
Introduction to Theano
A Fast Python Library for Modelling and Training

Pascal Lamblin, Frédéric Bastien
Institut des algorithmes d’apprentissage de Montréal

Montreal Institute for Learning Algorithms
Université de Montréal

August 1st, 2016, Montréal

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Introduction

Objectives

Today: Introduction to Theano
I Theoretical part
I Small examples

Tomorrow, 16:30: Practical session
I Hands-on exercises on the basics of Theano
I Hands-on exercises on debugging in Theano
I Examples of basic deep models (ConvNets, RNNs)
I Bring a laptop with a browser (GPU instances on Amazon)

All the material is online at
https://github.com/mila-udem/summerschool2016/

2 / 55

https://github.com/mila-udem/summerschool2016/

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Overview
Motivation
Basic Usage

Graph definition and Syntax
Graph structure
Strong typing
Differences from Python/NumPy

Graph Transformations
Substitution and Cloning
Gradient
Shared variables

Make it fast!
Optimizations
Code Generation
GPU

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
New features

3 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Theano vision

Mathematical symbolic expression compiler
I Easy to define expressions

I Expressions mimic NumPy’s syntax and semantics
I Possible to manipulate those expressions

I Substitutions
I Gradient, R operator
I Stability optimizations

I Fast to compute values for those expressions
I Speed optimizations
I Use fast back-ends (CUDA, BLAS, custom C code)

I Tools to inspect and check for correctness

4 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Current status

I Mature: Theano has been developed and used since January 2008 (8 years
old)

I Driven hundreds of research papers
I Good user documentation
I Active mailing list with participants worldwide
I Core technology for Silicon Valley start-ups
I Many contributors from different places
I Used to teach university classes
I Has been used for research at large companies

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/

5 / 55

deeplearning.net/software/theano/
deeplearning.net/tutorial/

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Related projects

Many libraries are built on top of Theano (mostly machine learning)
I Blocks
I Keras
I Lasagne
I PyMC 3
I sklearn-theano
I Platoon
I Theano-MPI
I . . .

6 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Basic usage

Theano defines a language, a compiler, and a library.
I Define a symbolic expression
I Compile a function that can compute values
I Execute that function on numeric values

7 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Defining an expression

I Symbolic, strongly-typed inputs
import theano
from theano import tensor as T
x = T.vector('x')
W = T.matrix('W')
b = T.vector('b')

I NumPy-like syntax to build expressions
dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)

8 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Graph visualization (1)

debugprint(dot)
dot [id A] ''
|x [id B]
|W [id C]

debugprint(out)
sigmoid [id A] ''
|Elemwise{add,no_inplace} [id B] ''
|dot [id C] ''
| |x [id D]
| |W [id E]
|b [id F]

9 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Compiling a Theano function

Build a callable that compute outputs given inputs

f = theano.function(inputs=[x, W], outputs=dot)
g = theano.function([x, W, b], out)
h = theano.function([x, W, b], [dot, out])
i = theano.function([x, W, b], [dot + b, out])

10 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Graph visualization (2)

theano.printing.debugprint(f)
CGemv{inplace} [id A] '' 3
|AllocEmpty{dtype='float64'} [id B] '' 2
| |Shape_i{1} [id C] '' 1
| |W [id D]
|TensorConstant{1.0} [id E]
|InplaceDimShuffle{1,0} [id F] 'W.T' 0
| |W [id D]
|x [id G]
|TensorConstant{0.0} [id H]

theano.printing.pydotprint(f)

theano.printing.debugprint(g)
Elemwise{ScalarSigmoid}[(0, 0)] [id A] '' 2
|CGemv{no_inplace} [id B] '' 1
|b [id C]
|TensorConstant{1.0} [id D]
|InplaceDimShuffle{1,0} [id E] 'W.T' 0
| |W [id F]
|x [id G]
|TensorConstant{1.0} [id D]

theano.printing.pydotprint(g)

11 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

pydotprint(f)

