
Julie Bernauer and Ryan Olson

GPU programming for DL

2

Outline

• Intro to GPU computing / Libraries for DL /Platform

• Intro to CUDA

• Hands-on labs

• Accelerating Applications with CUDA C/C++

• (optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++

• (optional) GPU Memory Optimizations (C/C++)

Presentation & Hands-on session

3

GPU Computing

4

GPU Computing

 x86

5

CUDA

A simple sum of two vectors (arrays) in C

GPU friendly version in CUDA

Framework to Program NVIDIA GPUs

__global__ void vector_add(int n, const float *a, const float *b, float *c)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 if(idx < n)
 c[idx] = a[idx] + b[idx];
}

void vector_add(int n, const float *a, const float *b, float *c)
{
 for(int idx = 0 ; idx < n ; ++idx)
 c[idx] = a[idx] + b[idx];
}

6

GPU accelerated libraries
“Drop-in” Acceleration for Your Applications

Linear Algebra
FFT, BLAS,

SPARSE, Matrix, cuSolver

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA

cuFFT,

cuBLAS,

cuSPARSE

NVIDIA

Math Lib NVIDIA cuRAND

NVIDIA

NPP

NVIDIA

Video

Encode

GPU AI –

Board

Games

GPU AI –

Path Finding

7

Deep Neural Networks and GPUs

8

ACCELERATING
INSIGHTS

GOOGLE DATACENTER

1,000 CPU Servers
2,000 CPUs • 16,000 cores

600 kWatts

$5,000,000

STANFORD AI LAB

3 GPU-Accelerated Servers
12 GPUs • 18,432 cores

4 kWatts

$33,000

Now You Can Build Google’s

$1M Artificial Brain on the Cheap

“ “

Deep learning with COTS HPC systems, A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro ICML 2013

ACCELERATING
INSIGHTS

9

39%

45%

55%

62%
66%

72%
75%

79%
83%

86%

30%

40%

50%

60%

70%

80%

90%

100%

5/2015 7/2015 9/2015 10/2015 12/2015

Recent improvements

Pedestrian Detection

CALTECH

65%

70%

75%

80%

85%

90%

95%

100%

11/2013 6/2014 12/2014 7/2015 1/2016

A
c
c
u
ra

c
y

CV-based DNN-based

Object Detection

KITTI

72%
74%

84%

88%

93%

65%

70%

75%

80%

85%

90%

95%

100%

2010 2011 2012 2013 2014

Image Recognition

IMAGENET

NVIDIA GPU
Top Score

Source: ImageNet Source: CalTech Source: KITTI

NVIDIA DRIVENet

10

NVIDIA cuDNN

Building blocks for accelerating deep
neural networks on GPUs

High performance deep neural
network training

Accelerates Deep Learning: Caffe,
CNTK, Tensorflow, Theano, Torch

Performance continues to improve
over time

“NVIDIA has improved the speed of cuDNN

with each release while extending the

interface to more operations and devices

at the same time.”

 — Evan Shelhamer, Lead Caffe Developer, UC Berkeley

developer.nvidia.com/cudnn

AlexNet training throughput based on 20 iterations,
CPU: 1x E5-2680v3 12 Core 2.5GHz.

0.0x

2.0x

4.0x

6.0x

8.0x

10.0x

12.0x

2014 2015 2016

K40
(cuDNN v1)

M40
(cuDNN v3)

Pascal
(cuDNN v5)

11

Accelerating linear algebra: cuBLAS

Accelerated Level 3 BLAS

- GEMM, SYMM, TRSM, SYRK

- >3 TFlops Single Precision on a single K40

Multi-GPU BLAS support available in cuBLAS-XT

developer.nvidia.com/cublas

http://developer.nvidia.com/digits

12

Accelerating sparse operations: cuSPARSE

cusparse<T>gemvi()

y = α ∗ op(A)∗x + β∗y

A = dense matrix

x = sparse vector

y = dense vector

cuSPARSE provides a full suite of accelerated sparse matrix functions

The (Dense matrix) X (sparse vector) example

-

2

-

-

1

y1

y2

y3
α + β

y1

y2

y3

A11

A21

A31

A12

A22

A32

A13

A23

A33

A14

A24

A34

Sparse vector could be frequencies

of words in a text sample

A15

A25

A35

developer.nvidia.com/cusparse

http://developer.nvidia.com/digits

13

Multi-GPU communication: NCCL

• Research library of accelerated collectives that is easily

integrated and topology-aware so as to improve the scalability

of multi-GPU applications

• Pattern the library after MPI’s collectives

• Handle the intra-node communication in an optimal way

• Provide the necessary functionality for MPI to build on top to

handle inter-node

Collective library

github.com/NVIDIA/nccl

http://github.com/NVIDIA/nccl

14

NCCL Example

#include <nccl.h>

ncclComm_t comm[4];

ncclCommInitAll(comm, 4, {0, 1, 2, 3});

foreach g in (GPUs) { // or foreach thread

 cudaSetDevice(g);

 double *d_send, *d_recv;

