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Keypoint/Landmark Detection

• The problem of localizing important points on images,

such as eye centers, nose tip, mouth corners

• Preserving spatial information is needed for precise keypoint

detection.
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Motivation

• Convnets are typically composed of alternating convolutional and

max-pooling layers

• Network of only convolutional layers: keeps spatial information,

but lots of false positives

• Network of convolutional and Max-pooling layers: gets robust

features, but loses precise spatial information

Is there a way to take advantage of robust pooled features and

keep spatial information? 3



Summation-based Networks (SumNet)

• C is a convolutional layer
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Summation-based Networks (SumNet)

• C is a convolutional layer

• P is a pooling layer

• U is an upsampling layer

• branch: horizontal C layers
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Summation-based Networks (SumNet)

These models sum features of different granularity (FCN1/Hypercolumn2):

• C is a convolutional layer

• P is a pooling layer

• U is an upsampling layer

• trunk: bottom-up C,P

layers

• branch: horizontal C layers

[1] Long, Shelhamer, Darrell. Fully convolutional networks for semantic segmentation. CVPR 2015.

[2] Hariharan, Arbelaez, Girshick, Malik. Hypercolumns for object segmentation and finegrained localization. CVPR 2015. 7
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SumNet vs. RCN Pre-Softmax Maps

SumNet
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Recombinator Networks (RCN)

The model feeds coarse features into finer layers early in their computation:

• U is an upsampling layer

• K is concatenation along feature maps dimension

• C is a convolutional layer

• P is a pooling layer 11



SumNet vs. RCN

Summation-based Networks (SumNet)

Recombinator Networks (RCN)
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SumNet vs. RCN Maps
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SumNet vs. RCN Pre-Softmax Maps

SumNet RCN
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Evaluation Datasets (5 keypoints)

Training set:

• 10,000 training images

• Data-augmentation: random scale, translation and rotation

Test set:

• AFLW (2995 images)

• AFW (377 images)

For each image 5 keypoints are given:

left eye, right eye, nose, left mouth, right mouth
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Comparing SumNet and RCN

Performance:

Model AFLW AFW

SumNet (6 branch - occlusion) 6.27 6.33

RCN (6 branch - occlusion) 5.60 5.36

Training Time:

• Convergence:

RCN: 200 epochs (4 hours on K20 gpu)

SumNet: 800 epochs (14 hours on K20 gpu).

• Reaching error below 7:

RCN: 15 epochs (1,050 updates)

SumNet: 110 epochs (7,800 updates)
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Prediction Comparison

TCDCN SumNet RCN

Green dots: True key-points, Red dots: Model predictions
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Comparison with Other Models

Model AFLW AFW

TSPM [17] 15.9 14.3

CDM [12] 13.1 11.1

ESR [3] 12.4 10.4

RCPR [2] 11.6 9.3

SDM [11] 8.5 8.8

TCDCN [14] 8.0 8.2

TCDCN baseline (our implementation) 7.60 7.87

SumNet (FCN/HC) baseline (this) 6.27 6.33

RCN (this) 5.60 5.36

Table: Facial landmark estimation error (as a percent; lower is better).
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300W Dataset

The dataset annotates 68 facial keypoints

• Train set: 3148 images (2000 Helen, 811 LFPW, 337 AFW)

• Test set: 689 images (330 Helen, 224 LFPW, 135 IBUG)

• common subset: Union of Helen and LFPW test sets

• IBUG test set contains more extreme pose, expression, and rotation
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Problem with Convnet Predictions

• Convnet outputs do not always correspond to a plausible keypoint

distribution.

Green dots: True key-points, Red dots: Model predictions,

yellow line: connects model prediction to true keypoint.
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Denoising Keypoint Model

• Each keypoint location is given in a one-hot 2D map

• A subset of keypoint locations are jittered uniformly on the 2D maps

• The model is asked to reconstruct the jittered keypoints
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Joint Model

• The Recombinator Networks (RCN) and denoising models are

trained separately.

• For prediction:

1. The keypoint hard prediction of RCN is injected into the denoising

model.