InplaceDimShuffle{1,0}

name=W.T TensorType(float64, matrix)

TensorType(float64, matrix)

name=W TensorType(float64, matrix)

Shape_i{1}

CGemv{inplace}

2

AllocEmpty{dtype='float64'}

TensorType(int64, scalar)

0 TensorType(float64, vector)

TensorType(float64, vector)

val=1.0 TensorType(float64, scalar)

1

name=x TensorType(float64, vector)

3

val=0.0 TensorType(float64, scalar)

4

12 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

pydotprint(g)

InplaceDimShuffle{1,0}

name=W.T TensorType(float64, matrix)

TensorType(float64, matrix)

name=W TensorType(float64, matrix)

CGemv{no_inplace}

2

Elemwise{ScalarSigmoid}[(0, 0)]

TensorType(float64, vector)

name=b TensorType(float64, vector)

0

val=1.0 TensorType(float64, scalar)

1 4

name=x TensorType(float64, vector)

3

TensorType(float64, vector)

13 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

pydotprint(h)

InplaceDimShuffle{1,0}

name=W.T TensorType(float64, matrix)

TensorType(float64, matrix)

name=W TensorType(float64, matrix)

Shape_i{1}

CGemv{inplace}

2

AllocEmpty{dtype='float64'}

TensorType(int64, scalar)

0 TensorType(float64, vector)

TensorType(float64, vector)

val=1.0 TensorType(float64, scalar)

1

name=x TensorType(float64, vector)

3

val=0.0 TensorType(float64, scalar)

4

Elemwise{Composite{scalar_sigmoid((i0 + i1))}}

0

TensorType(float64, vector)

name=b TensorType(float64, vector)

1

14 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

d3viz

d3viz enables interactive visualization of graphs in a web browser

from theano.d3viz import d3viz

d3viz(f, './d3viz_f.html')
d3viz(g, './d3viz_g.html')
d3viz(h, './d3viz_h.html')

15 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Motivation
Basic Usage

Executing a Theano function

Call it with numeric values
import numpy as np
np.random.seed(42)
W_val = np.random.randn(4, 3)
x_val = np.random.rand(4)
b_val = np.ones(3)

f(x_val, W_val)
-> array([1.79048354, 0.03158954, -0.26423186])

g(x_val, W_val, b_val)
-> array([0.9421594 , 0.73722395, 0.67606977])

h(x_val, W_val, b_val)
-> [array([1.79048354, 0.03158954, -0.26423186]),
array([0.9421594 , 0.73722395, 0.67606977])]

i(x_val, W_val, b_val)
-> [array([2.79048354, 1.03158954, 0.73576814]),
array([0.9421594 , 0.73722395, 0.67606977])]

16 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Overview
Motivation
Basic Usage

Graph definition and Syntax
Graph structure
Strong typing
Differences from Python/NumPy

Graph Transformations
Substitution and Cloning
Gradient
Shared variables

Make it fast!
Optimizations
Code Generation
GPU

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
New features

17 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Graph structure

The graph that represents mathematical operations is bipartite, and has two
sorts of nodes:

I Variable nodes, or variables, that represent data
I Apply nodes, that represent the application of mathematical operations

In practice:
I Variables are used for the graph inputs and outputs, and intermediate

values
I Variables will hold data during the function execution phase
I An Apply node has inputs and outputs, which are variables
I An Apply node represents the specific application of an Op on these input

variables
I The same variable can be used as inputs by several Apply nodes

18 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Apply+ op

owner

inputs

outputs

x

matrix

None

y

matrix

None

z

matrix

owner

type

19 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

pydotprint(f, compact=False)

InplaceDimShuffle{1,0}

name=W.T TensorType(float64, matrix)

name=W TensorType(float64, matrix)

Shape_i{1}

CGemv{inplace}

2

TensorType(int64, scalar)

AllocEmpty{dtype='float64'}

TensorType(float64, vector)

0

TensorType(float64, vector)

val=1.0 TensorType(float64, scalar)