 // allocate d_send, d_recv; fill d_send with data

 ncclAllReduce(d_send, d_recv, N, ncclDouble, ncclSum, comm[g], stream[g]);

 // consume d_recv

}

All-reduce

15

Platform

16

Developer workstation
Titan X Pascal

11 TFLOPS FP32

INT8

3,584 CUDA

12 GB DDR5X

17 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

DGX-1
World’s First Deep Learning Supercomputer

Engineered for deep learning

170 TF FP16

8x Tesla P100 in hybrid cube mesh

 + SDD RAID, 4x IB

Accelerates major AI frameworks

nvidia.com/dgx1

18

Tesla p100 accelerator

Compute 5.3 TF DP ∙ 10.6 TF SP ∙ 21.2 TF HP

Memory HBM2: 720 GB/s ∙ 16 GB

Interconnect NVLink (up to 8 way) + PCIe Gen3

Programmability
Page Migration Engine

Unified Memory

19

GIE (GPU Inference Engine)
MANAGE TRAIN DEPLOY

DIGITS

DATA CENTER AUTOMOTIVE

TRAIN TEST

MANAGE / AUGMENT
EMBEDDED

GPU INFERENCE ENGINE

developer.nvidia.com/gpu-inference-engine

20

EXAMPLE: DL EMBEDDED DEPLOYMENT

Jetson TX1

Inference at 258 img/s

No need to change code

Simply compile Caffe and copy a
trained .caffemodel to TX1

Jetson TX1 devkit

21

GPU INFERENCE ENGINE
Optimizations

• Fuse network layers

• Eliminate concatenation layers

• Kernel specialization

• Auto-tuning for target platform

• Select optimal tensor layout

• Batch size tuning TRAINED
NEURAL NETWORK

OPTIMIZED
INFERENCE
RUNTIME

developer.nvidia.com/gpu-inference-engine

See the parallel for all blog post for GIE:
https://devblogs.nvidia.com/parallelforall/production-deep-learning-nvidia-gpu-inference-engine/

22

GPU INFERENCE ENGINE
Performance

23

NVIDIA DIGITS
Interactive Deep Learning GPU Training System

Test Image

Monitor Progress Configure DNN Process Data Visualize Layers

developer.nvidia.com/digits
github.com/NVIDIA/DIGITS

24

CUDA

25

GPU architecture

26

GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 24 GB

ECC on/off options for Quadro and Tesla products

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

Two Main Components

27

GPU ARCHITECTURE

Many CUDA Cores per SM

Architecture dependent

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

Streaming Multiprocessor (SM) Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

29

GPU MEMORY HIERARCHY REVIEW

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

32

CUDA Programming model

33

ANATOMY OF A CUDA C/C++ APPLICATION
Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads
across multiple processing elements

 CUDA C/C++ Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

35

CUDA C : C WITH A FEW KEYWORDS

void saxpy_serial(int n, float a, float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code

36

CUDA KERNELS

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

37

CUDA KERNELS: PARALLEL THREADS

A kernel is a function executed
on the GPU as an array of
threads in parallel

All threads execute the same
code, can take different paths

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadIdx.x];

float y = func(x);

output[threadIdx.x] = y;

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

GPU

Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…
…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

Thread blocks allow cooperation

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Threads may need to cooperate:

Cooperatively load/store blocks of

memory all will use

Share results with each other or

cooperate to produce a single result

Synchronize with each other

45

THREAD BLOCKS ALLOW SCALABILITY

Blocks can execute in any order, concurrently or sequentially

This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

 Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel Grid

Launch

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1

SM 2 SM 3

 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

46

Memory System Hierarchy

47

MEMORY HIERARCHY

Thread:

Registers

48

MEMORY HIERARCHY

Thread:

Registers

Local memory

Local Local Local Local Local Local Local

49

MEMORY HIERARCHY

Thread:

Registers

Local memory

Block of threads:

Shared memory

50

MEMORY HIERARCHY : SHARED MEMORY

__shared__ int a[SIZE];

Allocated per thread block, same
lifetime as the block

Accessible by any thread in the block

Several uses:

Sharing data among threads in a block

User-managed cache (reducing gmem
accesses)

51

MEMORY HIERARCHY

Thread:

Registers

Local memory

Block of threads:

Shared memory

All blocks:

Global memory

52

MEMORY HIERARCHY : GLOBAL MEMORY

Accessible by all threads of any kernel

Data lifetime: from allocation to
deallocation by host code

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t
count)

cudaFree (void* pointer)

