system
○ Show real examples
○ Explain what’s happening underneath the covers

Two Generations of Distributed ML Systems

1st generation - DistBelief (Dean et al., NIPS 2012)

● Scalable, good for production, but not very flexible for research

2nd generation - TensorFlow (see tenorflow.org and
whitepaper 2015, tensorflow.org/whitepaper2015.pdf)

● Scalable, good for production, but also flexible for variety of research uses
● Portable across range of platforms
● Open source w/ Apache 2.0 license

http://tensorflow.org
http://tensorflow.org/whitepaper2015.pdf

Important Property of Neural Networks

Results get better with

more data +
bigger models +

more computation

Need Both Large Datasets & Large, Powerful Models
“Scaling Recurrent Neural Network Language Models”, Williams et al.
2015
arxiv.org/pdf/1502.00512v1.pdf

http://arxiv.org/pdf/1502.00512v1.pdf
http://arxiv.org/pdf/1502.00512v1.pdf

Large Datasets + Powerful Models
● Combination works incredibly well
● Poses interesting systems problems, though:

○ Need lots of computation
○ Want to train and do experiments quickly
○ Large-scale parallelism using distributed systems

really only way to do this at very large scale
○ Also want to easily express machine learning ideas

Basics of Deep Learning
● Unsupervised cat
● Speech
● Vision
● General trend is towards more complex models:

○ Embeddings of various kinds
○ Generative models
○ Layered LSTMs
○ Attention

Learning from Unlabeled Images

• Train on 10 million images (YouTube)
• 1000 machines (16,000 cores) for 1 week.
• 1.15 billion parameters

Learning from Unlabeled Images

Top 48 stimuli from the test set
Optimal stimulus

by numerical optimization

Learning from Unlabeled Images

Top 48 stimuli from the test set
Optimal stimulus

by numerical optimization

Adding Supervision

Top stimuli for selected neurons.

Speech: Feedforward Acoustic Models

Model speech frame-by-frame,
independently

Simple fully-connected networks

Deep Neural Networks for
Acoustic Modeling in Speech
Recognition
Hinton et al. IEEE Signal
Processing Magazine, 2012

CLDNNs

Model frequency invariance using 1D convolutions

Model time dynamics using an LSTM

Use fully connected layers on top to add depth

Convolutional, Long Short-Term Memory,
Fully Connected Deep Neural Networks

Sainath et al. ICASSP’15

Trend: LSTMs end-to-end!

Train recurrent models that also incorporate Lexical and Language Modeling:

Fast and Accurate Recurrent Neural Network
Acoustic Models for Speech Recognition, H. Sak et al. 2015

Deep Speech: Scaling up end-to-end speech recognition, A. Hannun et al. 2014

Listen, Attend and Spell, W. Chan et al. 2015

Speech Acoustics Phonetics Language Text

CNNs for Vision: AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
Krizhevsky, Sutskever and Hinton, NIPS 2012

The Inception Architecture (GoogLeNet, 2015)

Basic module, which is then
replicated many times

The Inception Architecture (GoogLeNet, 2015)

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

ArXiv 2014, CVPR 2015

Inception-v3 (December 2015)

http://arxiv.org/abs/1512.00567

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

Team Year Place Error (top-5) Params

XRCE (pre-neural-net explosion) 2011 1st 25.8%

Supervision (AlexNet) 2012 1st 16.4% 60M

Clarifai 2013 1st 11.7% 65M

MSRA 2014 3rd 7.35%

VGG 2014 2nd 7.32% 180M

GoogLeNet (Inception) 2014 1st 6.66% 5M

Andrej Karpathy (human) 2014 N/A 5.1% 100 trillion?

BN-Inception (Arxiv) 2015 N/A 4.9% 13M

Inception-v3 (Arxiv) 2015 N/A 3.46% 25M

Rapid Progress in Image Recognition

ImageNet
challenge
classification
task

Models with small number of parameters fit easily in a mobile app (8-bit fixed point)

What do you want in a machine learning system?
● Ease of expression: for lots of crazy ML ideas/algorithms
● Scalability: can run experiments quickly
● Portability: can run on wide variety of platforms
● Reproducibility: easy to share and reproduce research
● Production readiness: go from research to real products

Open, standard software for
general machine learning

Great for Deep Learning in
particular

First released Nov 2015

Apache 2.0 license

http://tensorflow.org/
and

https://github.com/tensorflow/tensorflow

http://tensorflow.org/
http://tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

http://tensorflow.org/whitepaper2015.pdf

http://tensorflow.org/whitepaper2015.pdf
http://tensorflow.org/whitepaper2015.pdf

Preprint: arxiv.org/abs/1605.08695
Updated version to appear in OSDI 2016

http://arxiv.org/abs/1605.08695

Strong External Adoption

GitHub Launch Nov. 2015

GitHub Launch Sep. 2013

GitHub Launch Jan. 2012

GitHub Launch Jan. 2008

50,000+ binary installs in 72 hours, 500,000+ since November, 2015

Strong External Adoption

GitHub Launch Nov. 2015

GitHub Launch Sep. 2013

GitHub Launch Jan. 2012

GitHub Launch Jan. 2008

50,000+ binary installs in 72 hours, 500,000+ since November, 2015
Most forked new repo on GitHub in 2015 (despite only being available in Nov, ‘15)

Source: Bloomberg. www.bloomberg.com/news/articles/2016-07-21/google-sprints-ahead-in-ai-building-blocks-leaving-rivals-wary

Bloomberg Writes About Open Source Deep Learning Packages?

http://www.bloomberg.com/news/articles/2016-07-21/google-sprints-ahead-in-ai-building-blocks-leaving-rivals-wary

http://tensorflow.org/

http://tensorflow.org/
http://tensorflow.org/

Motivations
● DistBelief (our 1st system) was the first scalable deep

learning system, but not as flexible as we wanted for
research purposes

● Better understanding of problem space allowed us to
make some dramatic simplifications

TensorFlow: Expressing High-Level ML Computations

● Core in C++
○ Very low overhead

Core TensorFlow Execution System

CPU GPU Android iOS ...