1

name=x TensorType(float64, vector)

3

val=0.0 TensorType(float64, scalar)

4

20 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Strong typing

I All Theano variables have a type
I Different categories of types. Most used:

I TensorType for NumPy ndarrays
I GpuArrayType for CUDA arrays (CudaNdarrayType in the old back-end)
I Sparse for scipy.sparse matrices

I ndim, dtype, broadcastable pattern are part of the type
I shape and memory layout (strides) are not

21 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Broadcasting tensors

I Implicit replication of arrays along broadcastable dimensions
I Broadcastable dimensions will always have length 1
I Such dimensions can be added to the left

r = T.row('r')
print(r.broadcastable) # (True, False)
c = T.col('c')
print(c.broadcastable) # (False, True)

f = theano.function([r, c], r + c)
print(f([[1, 2, 3]], [[.1], [.2]]))
[[1.1 2.1 3.1]
[1.2 2.2 3.2]]

22 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

No side effects

Create new variables, cannot change them
I a += 1 works, returns new variable and re-assign
I a[:] += 1, or a[:] = 0 do not work (the __setitem__ method cannot

return a new object)
I a = T.inc_subtensor(a[:], 1) or a = T.set_subtensor(a[:], 0)

I This will create a new variable, and re-assign a to it
I Theano will figure out later if it can use an in-place version

Exceptions:
I The Print() Op
I The Assert() Op
I You have to re-assign (or use the returned value)
I These can disrupt some optimizations

23 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Graph structure
Strong typing
Differences from Python/NumPy

Python keywords

We cannot redefine Python’s keywords: they affect the flow when building the
graph, not when executing it.

I if var: will always evaluate to True. Use
theano.ifelse.ifelse(var, expr1, expr2)

I for i in var: will not work if var is symbolic. If var is numeric: loop
unrolling. You can use theano.scan.

I len(var) cannot return a symbolic shape, you can use var.shape[0]

I print will print an identifier for the symbolic variable, there is a Print()
operation

24 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Overview
Motivation
Basic Usage

Graph definition and Syntax
Graph structure
Strong typing
Differences from Python/NumPy

Graph Transformations
Substitution and Cloning
Gradient
Shared variables

Make it fast!
Optimizations
Code Generation
GPU

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
New features

25 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

The givens keyword

With the variables defined earlier:

x = T.vector('x')
W = T.matrix('W')
b = T.vector('b')
dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)

Substitution at the last moment, when compiling a function

x_ = T.vector('x_')
x_n = (x_ - x_.mean()) / x_.std()
f_n = theano.function([x_, W], dot, givens={x: x_n})
f_n(x_val, W_val)
-> array([1.90651511, 0.60431744, -0.64253361])

26 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Cloning with replacement

Useful when building the expression graph

dot_n, out_n = theano.clone(
[dot, out],
replace={x: (x - x.mean()) / x.std()})

f_n = theano.function([x, W], dot_n)
f_n(x_val, W_val)
-> array([1.90651511, 0.60431744, -0.64253361])

27 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

The back-propagation algorithm

Application of the chain-rule for functions from RN to R.
I C : RN → R
I f : RM → R
I g : RN → RM

I C(x) = f (g(x))

I ∂C
∂x

∣∣
x
= ∂f

∂g

∣∣∣
g(x)
· ∂g

∂x

∣∣
x

The whole M × N Jacobian matrix ∂g
∂x

∣∣
x
is not needed.