2. The pre-softmax values of RCN and denoising models are summed

and pass through a final softmax.
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Prediction Samples

Green dots: True key-points, Red dots: Model predictions 23



Prediction Samples

Green dots: True key-points, Red dots: Model predictions 24



Prediction Samples

Green dots: True key-points, Red dots: Model predictions 25



Comparison with Other Models

Model Common IBUG Fullset

CDM [12] 10.10 19.54 11.94

DRMF [1] 6.65 19.79 9.22

RCPR [2] 6.18 17.26 8.35

GN-DPM [10] 5.78 - -

CFAN [13] 5.50 16.78 7.69

ESR [3] 5.28 17.00 7.58

SDM [11] 5.57 15.40 7.50

ERT [4] - - 6.40

LBF [7] 4.95 11.98 6.32

CFSS[16] 4.73 9.98 5.76

TCDCN* [15] 4.80 8.60 5.54

RCN (this) 4.70 9.00 5.54

RCN + denoising model (this) 4.67 8.44 5.41

Table: Facial landmark estimation error (as a percent; lower is better). (*
Trained on extra data)
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Conclusion

• We propose a model for merging coarse-to-fine features

• The features are injected to finer layers early in their computation

• It improves performance and convergence time

• We propose a convnet-based denoising model for keypoints

• We report SOTA on two 5-keypoint sets and one 68-keypoint set
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Questions?
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Training Cost

L(W) =
1

N

N∑
n=1

K∑
k=1

− logP(z
(n)
k |u

(n)) + λ‖W‖2 (1)

• u(n): input image n

• z
(n)
k : target location for keypoint k in image n

• W: network parameters

34



Error Metric

Euclidean distance between the true and estimated landmark positions

normalized by the distance between the eyes (interocular distance):

error =
1

KN

N∑
n=1

K∑
k=1

√
(x

(n)
k − x̃

(n)
k )2 + (y

(n)
k − ỹ

(n)
k )2

D(n)
(2)

• (x
(n)
k , y

(n)
k ): true x and y coordinates for keypoint k in image n

• (x̃
(n)
k , ỹ

(n)
k ): model predicted coordinates

• D(n): interocular distance in image n
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Masking SumNet Branches

Mask AFLW AFW

coarse → fine

1, 0, 0, 0 10.54 10.63

0, 1, 0, 0 11.28 11.43

1, 1, 0, 0 9.47 9.65

0, 0, 1, 0 16.14 16.35

0, 0, 0, 1 45.39 47.97

0, 0, 1, 1 13.90 14.14

0, 1, 1, 1 7.91 8.22

1, 0, 0, 1 6.91 7.51

1, 1, 1, 1 6.44 6.78

Mask: 0 branch is omitted, 1 branch in included.

• Error values are in percent
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Masking RCN Branches

Mask AFLW AFW

coarse → fine

1, 0, 0, 0 10.61 10.89

0, 1, 0, 0 11.56 11.87

1, 1, 0, 0 9.31 9.44

0, 0, 1, 0 15.78 15.91

0, 0, 0, 1 46.87 48.61

0, 0, 1, 1 12.67 13.53

0, 1, 1, 1 7.62 7.95

1, 0, 0, 1 6.79 7.27

1, 1, 1, 1 6.37 6.43

Mask: 0 branch is omitted. 1 branch in included.

• Error values are in percent
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Occlusion Pre-Processing

• Test sets contain more extreme occlusion and lighting cotrast

• We put black rectangle on random location in the image

This forces the model to look at more global facial components
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Adding More Branches

Model AFLW AFW

SumNet (4 branch) 6.44 6.78

SumNet (5 branch) 6.42 6.53

SumNet (6 branch) 6.34 6.48

SumNet (5 branch - occlusion) 6.29 6.34

SumNet (6 branch - occlusion) 6.27 6.33

RCN (4 branch) 6.37 6.43

RCN (5 branch) 6.11 6.05

RCN (6 branch) 6.00 5.98

RCN (7 branch) 6.17 6.12

RCN (5 branch - occlusion) 5.65 5.44

RCN (6 branch - occlusion) 5.60 5.36

RCN (7 branch - occlusion) 5.76 5.55
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Prediction Results, part 1

• For each image in test sets average error is taken (across 4 models)

• The images are sorted (by avg error) and a random sample is taken

in each bin
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Prediction Results, part 2

• For each image in test sets average error is taken (across 4 models)

• The images are sorted (by avg error) and a random sample is taken

in each bin 41



Comparison with Other Architectures

XXXXXXXXXXXXFeatures

Models Efficient
Localization [9]

Deep
Cascade [8]

Hyper-
columns [5]

FCN
[6]

RCN
(this)

Coarse features: hard
crop or soft combination? Hard Hard Soft Soft Soft

Learned coarse features
fed into finer branches? No No No No Yes

Table: Comparison of multi-resolution architectures. The Efficient
Localization and Deep Cascade models use coarse features to crop images (or
fine layer features), which are then fed into fine models. This process saves
computation when dealing with high-resolution images but at the expense of
making a greedy decision halfway through the model. Soft models merge local
and global features of the entire image and do not require a greedy decision.
The Hypercolumn and FCN models propagate all coarse information to the
final layer but merge information via addition instead of conditioning fine
features on coarse features. The Recombinator Networks (RCN), in contrast,
injects coarse features directly into finer branches, allowing the fine
computation to be tuned by (conditioned on) the coarse information.
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