TensorFlow: Expressing High-Level ML Computations

● Core in C++
○ Very low overhead

● Different front ends for specifying/driving the computation
○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

TensorFlow: Expressing High-Level ML Computations

● Core in C++
○ Very low overhead

● Different front ends for specifying/driving the computation
○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

C++ front end Python front end ...

MatMul

Add Relu

biases

weights

examples

labels

Xent

Graph of Nodes, also called Operations or ops.

Computation is a dataflow graph

with tensors

MatMul

Add Relu

biases

weights

examples

labels

Xent

Edges are N-dimensional arrays: Tensors

Computation is a dataflow graph

● Build a graph computing a neural net inference.

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

x = tf.placeholder("float", shape=[None, 784])

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

Example TensorFlow fragment

with state

Add Mul

biases

...

learning rate

−=...

'Biases' is a variable −= updates biasesSome ops compute gradients

Computation is a dataflow graph

● Automatically add ops to calculate symbolic gradients
of variables w.r.t. loss function.

● Apply these gradients with an optimization algorithm

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = -tf.reduce_sum(y_ * tf.log(y))

opt = tf.train.GradientDescentOptimizer(0.01)

train_op = opt.minimize(cross_entropy)

Symbolic Differentiation

● Launch the graph and run the training ops in a loop

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):

 batch_xs, batch_ys = mnist.train.next_batch(100)

 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

Define graph and then execute it repeatedly

GPU 0 CPU

Add Mul

biases

learning rate

Assign
Sub

...
...

distributedComputation is a dataflow graph

GPU 0 CPU

Add Mul

biases

learning rate

Assign
Sub

...
...

Assign Devices to Ops
● TensorFlow inserts Send/Recv Ops to transport tensors across devices
● Recv ops pull data from Send ops

Send Recv

GPU 0 CPU

Add Mul

biases

learning rate

Assign
Sub

...
...

Assign Devices to Ops
● TensorFlow inserts Send/Recv Ops to transport tensors across devices
● Recv ops pull data from Send ops

Send Recv

Send Recv

Send

Recv Send
Recv

Send and Receive Implementations

● Different implementations depending on source/dest devices

● e.g. GPUs on same machine: local GPU → GPU copy

● e.g. CPUs on different machines: cross-machine RPC

● e.g. GPUs on different machines: RDMA

November 2015

December 2015

February 2016

April 2016

June 2016

Activity

Pre-trained Inception-v3 model released

Dear TensorFlow community,

Today we are releasing our best image classifier trained on ImageNet data. As described in our
recent Arxiv preprint at http://arxiv.org/abs/1512.00567, an ensemble of four of these models
achieves 3.5% top-5 error on the validation set of the ImageNet whole image ILSVRC2012
classification task (compared with our ensemble from last year that won the 2014 ImageNet
classification challenge with a 6.66% top-5 error rate).

In this release, we are supplying code and data files containing the trained model parameters for
running the image classifier on:

● Both desktop and mobile environments
● Employing either a C++ or Python API.

In addition, we are providing a tutorial that describes how to use the image recognition system for a
variety of use-cases.
 http://www.tensorflow.org/tutorials/image_recognition/index.html

http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html

http://arxiv.org/abs/1512.00567
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://www.tensorflow.org/tutorials/image_recognition/index.html
http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html
http://googleresearch.blogspot.com/2015/12/how-to-classify-images-with-tensorflow.html

Experiment Turnaround Time and Research Productivity

● Minutes, Hours:
○ Interactive research! Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try

Data Parallelism
● Use multiple model replicas to process different

examples at the same time
○ All collaborate to update model state (parameters) in shared

parameter server(s)

● Speedups depend highly on kind of model
○ Dense models: 10-40X speedup from 50 replicas
○ Sparse models:

■ support many more replicas
■ often can use as many as 1000 replicas

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p∆p

p’ = p + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’

p’ = p + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

p’’ = p’ + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

p’’ = p’ + ∆p

DistBelief: Separate Parameter Servers
Parameter update rules not the same programming model as
the rest of the system

Separate code for parameter servers vs. rest of system

Lacked uniformity & was more complicated

/job:worker/cpu:0 /job:ps/gpu:0

Add Mul

biases

learning rate

Assign
Sub

...
...

Cross process communication is the same!
● Communication across machines over the network abstracted identically to

cross device communication.

Send Recv

Send Recv

Send

Recv Send
Recv

No specialized parameter server subsystem!