We only need ∇gx : RM → RN , v 7→ v · ∂g
∂x

∣∣
x

28 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Using theano.grad

y = T.vector('y')
C = ((out - y) ** 2).sum()
dC_dW = theano.grad(C, W)
dC_db = theano.grad(C, b)
or dC_dW, dC_db = theano.grad(C, [W, b])

I dC_dW and dC_db are symbolic expressions, like W and b

I There are no numerical values at this point

29 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Using the gradients

I The symbolic gradients can be used to build a Theano function
cost_and_grads = theano.function([x, W, b, y], [C, dC_dW, dC_db])
y_val = np.random.uniform(size=3)
print(cost_and_grads(x_val, W_val, b_val, y_val))

I They can also be used to build new expressions
upd_W = W - 0.1 * dC_dW
upd_b = b - 0.1 * dC_db
cost_and_upd = theano.function([x, W, b, y], [C, upd_W, upd_b])
print(cost_and_upd(x_val, W_val, b_val, y_val))

30 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

pydotprint(cost_and_upd)

InplaceDimShuffle{1,0}

name=W.T TensorType(float64, matrix)

TensorType(float64, matrix)

name=W TensorType(float64, matrix)

CGer{non-destructive}

0

CGemv{no_inplace}

2

Elemwise{ScalarSigmoid}[(0, 0)]

TensorType(float64, vector)

name=b TensorType(float64, vector)

0

Elemwise{Composite{(i0 - (i1 * i2 * i3 * i4))}}[(0, 2)]

0

val=1.0 TensorType(float64, scalar)

1 4

name=x TensorType(float64, vector)

3

2

Elemwise{sub}

1 TensorType(float64, vector)

Elemwise{sub,no_inplace}

0 TensorType(float64, vector)

Elemwise{mul,no_inplace}

2 TensorType(float64, vector)3 TensorType(float64, vector)

3 TensorType(float64, vector)4 TensorType(float64, vector)

val=[1.] TensorType(float64, (True,))

0

1 TensorType(float64, vector)

Elemwise{sqr,no_inplace}

TensorType(float64, vector)2 TensorType(float64, vector)

name=y TensorType(float64, vector)

1

3 TensorType(float64, vector)

val=[2.] TensorType(float64, (True,))

0

Sum{acc_dtype=float64}

TensorType(float64, vector)

TensorType(float64, vector)

val=[0.2] TensorType(float64, (True,))

1

TensorType(float64, matrix)

val=-0.1 TensorType(float64, scalar)

1

TensorType(float64, scalar)

31 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Update values

Simple ways to update values

C_val, dC_dW_val, dC_db_val = cost_and_grads(x_val, W_val, b_val, y_val)
W_val -= 0.1 * dC_dW_val
b_val -= 0.1 * dC_db_val

C_val, W_val, b_val = cost_and_upd(x_val, W_val, b_val, y_val)

I Cumbersome
I Inefficient: memory, GPU transfers

32 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Shared variables

I Symbolic variables, with a value associated to them
I The value is persistent across function calls
I The value is shared among all functions
I The variable has to be an input variable
I The variable is an implicit input to all functions using it

33 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Using shared variables

x = T.vector('x')
y = T.vector('y')
W = theano.shared(W_val)
b = theano.shared(b_val)
dot = T.dot(x, W)
out = T.nnet.sigmoid(dot + b)
f = theano.function([x], dot) # W is an implicit input
g = theano.function([x], out) # W and b are implicit inputs
print(f(x_val))
[1.79048354 0.03158954 -0.26423186]
print(g(x_val))
[0.9421594 0.73722395 0.67606977]

I Use W.get_value() and W.set_value() to access the value later

34 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

Updating shared variables

C = ((out - y) ** 2).sum()
dC_dW, dC_db = theano.grad(C, [W, b])
upd_W = W - 0.1 * dC_dW
upd_b = b - 0.1 * dC_db

cost_and_perform_updates = theano.function(
inputs=[x, y],
outputs=C,
updates=[(W, upd_W),

(b, upd_b)])

I Variables W and b are implicit inputs
I Expressions upd_W and upd_b are implicit outputs
I All outputs, including the update expressions, are computed before the

updates are performed

35 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Substitution and Cloning
Gradient
Shared variables

pydotprint(cost_and_perform_updates)

InplaceDimShuffle{1,0}

CGemv{no_inplace}

2 TensorType(float64, matrix)

TensorType(float64, matrix)

CGer{destructive}

0

Elemwise{ScalarSigmoid}[(0, 0)]

