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Outline

Intro to GPU computing / Libraries for DL /Platform
Intro to CUDA
Hands-on labs
Accelerating Applications with CUDA C/C++
(optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++

(optional) GPU Memory Optimizations (C/C++)

2 NVIDIA.



GPU Computing



GPU Computing




CUDA

A simple sum of two vectors (arrays) in C

void vector_add(int n, const float *a, const float *b, float *c)

{

for( int idx = 0 ; idx < n ; ++idx )
c[idx] = a[idx] + b[idx];

GPU friendly version in CUDA

__global__ void vector_add(int n, const float *a, const float *b, float *c)

int idx = blockIdx.x*blockDim.x + threadIdx.x;

1fC idx < n )
c[idx] = a[i1dx] + b[i1dx];




GPU accelerated libraries

Linear Algebra NVIDIA \
FF, BLAS . P
SPARSE, Matrix, cuSolver :

cuSPARSE

Numerical & Math

RAND, Statistics - NVIDIA B /- g =12
- Math Lib NVIDIA ¢aRAND*

Data Struct. & Al

Sort, Scan, Zero Sum

Visual Processing
Image & Video




Deep Neural Networks and GPUs



GOOGLE DATACENTER STANFORD Al LAB

ACCELERATING
INSIGHTS

1,000 CPU Servers 600 kWatts 3 GPU-Accelerated Servers 4 kWatts
2,000 CPUs - 16,000 cores $5,000,000 12 GPUs - 18,432 cores $33,000

Deep learning with COTS HPC systems, A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro ICML 2013 8 <NVIDIA.



Recent improvements
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Pascal

NVIDIA cuDNN s

M40
(CuDNN v3)

Building blocks for accelerating deep : o
neural networks on GPUs | DN

- High performance deep neural

network training 2015

- Accelerates Deep Learning: Caffe,
CNTK, Tensorflow, Theano, Torch

NVIDIA has improved the speed of cuDNN

- Performance continues to improve with each release while extending the
over time interface to more operations and devices

at the same time.

developer.nvidia.com/cudnn




Accelerating linear algebra: cuBLAS

Accelerated Level 3 BLAS 1600

GEMM, SYMM, TRSM, SYRK 0 rﬁ“ﬁw
: . : 8 o0
>3 TFlops Single Precision on a single K40 8 |V —eunias
| ~—MKL

Multi-GPU BLAS support available in cuBLAS-XT : o 200 200 w0

cuBLAS on K40m, ECC ON, input and output data on device. MKL 11.0.4 on Intel
IvyBridge single socket 12 -core E5-2697 v2 @ 2.70GHz

11 NVIDIA.


http://developer.nvidia.com/digits

Accelerating sparse operations: cCuSPARSE

<T> i 0 B 0 ] B ]
cusparse<T>gemvi() - el e [ [ .
_ A B Y2 - a Ao1| A2z | Az |Aga|Ass ] + B Y2
y = a * op(A)*x + Bxy Y3 Agi| Asz | Asz |Asg| Ags ] £
A = dense matrix - a L I
X = sparse vector T

y = dense vector

Sparse vector could be frequencies
of words in a text sample

cuSPARSE provides a full suite of accelerated sparse matrix functions

12 NVIDIA.


http://developer.nvidia.com/digits

Multi-GPU communication: NCCL

Research library of accelerated collectives that is easily
integrated and topology-aware so as to improve the scalability
of multi-GPU applications

Pattern the library after MPI’s collectives \
W

Handle the intra-node communication in an optimal way

Provide the necessary functionality for MPI to build on top to
handle inter-node

13 NVIDIA.


http://github.com/NVIDIA/nccl

NCCL Example

All-reduce

#include <nccl.h>
ncclComm t comm[4];
ncclCommInitAll(comm, 4, {0, 1, 2, 3});

foreach g in (GPUs) { // or foreach thread
cudaSetDevice(g);

double *d send, *d _recv;
// allocate d_send, d recv; fill d send with data

ncclAllReduce(d_send, d recv, N, ncclDouble, ncclSum, comm[g], stream[g]);

// consume d_recv

14 <A NVIDIA.



Platform



Developer workstation
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DGX-1

World’s First Deep Learning Supercomputer
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Tesla p100 accelerator

Compute 5.3TFDP-10.6 TFSP - 21.2 TF HP
Memory HBM2: 720 GB/s - 16 GB
Interconnect NVLink (up to 8 way) + PCle Gen3

Page Migration Engine

Programmability Unified Memory




GIE (GPU Inference Engine)

>
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~— —_— Caffe ‘I'mrch —
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St
MANAGE / AUGMENT L oS

developer.nvidia.com/gpu-inference-engine

EMBEDDED DATA CENTER  AUTOMOTIVE



EXAMPLE: DL EMBEDDED DEPLOYMENT

Jetson TX1 devkit

Jetson TX1

Inference at 258 img/s

No need to change code

Simply compile Caffe and copy a
trained .caffemodel to TX1

20 <ANVIDIA.