Data Parallelism Choices
Can do this synchronously:

● N replicas equivalent to an N times larger batch size
● Pro: No gradient staleness
● Con: Less fault tolerant (requires some recovery if any single machine fails)

Can do this asynchronously:

● Pro: Relatively fault tolerant (failure in model replica doesn’t block other
replicas)

● Con: Gradient staleness means each gradient less effective

(Or hybrid: M asynchronous groups of N synchronous replicas)

Asynchronous Training
● Unlike DistBelief, no separate parameter server system:

○ Parameters are now just stateful nodes in the graph

Synchronous Variant

Synchronous vs. Asynchronous

Graph structure and low-level graph primitives (queues) allow us to play with
synchronous vs. asynchronous update algorithms.

Data Parallelism Considerations
Want model computation time to be large relative to time to
send/receive parameters over network

Models with fewer parameters, that reuse each parameter multiple times in the
computation

● Mini-batches of size B reuse parameters B times
Certain model structures reuse each parameter many times within each example:

● Convolutional models tend to reuse hundreds or thousands of times per
example (for different spatial positions)

● Recurrent models (LSTMs, RNNs) tend to reuse tens to hundreds of times
(for unrolling through T time steps during training)

Success of Data Parallelism
● Data parallelism is really important for many of Google’s

problems (very large datasets, large models):
○ RankBrain uses 500 replicas
○ ImageNet Inception training uses 50 GPUs, ~40X

speedup
○ SmartReply uses 16 replicas, each with multiple GPUs
○ State-of-the-art on LM “One Billion Word” Benchmark

model uses both data and model parallelism on 32
GPUs

Image Model Training Time

Hours

10 GPUs
50 GPUs

1 GPU

Hours

2.6 hours vs. 79.3 hours (30.5X)

10 GPUs
50 GPUs

1 GPU

Image Model Training Time

Synchronous converges faster (time to accuracy)

Synchronous updates (with backup workers) trains to higher accuracy faster
Better scaling to more workers (less loss of accuracy)

Revisiting Distributed Synchronous SGD, Jianmin Chen, Rajat Monga, Samy
Bengio, Raal Jozefowicz, ICLR Workshop 2016, arxiv.org/abs/1604.00981

Test
accuracy

http://arxiv.org/abs/1604.00981

Synchronous converges faster (time to accuracy)

Synchronous updates (with backup workers) trains to higher accuracy faster
Better scaling to more workers (less loss of accuracy)

Revisiting Distributed Synchronous SGD, Jianmin Chen, Rajat Monga, Samy
Bengio, Raal Jozefowicz, ICLR Workshop 2016, arxiv.org/abs/1604.00981

40 hours vs. 52 hours

Test
accuracy

http://arxiv.org/abs/1604.00981

Synchronous converges faster (time to accuracy)

Synchronous updates (with backup workers) trains to higher accuracy faster
Better scaling to more workers (less loss of accuracy)

Revisiting Distributed Synchronous SGD, Jianmin Chen, Rajat Monga, Samy
Bengio, Raal Jozefowicz, ICLR Workshop 2016, arxiv.org/abs/1604.00981

30 hours vs. 52 hours

Test
accuracy

http://arxiv.org/abs/1604.00981

Synchronous converges faster (time to accuracy)

Synchronous updates (with backup workers) trains to higher accuracy faster
Better scaling to more workers (less loss of accuracy)

Revisiting Distributed Synchronous SGD, Jianmin Chen, Rajat Monga, Samy
Bengio, Raal Jozefowicz, ICLR Workshop 2016, arxiv.org/abs/1604.00981

40 hours vs. 50 hours

Test
accuracy

http://arxiv.org/abs/1604.00981

General Computations
Although we originally built TensorFlow for our uses around
deep neural networks, it’s actually quite flexible

Wide variety of machine learning and other kinds of numeric
computations easily expressible in the computation graph
model

phones single machines (CPU and/or GPUs) …

distributed systems of 100s
of machines and/or GPU cards

Runs on Variety of Platforms

custom ML hardware

Trend: Much More Heterogeneous hardware
General purpose CPU performance scaling has slowed
significantly

Specialization of hardware for certain workloads will be more
important

Tensor Processing Unit
Custom machine learning ASIC

In production use for >16 months: used on every
search query, used for AlphaGo match, many
other uses, ...

See Google Cloud Platform blog: Google supercharges machine learning tasks with TPU custom chip,
by Norm Jouppi, May, 2016

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

Extensible

● Core system defines a number of standard operations

and kernels (device-specific implementations of

operations)

● Easy to define new operators and/or kernels

http://public.kevinrobinsonblog.com/tensorflow-codebase/

1. Expressing graphs core:
graph, ops, protobuf

python:
variables,
optimizer

A tour through the TensorFlow codebase

Slide credit: Kevin Robinson (krob@mit.edu)

http://public.kevinrobinsonblog.com/tensorflow-codebase/index.html
http://public.kevinrobinsonblog.com/tensorflow-codebase/index.html

Expressing: Graphs and Ops
Graph

Slide credit: Kevin Robinson (krob@mit.edu)

OpsGraph

Expressing: Graphs and Ops

Slide credit: Kevin Robinson (krob@mit.edu)

Expressing: Graphs and Ops

Slide credit: Kevin Robinson (krob@mit.edu)

Expressing: Ops

Slide credit: Kevin Robinson (krob@mit.edu)

Expressing: Ops

Slide credit: Kevin Robinson (krob@mit.edu)

 calls C++ wrappers generated by cc/BUILD#L27

 in math_ops.py#L1137

Expressing: Ops

 OpDef interface defined in math_ops.cc#L607

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/cc/BUILD#L27
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/math_ops.py#L1137
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc#L607