TensorType(float64, vector)

TensorType(float64, vector)

0

Elemwise{Composite{(i0 - (i1 * i2 * i3 * i4))}}[(0, 0)]

0

val=1.0 TensorType(float64, scalar)

14

name=x TensorType(float64, vector)

3

2

Elemwise{sub}

1 TensorType(float64, vector)

Elemwise{sub,no_inplace}

0 TensorType(float64, vector)

3 TensorType(float64, vector)

Elemwise{Mul}[(0, 1)]

2 TensorType(float64, vector)

4 TensorType(float64, vector) 3 TensorType(float64, vector)

val=[1.] TensorType(float64, (True,))

0

2 TensorType(float64, vector)

Elemwise{sqr,no_inplace}

TensorType(float64, vector) 1 TensorType(float64, vector)

name=y TensorType(float64, vector)

1

TensorType(float64, vector)

val=[0.2] TensorType(float64, (True,))

1

UPDATE

Sum{acc_dtype=float64}

TensorType(float64, vector) 3 TensorType(float64, vector)

val=[2.] TensorType(float64, (True,))

0

TensorType(float64, scalar) TensorType(float64, matrix)

val=-0.1 TensorType(float64, scalar)

1

UPDATE

36 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

Overview
Motivation
Basic Usage

Graph definition and Syntax
Graph structure
Strong typing
Differences from Python/NumPy

Graph Transformations
Substitution and Cloning
Gradient
Shared variables

Make it fast!
Optimizations
Code Generation
GPU

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
New features

37 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

Graph optimizations

An optimization replaces a part of the graph with different nodes
I The types of the replaced nodes have to match

Different goals for optimizations:
I Merge equivalent computations
I Simplify expressions: x/x becomes 1
I Numerical stability: Gives the right answer for “log(1+ x)” even if x is

really tiny.
I Insert in-place an destructive versions of operations
I Use specialized, high-performance versions (Elemwise loop fusion, GEMV,

GEMM)
I Shape inference
I Constant folding
I Transfer to GPU

38 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

Enabling/disabling optimizations

Trade-off between compilation speed, execution speed, error detection.
Different pre-defined modes govern the runtime and how much optimizations
are applied

I mode='FAST_RUN': default, make the runtime as fast as possible, launching
overhead. Includes moving computation to GPU if a GPU was selected

I mode='FAST_COMPILE': minimize launching overhead, around NumPy
speed

I optimizer='fast_compile': enables code generation and GPU use, but
limits graph optimizations

I mode='DEBUG_MODE': checks and double-checks everything, extremely slow
I Enable and disable particular optimizations or sets of optimizations
I Can be done globally, or for each function

39 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

C code for Ops

I Each operator can define C code computing the outputs given the inputs
I Otherwise, fall back to a Python implementation

How does this work?
I In Python, build a string representing the C code for a Python module

I Stitching together code to extract data from Python structure,
I Takes into account input and output types (ndim, dtype, . . .)
I String substitution for names of variables

I That module is compiled by g++

I The compiled module gets imported in Python
I Versioned cache of generated and compiled C code

For GPU code, same process, using CUDA and nvcc instead.

40 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

The C virtual machine (CVM)

A runtime environment, or VM, that calls the functions performing
computation of different parts of the function (from inputs to outputs)

I Avoids context switching between C and Python
I Data structure containing

I Addresses of inputs and outputs of all nodes (intermediate values)
I Ordering constraints
I Pointer to functions performing the computations
I Information on what has been computed, and needs to be computed

I Set in advance from Python when compiling a function
I At runtime, if all operations have C code, calling the pointers will be fast
I Also enables lazy evaluation (for ifelse for instance)

41 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

Using the GPU

We want to make the use of GPUs as transparent as possible.
Theano features a new GPU back-end, with

I More dtypes, not only float32

I Easier interaction with GPU arrays from Python
I Multiple GPUs and multiple streams
I In the development version only, not the 0.8.2 release