53

CUDA memory management

54

MEMORY SPACES

CPU and GPU have separate memory spaces

Data is moved across PCIe bus

Use functions to allocate/set/copy memory on GPU just like standard C

Pointers are just addresses

Can’t tell from the pointer value whether the address is on CPU or GPU

Must use cudaPointerGetAttributes(…)

Must exercise care when dereferencing:

Dereferencing CPU pointer on GPU will likely crash

Dereferencing GPU pointer on CPU will likely crash

55

GPU MEMORY ALLOCATION / RELEASE

Host (CPU) manages device (GPU) memory

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Note: Device memory from

 GPU point of view

 is also referred to as

 global memory.

56

DATA COPIES

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);

returns after the copy is complete

blocks CPU thread until all bytes have been copied

doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided

57

Basic kernels and execution

58

CUDA PROGRAMMING MODEL REVISITED

Parallel code (kernel) is launched and executed on a device by many
threads

Threads are grouped into thread blocks

Parallel code is written for a thread

Each thread is free to execute a unique code path

Built-in thread and block ID variables

59

THREAD HIERARCHY

Threads launched for a parallel section are partitioned into thread blocks

Grid = all blocks for a given launch

Thread block is a group of threads that can:

Synchronize their execution

Communicate via shared memory

60

IDS AND DIMENSIONS

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

(Continued)

Threads

3D IDs, unique within a block

Blocks

2D IDs, unique within a grid

Dimensions set at launch time

Can be unique for each grid

Built-in variables

threadIdx, blockIdx

blockDim, gridDim

61

IDS AND DIMENSIONS

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Threads

3D IDs, unique within a block

Blocks

2D IDs, unique within a grid

Dimensions set at launch time

Can be unique for each grid

Built-in variables

threadIdx, blockIdx

blockDim, gridDim

62

LAUNCHING KERNELS ON GPU

Launch parameters (triple chevron <<<>>> notation)

grid dimensions (up to 2D), dim3 type

thread-block dimensions (up to 3D), dim3 type

shared memory: number of bytes per block

for extern smem variables declared without size

Optional, 0 by default

stream ID

Optional, 0 by default

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block, 0, 0>>>(...);

kernel<<<32, 512>>>(...);

63

GPU KERNEL EXECUTION

Kernel launches on a grid of blocks, <<<grid,block>>>(arg1,…)

Each block is launched on one SM

A block is divided into warps of 32 threads each (think 32-way vector)

Warps in a block are scheduled and executed.

All threads in a warp execute same instruction simultaneously (think SIMD)

Number of blocks/SM determined by resources required by the block

Registers, shared memory, total warps, etc.

Block runs to completion on SM it started on, no migration.

66

BLOCKS MUST BE INDEPENDENT

Any possible interleaving of blocks should be valid

presumed to run to completion without pre-emption

can run in any order

can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer: OK

shared lock: BAD … any dependence on order easily deadlocks

Independence requirement gives scalability

67

Hands-on labs

68

Prepare and Start AWS Instance

• Open a browser, go to nvlabs.qwiklab.com

• Register (it’s free) and Sign in.

• Select the correct lab (Montreal GPU Programming Workshop) and once enabled press
“Start Lab”

• Instance can take up to 10 minutes to start.

• Three labs are available:

• Accelerating Applications with CUDA C/C++

• (optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++

• (optional) GPU Memory Optimizations (C/C++)

69

70

71

Wrap up

72

Software

• GPU Driver

• CUDA toolkit

• Includes all the software necessary for developers to write applications

• Compiler (nvcc), libraries, profiler, debugger, documentation

• CUDA Samples

• Samples illustrating GPU functionality and performance

• Examples illustrating important programming constructs and techniques.

• www.nvidia.com/getcuda -- all above software is free

http://www.nvidia.com/getcuda

73

Want to try?

Deep Learning https://developer.nvidia.com/deep-learning

Hands-on labs https://nvidia.qwiklab.com/

Question? Email jbernauer@nvidia.com

Links and resources

https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://nvidia.qwiklab.com/
https://nvidia.qwiklab.com/
mailto:jbernauer@nvidia.com

COME DO YOUR LIFE’S WORK
JOIN NVIDIA

We are looking for great people at all levels to help us accelerate the next wave of AI-driven

computing in Research, Engineering, and Sales and Marketing.

Our work opens up new universes to explore, enables amazing creativity and discovery, and

powers what were once science fiction inventions like artificial intelligence and autonomous

cars.

Check out our career opportunities:

• www.nvidia.com/careers

• Reach out to your NVIDIA social network or NVIDIA recruiter at

DeepLearningRecruiting@nvidia.com