Expressing: Graph

Slide credit: Kevin Robinson (krob@mit.edu)

Expressing: Graph

Expressing: Graph
Graph is built implicitly
 session.py#L896

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/client/session.py#L896

Expressing: Graph
Graph is built implicitly
 session.py#L896

Variables add implicit ops
 variables.py#L146

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/client/session.py#L896
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/variables.py#L146

Expressing: Graph
Graph is built implicitly
 session.py#L896

Variables add implicit ops
 variables.py#L146

 In TensorBoard:

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/client/session.py#L896
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/variables.py#L146

Optimizer fns extend the graph
 optimizer.py:minimize#L155

Expressing: Optimizers

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/training/optimizer.py#L155

Optimizer fns extend the graph
 optimizer.py:minimize#L155

Trainable variables collected
 variables.py#L258

Expressing: Optimizers

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/training/optimizer.py#L155
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/variables.py#L258

Optimizer fns extend the graph
 optimizer.py:minimize#L155

Trainable variables collected
 variables.py#L258

Graph is extended with gradients
 gradients.py#L307

Expressing: Optimizers

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/python/training/optimizer.py#L155
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/variables.py#L258
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/gradients.py#L307

Serialized as GraphDef
 graph.proto

Expressing: Graph

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/framework/graph.proto

Serialized as GraphDef
 graph.proto

Expressing: Graph

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/framework/graph.proto

Expressing: Graph
Serialized as GraphDef
 graph.proto

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/framework/graph.proto

Expressing: Graph
Serialized as GraphDef
 graph.proto

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/framework/graph.proto

Expressing: Graph
Serialized as GraphDef
 graph.proto

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/framework/graph.proto

Distributing
- Sessions in distributed runtime

- Pruning

- Placing and Partitioning

Slide credit: Kevin Robinson (krob@mit.edu)

Distributing: Creating a session

Slide credit: Kevin Robinson (krob@mit.edu)

Distributing: Creating a session

Slide credit: Kevin Robinson (krob@mit.edu)

tf.Session gRPC: MasterService

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto

Distributing: Creating a session

tf.Session gRPC: MasterService

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto

Distributing: Creating a session

tf.Session
gRPC: Session

gRPC: MasterService

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
http://grpcsession
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto

Distributing: Creating a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)gRPC: Session

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession

Distributing: Creating a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)gRPC: Session

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)gRPC: Session

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

gRPC: Session

Distributing: Running a session

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

gRPC: Session

WorkerService
/job:worker/task:1

WorkerService
/job:worker/task:2

WorkerService
/job:worker/task:0

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

gRPC: Session

WorkerService
/job:worker/task:1

WorkerService
/job:worker/task:2

WorkerService
/job:worker/task:0

CPU GPU GPU GPU CPU GPU GPU GPU CPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
http://grpcsession
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

WorkerService
/job:worker/task:1
 RunGraph(graph,feed,fetches)

WorkerService
/job:worker/task:2
 RunGraph(graph,feed,fetches)

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)

gRPC: Session

CPU GPU GPU GPU CPU GPU GPU GPU CPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
http://grpcsession

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

WorkerService
/job:worker/task:1
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

WorkerService
/job:worker/task:2
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

gRPC: Session

CPU GPU GPU GPU CPU GPU GPU GPU CPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
http://grpcsession

Distributing: Running a session

tf.Session gRPC: MasterService
 CreateSession(GraphDef)
 RunStep(feed, fetches)

WorkerService
/job:worker/task:1
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

WorkerService
/job:worker/task:2
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

gRPC: Session

CPU GPU GPU GPU CPU GPU GPU GPU CPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/r0.8/tensorflow/python/client/session.py#L627
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/master_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
http://grpcsession

gRPC call to Session::Run
 in master_session.cc#L835

Distributing: Pruning

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/master_session.cc#L835

gRPC call to Session::Run
 in master_session.cc#L835

Rewrite with feed and fetch
 RewriteGraphForExecution
 in graph/subgraph.cc#L225

Distributing: Pruning

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/master_session.cc#L835
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/subgraph.cc#L225
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/subgraph.cc#L225

gRPC call to Session::Run
 in master_session.cc#L835

Rewrite with feed and fetch
 RewriteGraphForExecution
 in graph/subgraph.cc#L225

Prune subgraph
 PruneForReverseReachability
 in graph/algorithm.cc#L122
 tests in subgraph_test.cc#142

Distributing: Pruning

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/master_session.cc#L835
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/subgraph.cc#L225
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/subgraph.cc#L225
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/algorithm.cc#L112
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/algorithm.cc#L112
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/subgraph_test.cc#L142

Constraints from model
 DeviceSpec in device.py#L24

Distributing: Placing

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/device.py#L24

Constraints from model
 DeviceSpec in device.py#L24

By device or colocation
 NodeDef in graph.proto

Distributing: Placing

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/device.py#L24
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/graph.proto#L75

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:1

WorkerService
/job:worker/task:2

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:2

WorkerService
/job:worker/task:1

Placing based on constraints
 SimplePlacer::Run
 in simple_placer.cc#L558
 described in simple_placer.h#L31

CPU GPU GPU CPU GPU GPU CPU GPU

Distributing: Placing

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.h#L31

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:1

Placing based on constraints
 SimplePlacer::Run
 in simple_placer.cc#L558
 described in simple_placer.h#L31