Select GPU by setting the device flag to 'cuda' or 'cuda{0,1,2,...}'.
I All shared variables will be created in GPU memory
I Enables optimizations moving supported operations to GPU

You want to make sure to use float32 for speed
I 'floatX' is the default type of all tensors and sparse matrices.
I By default, aliased to 'float64' for double precision on CPU
I Can be set to 'float32' by a configuration flag
I You can always explicitly use T.fmatrix() or T.matrix(dtype='float32')
I Experimental support for 'float16' on some GPUs

42 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Optimizations
Code Generation
GPU

Configuration flags

Configuration flags can be set in a couple of ways:
I THEANO_FLAGS=device=cuda0,floatX=float32 in the shell
I In Python:

theano.config.device = 'cuda0'
theano.config.floatX = 'float32'

I In the .theanorc configuration file:
[global]
device = cuda0
floatX = float32

43 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

Overview
Motivation
Basic Usage

Graph definition and Syntax
Graph structure
Strong typing
Differences from Python/NumPy

Graph Transformations
Substitution and Cloning
Gradient
Shared variables

Make it fast!
Optimizations
Code Generation
GPU

Advanced Topics
Looping: the scan operation
Debugging
Extending Theano
New features

44 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

Overview of scan

Symbolic looping
I Can perform map, reduce, reduce and accumulate, . . .
I Can access outputs at previous time-step, or further back
I Symbolic number of steps
I Symbolic stopping condition (behaves as do ... while)
I Actually embeds a small Theano function
I Gradient through scan implements backprop through time
I Can be transfered to GPU

45 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

Example: Loop with accumulation

k = T.iscalar("k")
A = T.vector("A")

Symbolic description of the result
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,

outputs_info=T.ones_like(A),
non_sequences=A,
n_steps=k)

We only care about A**k, but scan has provided us with A**1 through A**k.
Discard the values that we don't care about. Scan is smart enough to
notice this and not waste memory saving them.
final_result = result[-1]

compiled function that returns A**k
power = theano.function(inputs=[A, k], outputs=final_result, updates=updates)

print(power(range(10), 2))
[0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
print power(range(10), 4)
[0.00000000e+00 1.00000000e+00 1.60000000e+01 8.10000000e+01
2.56000000e+02 6.25000000e+02 1.29600000e+03 2.40100000e+03
4.09600000e+03 6.56100000e+03]

46 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

Visualization, debugging, and diagnostic tools

The definition of a Theano function is separate from its execution. To help
with this, we provide:

I Information in error messages
I Get information at runtime
I Monitor NaN or large value
I Test values when building the graph
I Detect common sources of slowness
I Self-diagnostic tools

See demo in Debug.ipynb.

47 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

The easy way: Python

Easily wrap Python code, specialized library with Python bindings (PyCUDA, . . .)

import theano
import numpy
from theano.compile.ops import as_op

def infer_shape_numpy_dot(node, input_shapes):
ashp, bshp = input_shapes
return [ashp[:-1] + bshp[-1:]]

@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
otypes=[theano.tensor.fmatrix], infer_shape=infer_shape_numpy_dot)

def numpy_dot(a, b):
return numpy.dot(a, b)

I Overhead of Python call could be slow
I To define the gradient, have to actually define a class deriving from Op, and

define the grad method.

Has been used to implement 3D convolution using FFT on GPU

48 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

The harder way: C code

I Understand the C-API of Python / NumPy / CudaNdarray
I Handle arbitrary strides (or use GpuContiguous)
I Manage refcounts for Python
I No overhead of Python function calls, or from the interpreter (if garbage

collection is disabled)
I Now easier: C code in a separate file

New contributors wrote Caffe-style convolutions, using GEMM, on CPU and
GPU that way.