"h\- L
E/
TRAINED
NEURAL NETWORK

GPU INFERENCE ENGINE

* Fuse network layers
« Eliminate concatenation layers
» Kernel specialization

« Auto-tuning for target platform

» Select optimal tensor layout

*#

« Batch size tuning

See the parallel for all blog post for GIE:

OPTIMIZED
INFERENCE
RUNTIME

https://devblogs.nvidia.com/parallelforall/production-deep-learning-nvidia-gpu-inference-engine/

21 NVIDIA.
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GPU INFERENCE ENGINE

Performance

GIE + GPU vs. Caffe + GPU
10 Most Time Consuming Caffe Kernels (GooglLeNet)
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Process Data
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GPU ARCHITECTURE

Two Main Components

+ Global memory

» Analogous to RAM in a CPU server

+ Accessible by both GPU and CPU

+ Currently up to 24 GB

+ ECC on/off options for Quadro and Tesla products

+ Streaming Multiprocessors (SM)
+ Perform the actual computation

~ Each SM has its own: Control units, registers, execution pipelines, caches

26 <INVIDIA.



GPU ARCHITECTURE

Streaming Multiprocessor (SM)

» Many CUDA Cores per SM

« Architecture dependent

+ Special-function units

= cos/sin/tan, etc.
- Shared mem + L1 cache

» Thousands of 32-bit registers
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GPU MEMORY HIERARCHY REVIEW

SMEM SMEM SMEM

#

Global Memory




CUDA Programming model
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ANATOMY OF A CUDA C/C++ APPLICATION

+ Serial code executes in a Host (CPU) thread

+ Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA C/C++ Application

S>erial code

Parallel code

Host = CPU ?

Device = GPU

Host = CPU

Device = GPU

33 <ANVIDIA.



CUDA C : C WITH A FEW KEYWORDS

void saxpy_serial(int n, float a, float *x, float *y) ﬁ‘\
{
for (int i = 0; i < n; ++1)
y[il = ax[i]l + y[1l; Standard C Code
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, X, y); 4J/

N\

__global__ void saxpy_parallel(int n, float a, float *x, float *y) ‘\\
{

int i = blockIdx.x*blockDim.x + threadIidx.x;
if (i < n) y[i]l = a*x[i] + y[i]; Parallel C Code
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, X, y); A//




CUDA KERNELS

- Parallel portion of application: execute as a kernel

- Entire GPU executes kernel, many threads

- CUDA threads:
- Lightweight
+ Fast switching

+ 1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels

SANVIDIA.



CUDA KERNELS: PARALLEL THREADS

- A kernel is a function executed HEE B8

on the GPU as an array of N\ N\ _

threads in parallel
float x = input[threadldx.x];

float y = func(x);
output[threadldx.x] = y;

- All threads execute the same
code, can take different paths

+ Each thread has an ID I\ .  .
= Select input/output data

» Control decisions

SANVIDIA.



CUDA Kernels: Subdivide into Blocks




CUDA Kernels: Subdivide into Blocks

* Threads are grouped into blocks



CUDA Kernels: Subdivide into Blocks

.

¢ Threads are grouped into blocks
* Blocks are grouped into a grid



CUDA Kernels: Subdivide into Blocks
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* Threads are grouped into blocks
* Blocks are grouped into a grid

® A kernel is executed as a grid of blocks of threads




CUDA Kernels: Subdivide into Blocks

stk

* Threads are grouped into blocks
* Blocks are grouped into a grid
® A kernel is executed as a grid of blocks of threads



Kernel Execution

CUDA thread CUDA core » Each thread is executed by a
§ - I core

« Each block is executed by

CUDA Streaming one SM and does not migrate
CUDA thread block Multiprocessor  Several concurrent blocks can

— reside on one SM depending
- I I I I on the blocks’ memory
requirements and the SM’s
memory resources

CUDA-enabled GPU

* Each kernel is executed on
I one device
I I I I » Multiple kernels can execute

on a device at one time

CUDA kernel grid




Thread blocks allow cooperation

* Threads may need to cooperate:

* Cooperatively load/store blocks of
memory all will use

# Share results with each other or
cooperate to produce a single result

# Synchronize with each other
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THREAD BLOCKS ALLOW SCALABILITY

- Blocks can execute in any order, concurrently or sequentially

+ This independence between blocks gives scalability:

- A kernel scales across any number of SMs

Kernel Grid
Launch

Device with 2 SMs Block 0 Device with 4 SMs

SM O SM 1 il SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 0 Block 1 Block 2 Block 3

Block 2 Block 3 Block 3 Block 4 Block 5 Block 6 Block 7

Block 4 Block 5 Block 4

Block 6 Block 7 Block 5
Block 6

Block 7

<ANVIDIA.