Distributing: Placing

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.h#L31

Distributing: Placing

WorkerService
/job:worker/task:0

Placing based on constraints
 SimplePlacer::Run
 in simple_placer.cc#L558
 described in simple_placer.h#L31

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.cc#L558
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/simple_placer.h#L31

Distributing: Partitioning
Partition into subgraphs
 in graph_partition.cc#L883

rendezvous

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:0

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/graph_partition.cc#L883
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Distributing: Partitioning
Partition into subgraphs
 in graph_partition.cc#L883
Rewrite with Send and Recv
 in sendrecv_ops.cc#L56 and #L97

rendezvous

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:0

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/graph_partition.cc#L883
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Distributing: Partitioning
Partition into subgraphs
 in graph_partition.cc#L883
Rewrite with Send and Recv
 in sendrecv_ops.cc#L56 and #L97
Rendezvous handles coordination
 in base_rendezvous_mgr.cc#L236

rendezvous

WorkerService
/job:worker/task:0

WorkerService
/job:worker/task:0

rendezvous

rendezvous
Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/graph_partition.cc#L883
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/base_rendezvous_mgr.cc#L236
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Distributing: Partitioning
Partition into subgraphs
 in graph_partition.cc#L883
Rewrite with Send and Recv
 in sendrecv_ops.cc#L56 and #L97
Rendezvous handles coordination
 in base_rendezvous_mgr.cc#L236

rendezvous

WorkerService
/job:worker/task:0

rendezvous

rendezvous

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/graph/graph_partition.cc#L883
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/sendrecv_ops.cc#L56
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/base_rendezvous_mgr.cc#L236
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

http://public.kevinrobinsonblog.com/tensorflow-codebase/

2. Distributing the graph

core:
distributed_runtime
common_runtime

A tour through the TensorFlow codebase

Slide credit: Kevin Robinson (krob@mit.edu)

http://public.kevinrobinsonblog.com/tensorflow-codebase/index.html
http://public.kevinrobinsonblog.com/tensorflow-codebase/index.html

Executing: Executor
Parallelism on each worker

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

CPU GPU GPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Executing: Executor
Parallelism on each worker

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

CPU GPU GPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Executing: Executor
Parallelism on each worker

GraphMgr::ExecuteAsync
 in graph_mgr.cc#L283

ExecutorState::RunAsync
 in executor.cc#L867

WorkerService
/job:worker/task:0
 RunGraph(graph,feed,fetches)
 RecvTensor(rendezvous_key)

CPU GPU GPU GPU

Slide credit: Kevin Robinson (krob@mit.edu)

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/distributed_runtime/graph_mgr.cc#L283
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/common_runtime/executor.cc#L867
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

Executing: OpKernels
WorkerService
/job:worker/task:0

rendezvous

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

WorkerService
/job:worker/task:0

rendezvous

Executing: OpKernels

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

WorkerService
/job:worker/task:0

rendezvous

Executing: OpKernels

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto

WorkerService
/job:worker/task:0

rendezvous

Executing: OpKernels

 Conv2D OpDef in nn_ops.cc#L221

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/protobuf/worker_service.proto
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/ops/nn_ops.cc#L221

Executing: OpKernels
Conditional build for OpKernels

Slide credit: Kevin Robinson (krob@mit.edu)

Executing: OpKernels
Conditional build for OpKernels

 CPU in conv_ops.cc#L91
 GPU in conv_ops.cc#L263

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/conv_ops.cc#L91
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/conv_ops.cc#L263

Executing: OpKernels
OpKernels are specialized by device
adapted from matmul_op.cc#L116

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/matmul_op.cc#L116

Executing: OpKernels
OpKernels are specialized by device
adapted from matmul_op.cc#L116

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/matmul_op.cc#L116

Executing: OpKernels
OpKernels call into Stream functions
adapted from matmul_op.cc#L71

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/matmul_op.cc#L71

Executing: OpKernels
OpKernels call into Stream functions
adapted from matmul_op.cc#L71

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/matmul_op.cc#L71

Executing: OpKernels
OpKernels call into Stream functions
adapted from matmul_op.cc#L71

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/matmul_op.cc#L71

Executing: Stream functions
OpKernels call into Stream functions

 in conv_ops.cc#L292

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/conv_ops.cc#L292

Executing: Stream functions
OpKernels call into Stream functions

 in conv_ops.cc#L292

 in conv_ops.cc#L417

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/conv_ops.cc#L292
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/core/kernels/conv_ops.cc#L417

Platforms provide GPU-specific implementations

 cuBLAS
 BlasSupport in stream_executor/blas.h#L88
 DoBlasInternal in cuda_blas.cc#L429

Executing: Stream functions

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/stream_executor/blas.h#L88
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/stream_executor/cuda/cuda_blas.cc#L429

Platforms provide GPU-specific implementations
 cuBLAS
 BlasSupport in stream_executor/blas.h#L88
 DoBlasInternal in cuda_blas.cc#L429
 cuDNN
 DnnSupport in stream_executor/dnn.h#L544
 DoConvolve in cuda_dnn.cc#L629

Executing: Stream functions

Slide credit: Kevin Robinson (krob@mit.edu)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/stream_executor/blas.h#L88
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/stream_executor/cuda/cuda_blas.cc#L429
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/stream_executor/dnn.h#L544
https://github.com/tensorflow/tensorflow/blob/v0.8.0/tensorflow/stream_executor/cuda/cuda_dnn.cc#L629

Session Interface

● Extend: add nodes to computation graph

● Run: execute an arbitrary subgraph
○ optionally feeding in Tensor inputs and retrieving Tensor output

Typically, setup a graph with one or a few Extend calls and

then Run it thousands or millions or times

Single device performance important, but
….

 biggest performance improvements come
from large-scale distributed systems with

model and data parallelism

Experiment Turnaround Time and Research Productivity

● Minutes, Hours:
○ Interactive research! Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try

Transition
● How do you do this at scale?
● How does TensorFlow make distributed training easy?