49 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

Features recently added to Theano

I New GPU back-end (dev branch), with:
I Arrays of all dtypes, half-precision float (float16) for some operations
I Support for multiple GPUs in the same function
I Experimental support for OpenCL

I Performance improvements
I Better interface and implementations for convolution and transposed

convolution
I Integration of CuDNN (now v5) for 2D/3D convolutions and pooling
I CNMeM and a similar allocator
I Data-parallelism with Platoon (https://github.com/mila-udem/platoon/)

I Faster compilation
I Execution of un-optimized graph on GPU (quicker compile time)
I Easier serialization/deserialization of optimized function graphs, GPU

shared variables
I Swapping/removing updates without recompiling
I Partial evaluation of a compiled function

I Diagnostic tools
I Interactive visualization (d3viz)
I PdbBreakPoint
I Creation stack trace (in progress)

50 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Looping: the scan operation
Debugging
Extending Theano
New features

What to expect in the future

I Better support for int operations on GPU (indexing, argmax)
I More CuDNN operations (basic RNNs, batch normalization)
I Simpler, faster optimization mode
I Data-parallelism across nodes in Platoon

51 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Acknowledgements

I All people working or having worked at the MILA (previously LISA),
especially Theano contributors

I Frédéric Bastien, Yoshua Bengio, James Bergstra, Arnaud Bergeron, Olivier
Breuleux, Pierre Luc Carrier, Ian Goodfellow, Razvan Pascanu, Joseph
Turian, David Warde-Farley, Mathieu Germain, Simon Lefrançois, and many
more

I Compute Canada, Compute Québec, NSERC, the Canada Research
Chairs, and CIFAR for providing funding or access to compute resources.

I The CRM and CIFAR for the organization.

52 / 55

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Thanks for your attention

Questions, comments, requests?

http://github.com/mila-udem/summerschool2016/

I Slides: theano/course/intro_theano.pdf
I Notebook with the code examples: theano/course/intro_theano.ipynb

More resources
I Documentation: http://deeplearning.net/software/theano/
I Code: http://github.com/Theano/Theano/
I Article: The Theano Development Team, “Theano: A Python framework

for fast computation of mathematical expressions”,
https://arxiv.org/abs/1605.02688

53 / 55

http://github.com/mila-udem/summerschool2016/
http://deeplearning.net/software/theano/
http://github.com/Theano/Theano/
https://arxiv.org/abs/1605.02688

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Thanks for your attention

Questions, comments, requests?

http://github.com/mila-udem/summerschool2016/

I Slides: theano/course/intro_theano.pdf
I Notebook with the code examples: theano/course/intro_theano.ipynb

More resources
I Documentation: http://deeplearning.net/software/theano/
I Code: http://github.com/Theano/Theano/
I Article: The Theano Development Team, “Theano: A Python framework

for fast computation of mathematical expressions”,
https://arxiv.org/abs/1605.02688

54 / 55

http://github.com/mila-udem/summerschool2016/
http://deeplearning.net/software/theano/
http://github.com/Theano/Theano/
https://arxiv.org/abs/1605.02688

Overview
Graph definition and Syntax

Graph Transformations
Make it fast!

Advanced Topics

Thanks for your attention

Questions, comments, requests?

http://github.com/mila-udem/summerschool2016/

I Slides: theano/course/intro_theano.pdf
I Notebook with the code examples: theano/course/intro_theano.ipynb

More resources
I Documentation: http://deeplearning.net/software/theano/
I Code: http://github.com/Theano/Theano/
I Article: The Theano Development Team, “Theano: A Python framework

for fast computation of mathematical expressions”,
https://arxiv.org/abs/1605.02688

55 / 55

http://github.com/mila-udem/summerschool2016/
http://deeplearning.net/software/theano/
http://github.com/Theano/Theano/
https://arxiv.org/abs/1605.02688

	Overview
	Motivation
	Basic Usage

	Graph definition and Syntax
	Graph structure
	Strong typing
	Differences from Python/NumPy

	Graph Transformations
	Substitution and Cloning
	Gradient
	Shared variables

	Make it fast!
	Optimizations
	Code Generation
	GPU

	Advanced Topics
	Looping: the scan operation
	Debugging
	Extending Theano
	New features