Memory System Hierarchy
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- Thread:

» Registers

MEMORY HIERARCHY

'y 'y b
; E



MEMORY HIERARCHY

+ Thread:
» Registers

+ Local memory

'Y Y Y
E

Local Local Local Local Local Local Local
IDIA.



~ Thread:
» Registers

+ Local memory

- Block of threads:

+ Shared memory

MEMORY HIERARCHY
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MEMORY HIERARCHY : SHARED MEMORY

// ,//
[ '(
__shared__int a[SIZE]; \) \\,]
. l p (/,,
- Allocated per thread block, same A X

lifetime as the block

+ Accessible by any thread in the block

~ Several uses:

~ Sharing data among threads in a block

- User-managed cache (reducing gmem !
accesses) =

SANVIDIA.



~ Thread:

- Registers

- Local memory
- Block of threads:

~ Shared memory

- All blocks:

+ Global memory

MEMORY HIERARCHY

3380938 3043358 385388

Global

SANVIDIA.



MEMORY HIERARCHY : GLOBAL MEMORY

- Accessible by all threads of any kernel §§§ | ) 5 §§§ | 5 | ) §§§ | ) 5 i:'j;;
BRR BRER BRR

- Data lifetime: from allocation to HENEREE WEERNSE N --

ey ot e - RRRARRN RRARRAT RRRAIDD

- cudaMemset (void * pointer, int value, size_t

count) ;
Global

- cudaFree (void* pointer)

SANVIDIA.




CUDA memory management
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MEMORY SPACES

CPU and GPU have separate memory spaces
~ Data is moved across PCle bus
= Use functions to allocate/set/copy memory on GPU just like standard C
Pointers are just addresses
- Can’t tell from the pointer value whether the address is on CPU or GPU
» Must use cudaPointerGetAttributes(...)

+ Must exercise care when dereferencing:
- Dereferencing CPU pointer on GPU will likely crash

- Dereferencing GPU pointer on CPU will likely crash

SANVIDIA.



GPU MEMORY ALLOCATION / RELEASE

Host (CPU) manages device (GPU) memory
» cudaMalloc (void ** pointer, size_t nbytes)
+ cudaMemset (void * pointer, int value, size_t count)
+ cudaFree (void* pointer)
int n = 1024;
int nbytes = 1024*sizeof (int) ;
int * d a = 0;

cudaMalloc( (void**)&d a, nbytes );

cudaMemset( d _a, 0, nbytes);

cudaFree(d a);
) <SANVIDIA.



DATA COPIES

cudaMemcpy( void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);

+ returns after the copy is complete
+ blocks CPU thread until all bytes have been copied

+ doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind
+ cudaMemcpyHostToDevice
+ cudaMemcpyDeviceToHost

+ cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided

<ANVIDIA.



Basic kernels and execution
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CUDA PROGRAMMING MODEL REVISITED

- Parallel code (kernel) is launched and executed on a device by many
threads

- Threads are grouped into thread blocks

- Parallel code is written for a thread
- Each thread is free to execute a unique code path

= Built-in thread and block ID variables

SANVIDIA.



THREAD HIERARCHY

+ Threads launched for a parallel section are partitioned into thread blocks

+ Grid = all blocks for a given launch

+ Thread block is a group of threads that can:
+ Synchronize their execution

- Communicate via shared memory

SANVIDIA.



IDS AND DIMENSIONS

Threads
# 3D IDs, unique within a block

Device

Grid 1
Blocks o
* 2D IDs, unique within a grid (0.0)
Block
Dimensions set at launch time (0.1)

# Can be unigue for each grid

Built-in variables

* threadldx, blockldx
® blockDim, gridDim

(Continued)

SANVIDIA.



IDS AND DIMENSIONS

Threads
# 3D IDs, unique within a block
Grid 1
BIOCkS Block Block Block
# 2D IDs, unique within a grid 0o L &0 L 0

Bj,oek’x Block Block
//'/(O, 1) L (1’ 1) \\\ (2’ 1)

Dimensions set at launch time
# Can be unique for each grid
Block (1, 1)

BU'It"n Varlab|eS Thread Thread Thread Thread Thread
(0,0) (1,0) (2,0) (3,0) (4,0)
® threadldx1 bIOCkIdX Thread Thread Thread Thread

(1, 1)

. A . 0, 1) (2,1) (3.1 4,1)
.
b I OCkDI m 4 g rl d D I m Thread Thread Thread Thread Thread
0, 2) 1,2 (2,2) (3,2) 4, 2)

SANVIDIA.