Model Parallelism
● Best way to decrease training time: decrease the step

time
● Many models have lots of inherent parallelism
● Problem is distributing work so communication doesn’t

kill you
○ local connectivity (as found in CNNs)
○ towers with little or no connectivity between towers (e.g. AlexNet)
○ specialized parts of model active only for some examples

On a single core: Instruction parallelism (SIMD). Pretty much
free.

Across cores: thread parallelism. Almost free, unless across
sockets, in which case inter-socket bandwidth matters (QPI on
Intel).

Across devices: for GPUs, often limited by PCIe bandwidth.

Across machines: limited by network bandwidth / latency

Exploiting Model Parallelism

Model Parallelism

Model Parallelism

Model Parallelism

Using TensorFlow for Parallelism
Easy to express both model parallelism as well as data
parallelism

● Very minimal changes to single device model code

Devices and Graph Placement
● Given a graph and set of devices, TensorFlow

implementation must decide which device executes
each node

Full and Partial Device Constraints (Hints)
Devices are named hierarchically:

/job:localhost/device:cpu:0
/job:worker/task:17/device:gpu:3
/job:parameters/task:4/device:cpu:0

Client can specify full or partial constraints for nodes in
graph:

“Place this node on /job:localhost/device:gpu:2”

“Place this node on /device:gpu:*”

Placement Algorithm
Given hints, plus a cost model (node execution time
estimates and Tensor size estimates), make placement
decisions

● Current relatively simple greedy algorithm
● Active area of work

Show CIFAR10 placement TensorBoard.

Google Photos Search

Reuse same model for completely
different problems

Same basic model structure
trained on different data,

useful in completely different contexts

Example: given image → predict interesting pixels

We have tons of vision problems

Image search, StreetView, Satellite Imagery,
Translation, Robotics, Self-driving Cars,

www.google.com/sunroof

http://www.google.com/sunroof
http://www.google.com/sunroof

MEDICAL IMAGING

Very good results using similar model for
detecting diabetic retinopathy in retinal images

“Seeing” Go

Score for
doc,query

pair

Deep
Neural

Network
Query & document features

Query: “car parts for sale”,

Doc: “Rebuilt transmissions …”

Launched in 2015
Third most important search ranking signal (of 100s)

RankBrain in Google Search Ranking

Bloomberg, Oct 2015: “Google Turning Its Lucrative Web Search Over to AI Machines”

Example: LSTM [Hochreiter et al, 1997][Gers et al, 1999]

Enables
long term
dependencies
to flow

Sequence-to-Sequence Model

 A B C

v

 D __ X Y Z

 X Y Z Q

Input sequence

Target sequence

[Sutskever & Vinyals & Le NIPS 2014]

● Active area of research
● Many groups actively pursuing RNN/LSTM

○ Montreal
○ Stanford
○ U of Toronto
○ Berkeley
○ Google
○ ...

● Further Improvements
○ Attention
○ NTM / Memory Nets
○ ...

Sequence-to-Sequence

Sequence-to-Sequence
● Translation: [Kalchbrenner et al., EMNLP 2013][Cho et al., EMLP 2014][Sutskever & Vinyals & Le, NIPS

2014][Luong et al., ACL 2015][Bahdanau et al., ICLR 2015]

● Image captions: [Mao et al., ICLR 2015][Vinyals et al., CVPR 2015][Donahue et al., CVPR 2015][Xu et al.,
ICML 2015]

● Speech: [Chorowsky et al., NIPS DL 2014][Chan et al., arxiv 2015]

● Language Understanding: [Vinyals & Kaiser et al., NIPS 2015][Kiros et al., NIPS 2015]

● Dialogue: [Shang et al., ACL 2015][Sordoni et al., NAACL 2015][Vinyals & Le, ICML DL 2015]

● Video Generation: [Srivastava et al., ICML 2015]

● Algorithms: [Zaremba & Sutskever, arxiv 2014][Vinyals & Fortunato & Jaitly, NIPS 2015][Kaiser &
Sutskever, arxiv 2015][Zaremba et al., arxiv 2015]

How to do Image Captions?

P(English | French)P(English | Image)

Image Captioning

W __ A young girl

 A young girl asleep[Vinyals et al., CVPR 2015]

Model: A close up of a child
holding a stuffed animal.

Human: A young girl asleep on
the sofa cuddling a stuffed
bear.

Model: A baby is asleep next to
a teddy bear.

Image Captions Research

BestModel: A man is holding a
sandwich in his hand.

Human: A man outside cooking
with a sub in his hand.

InitialModel: A man cutting a
cake with a knife.

BestModel: A person is cooking
some food on a grill.

Human: Someone is using a
small grill to melt his sandwich.

InitialModel: A pizza sitting on
top of a white plate.

BestModel: A woman holding a
banana up to her face.

Human: A woman holding up a
yellow banana to her face.

InitialModel: A close up of a
person eating a hot dog.

BestModel: A blue and yellow
train traveling down train
tracks.

Human: A blue , yellow and red
train travels across the tracks
near a depot.

InitialModel: A train that is
sitting on the tracks.

Pointer Networks
➢ Goal: Mappings where outputs are (sub)sets of inputs
➢ Travelling Salesman Problem

➢ Convex Hulls

[Vinyals, Fortunato & Jaitly, NIPS 2015]

Pointer Networks

x5
y5

x5
y5

x6
y6

 ⇒
x1
y1

x6
y6

1

x2
y2

6

⇐

5
2

1

x1
y1

x2
y2

x3
y3

x4
y4

x1
y1

⇒

[Vinyals, Fortunato & Jaitly, NIPS 2015]

Neural Conversational Models
● Take movie subtitles (~900M words) or IT HelpDesk chats
● Predict the next dialog from history

i got to go .
no .
i get too emotional when i drink .
have another beer . i 've got to get up early .
no , you don 't . sit down .
i get too emotional when i drink .
will you have another beer ?
i 've got to go !
why ?
i got to get up early in the morning .
you 're drunk .
and emotional !
you got to go .

[Vinyals & Le ICML DL Workshop 2015]

April 1, 2009: April Fool’s Day joke

Nov 5, 2015: Launched Real Product

Feb 1, 2016: >10% of mobile Inbox replies

Smart Reply

Small
Feed-Forward

Neural Network

Incoming Email

Activate
Smart Reply?

yes/no

Smart Reply Google Research Blog
- Nov 2015

Small
Feed-Forward

Neural Network

Incoming Email

Activate
Smart Reply?

Deep
Recurrent

Neural Network

Generated Replies

yes/no

Smart Reply Google Research Blog
- Nov 2015

Example: LSTM

for i in range(20):
 m, c = LSTMCell(x[i], mprev, cprev)
 mprev = m
 cprev = c

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

Example: Deep LSTM

for i in range(20):
 for d in range(4): # d is depth
 with tf.device("/gpu:%d" % d):
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

A B C D _
_ A B C

A B C D

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

A B C D _
_ A B C

A B C D 80k softmax by
1000 dims
This is very big!

Split softmax into
4 GPUs

1000 LSTM cells
2000 dims per
timestep

2000 x 4 =
8k dims per
sentence

GPU1

GPU2

GPU3

GPU4

A B C D

GPU5

GPU6

TensorFlow Queues

Input prefetching

Grouping similar examples

Randomization/Shuffling

Queue

...

Enqueue

...

Dequeue

Example: Deep LSTMs
● Wrinkles

○ Bucket sentences by length using a queue per length
○ Dequeue when a full batch of same length has

accumulated
○ N different graphs for different lengths
○ Alternative: while loop

Expressing Data Parallelism
We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(“/cpu:0”):
 # Create the Mnist model.
 model = MnistModel(batch_size=16, hidden_units=200)

 # Get an initialized, and possibly recovered session.
 sess = tf.Session()

 # Train the model.
 for local_step in xrange(FLAGS.max_steps):
 _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
 if local_step % 1000 == 0:
 print "step %d: %g" % (step, loss)

Expressing Data Parallelism
We use the ReplicaDeviceSetter() device function to automatically
assign Variables to the 'ps' jobs.
with tf.device(tf.ReplicaDeviceSetter(parameter_devices=10)):
 # Create the Mnist model.
 model = MnistModel(batch_size=16, hidden_units=200)

 # Create a Supervisor. It will take care of initialization, summaries,
 # checkpoints, and recovery. When multiple replicas of this program are running,
 # the first one, identified by --task=0 is the 'chief' supervisor (e.g., initialization, saving)
 supervisor = tf.Supervisor(is_chief=(FLAGS.task == 0), saver=model.saver)

 # Get an initialized, and possibly recovered session.
 sess = supervisor.PrepareSession(FLAGS.master_job)

 # Train the model.
 for local_step in xrange(int32_max):
 _, loss, step = sess.run([model.train_op, model.loss, model.global_step])
 if step >= FLAGS.max_steps:
 break
 if local_step % 1000 == 0:
 print "step %d: %g" % (step, loss)

Combining Vision with Robotics

“Deep Learning for Robots: Learning
from Large-Scale Interaction”, Google
Research Blog, March, 2016

“Learning Hand-Eye Coordination for
Robotic Grasping with Deep Learning
and Large-Scale Data Collection”,
Sergey Levine, Peter Pastor, Alex
Krizhevsky, & Deirdre Quillen,
Arxiv, arxiv.org/abs/1603.02199

http://www.youtube.com/watch?v=iaF43Ze1oeI
http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://googleresearch.blogspot.kr/2016/03/deep-learning-for-robots-learning-from.html
http://arxiv.org/abs/1603.02199

Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

Network Optimizations
● Neural net training very tolerant of reduced precision
● e.g. drop precision to 16 bits across network

Device A Device B

params
Mat
Mul

Send Recv

Input
...