LAUNCHING KERNELS ON GPU

Launch parameters (triple chevron <<<>>> notation)
- grid dimensions (up to 2D), dim3 type
+ thread-block dimensions (up to 3D), dim3 type

+ shared memory: number of bytes per block

» for extern smem variables declared without size

- Optional, 0 by default dim3 grid(16, 16);
| dim3 block(16,16);
~ stream ID kernel<<< , 0, 0>>>(..);
kernel<<< == (05

» Optional, 0 by default

SANVIDIA.



GPU KERNEL EXECUTION

+ Kernel launches on a grid of blocks, <<<grid,block>>>(arg1,...)

+ Each block is launched on one SM
~ A block is divided into warps of 32 threads each (think 32-way vector)
~ Warps in a block are scheduled and executed.
= All threads in a warp execute same instruction simultaneously (think SIMD)

» Number of blocks/SM determined by resources required by the block

+ Registers, shared memory, total warps, etc.

+ Block runs to completion on SM it started on, no migration.

SANVIDIA.



BLOCKS MUST BE INDEPENDENT

Any possible interleaving of blocks should be valid
- presumed to run to completion without pre-emption
~ can run in any order
= can run concurrently OR sequentially

Blocks may coordinate but not synchronize
+ shared queue pointer: OK

- shared lock: ... any dependence on order easily deadlocks

Independence requirement gives scalability

SANVIDIA.



Hands-on labs



Prepare and Start AWS Instance

Open a browser, go to nvlabs.qwiklab.com

Register (it’s free) and Sign in.

Select the correct lab (Montreal GPU Programming Workshop) and once enabled press
“Start Lab”

Instance can take up to 10 minutes to start.
Three labs are available:
Accelerating Applications with CUDA C/C++
(optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++

(optional) GPU Memory Optimizations (C/C++)

68 NVIDIA.



‘ " qwiklab.com > ! Q g ks a

MY ACCOUNT

qu LABS INSESSION 2 UPCOMING 0 TAKEN 3

Sign out
[N

R © 216 10 3

Total Hours Completed Labs Classes Taken

Class Details Y Accelerating Applications with CUDA Select
Coon [P (T

15 Credits

Montreal GPU Programming Workahot

- Accelerating Applications with CUDA C/Cee
Updated with more content and support for
CUDA&!

. - Accelerating Applications with GPU-Accelermated Libranes ( .. Currently Inactive

Leam how to accelerate youl C/Ces

application using CUDA to hainess the

massively parallel power of NVIDIA GPUSs. In

e n PU Memoty Optimzation {L/Ces) Currently inactive F0 minutes. you will work through seven

exercies. Including Duration 90 min,

e Hello Parallelism’ Reeas vl 1% min

o Accelerate the simple SAXPY alparithm

o Accelerate a basic Matrix Multiply Setup Tume 3 min
algorithm with CUDA

Level Expert
o Enor checking GPU code

Querying GPU Devices for capabilites

Data management with Unified

Memory

A case study implementing most of the

above

69 <ANVIDIA.



70 <4ANVIDIA.



Wrap up



Software

GPU Driver
CUDA toolkit

Includes all the software necessary for developers to write applications

Compiler (nvcc), libraries, profiler, debugger, documentation

CUDA Samples

Samples illustrating GPU functionality and performance

Examples illustrating important programming constructs and techniques.

-- all above software is free

72
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http://www.nvidia.com/getcuda

Want to try?

Links and resources

Deep Learning https://developer.nvidia.com/deep-learning

Hands-on labs https://nvidia.gwiklab.com/

Question? Email jbernaver@nvidia.com

73 <ANVIDIA.


https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://nvidia.qwiklab.com/
https://nvidia.qwiklab.com/
mailto:jbernauer@nvidia.com

JOIN NVIDIA

We are looking for great people at all levels to help us accelerate the next wave of Al-driven
computing in Research, Engineering, and Sales and Marketing.

Our work opens up new universes to explore, enables amazing creativity and discovery, and

powers what were once science fiction inventions like artificial intelligence and autonomous
cars.

Check out our career opportunities:
« www.nvidia.com/careers

* Reach out to your NVIDIA social network or NVIDIA recruiter at
DeeplLearningRecruiting@nvidia.com
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