ToFP16 ToFP32

Quantization for Inference
● Need even less precision for inference
● 8-bit fixed point works well, but many ways of

quantizing
● Critical for things like mobile devices

○ w/quantization, high-end smart phone can run
Inception model at >6 frames per second (fps)

How Can You Get Started with Machine Learning?
Three ways, with varying complexity:

(1) Use a Cloud-based API (Vision, Speech, etc.)
(2) Use an existing model architecture, and

retrain it or fine tune on your dataset
(3) Develop your own machine learning models

for new problems

More
flexible,

but more
effort

required

Use Cloud-based APIs

cloud.google.com/translate

cloud.google.com/speech

cloud.google.com/vision

cloud.google.com/text

http://cloud.google.com/translate
http://cloud.google.com/translate
http://cloud.google.com/speech
http://cloud.google.com/speech
http://cloud.google.com/vision
http://cloud.google.com/vision
http://cloud.google.com/text
http://cloud.google.com/text

Use Cloud-based APIs

cloud.google.com/translate

cloud.google.com/speech

cloud.google.com/vision

cloud.google.com/text

http://cloud.google.com/translate
http://cloud.google.com/translate
http://cloud.google.com/speech
http://cloud.google.com/speech
http://cloud.google.com/vision
http://cloud.google.com/vision
http://cloud.google.com/text
http://cloud.google.com/text

Google Cloud Vision API
https://cloud.google.com/vision/

https://cloud.google.com/vision/
https://cloud.google.com/vision/

Google Cloud ML
Scaled service for training and inference w/TensorFlow

A Few TensorFlow Community Examples
(From more than 2000 results for ‘tensorflow’ on GitHub)

● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh

A Few TensorFlow Community Examples
(From more than 2000 2100 results for ‘tensorflow’ on GitHub)

● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh

 github.com/nivwusquorum/tensorflow-deepq

https://github.com/nivwusquorum/tensorflow-deepq

github.com/woodrush/neural-art-tf

https://github.com/woodrush/neural-art-tf
https://github.com/woodrush/neural-art-tf

github.com/sherjilozair/char-rnn-tensorflow

https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/sherjilozair/char-rnn-tensorflow

github.com/fchollet/keras

https://github.com/fchollet/keras
https://github.com/fchollet/keras

github.com/jazzsaxmafia/show_and_tell.tensorflow

https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jazzsaxmafia/show_and_tell.tensorflow

github.com/jikexueyuanwiki/tensorflow-zh

http://github.com/jikexueyuanwiki/tensorflow-zh
http://github.com/jikexueyuanwiki/tensorflow-zh

Concluding Remarks
● Model and Data Parallelism enable great ML work:

○ Neural Machine Translation: ~6x speedup on 8 GPUs
○ Inception / Imagenet: ~40x speedup on 50 GPUs
○ RankBrain: ~300X speedup on 500 machines

● TensorFlow open-source community vibrant and growing
● TensorFlow makes it easy to express ML computations

What Does the Future Hold?
Deep learning usage will continue to grow and accelerate:

● Across more and more fields and problems:
○ robotics, self-driving vehicles, ...
○ health care
○ video understanding
○ dialogue systems
○ personal assistance
○ ...

Google Brain Residency Program

One year immersion program in deep learning research
● First class started six weeks ago, planning for next year’s class is underway

Learn to conduct deep learning research w/experts in our team
● Fixed one-year employment with salary, benefits, ...

● Goal after one year is to have conducted several research projects

● Interesting problems, TensorFlow, and access to computational resources

g.co/brainresidency

http://g.co/brainresidency
http://g.co/brainresidency

Google Brain Residency Program

Who should apply?
● people with BSc, MSc or PhD, ideally in CS, mathematics or statistics

● completed coursework in calculus, linear algebra, and probability, or equiv.

● programming experience

● motivated, hard working, and have a strong interest in deep learning

g.co/brainresidency

http://g.co/brainresidency
http://g.co/brainresidency

Google Brain Residency Program

Current class for June 2016 to May 2017
● ⅓ B.S, ⅓ M.S., ⅓ Ph.D. or postdoc

● ½ coming straight from school, ½ with some post-school working experience

● Mix of backgrounds: computer scientists, math/stats, EE, physics, comp bio, ...

Applications for class for June 2017 to May 2018 will open in Fall 2016

g.co/brainresidency

http://g.co/brainresidency
http://g.co/brainresidency

Further Reading
● Dean, et al., Large Scale Distributed Deep Networks, NIPS 2012,

research.google.com/archive/large_deep_networks_nips2012.html.
● Mikolov, Chen, Corrado & Dean. Efficient Estimation of Word Representations in Vector

Space, NIPS 2013, arxiv.org/abs/1301.3781.
● Sutskever, Vinyals, & Le, Sequence to Sequence Learning with Neural Networks, NIPS,

2014, arxiv.org/abs/1409.3215.
● Vinyals, Toshev, Bengio, & Erhan. Show and Tell: A Neural Image Caption Generator.

CVPR 2015. arxiv.org/abs/1411.4555
● TensorFlow white paper, tensorflow.org/whitepaper2015.pdf (clickable links in bibliography)

g.co/brain (We’re hiring! Also check out Brain Residency program at g.co/brainresidency)
www.tensorflow.org
research.google.com/people/jeff
research.google.com/pubs/BrainTeam.html

Questions?

http://research.google.com/archive/large_deep_networks_nips2012.html
http://research.google.com/archive/large_deep_networks_nips2012.html
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1411.4555
http://tensorflow.org/whitepaper2015.pdf
http://g.co/brain
http://g.co/brainresidency
http://g.co/brain
http://www.tensorflow.org
http://www.tensorflow.org
http://research.google.com/people/jeff
http://research.google.com/people/jeff
http://research.google.com/pubs/BrainTeam.html
http://research.google.com/pubs/BrainTeam.html

