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Outline 

• Intro to GPU computing / Libraries for DL /Platform 

• Intro to CUDA 

• Hands-on labs 

• Accelerating Applications with CUDA C/C++ 

• (optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++  

• (optional) GPU Memory Optimizations (C/C++) 

 

Presentation & Hands-on session 
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GPU Computing 
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GPU Computing 

 x86   
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CUDA 

A simple sum of two vectors (arrays) in C 

 

 

 

GPU friendly version in CUDA 

Framework to Program NVIDIA GPUs 

__global__ void vector_add(int n, const float *a, const float *b, float *c) 
{ 
  int idx = blockIdx.x*blockDim.x + threadIdx.x; 
  if( idx < n ) 
    c[idx] = a[idx] + b[idx]; 
} 

void vector_add(int n, const float *a, const float *b, float *c) 
{ 
  for( int idx = 0 ; idx < n ; ++idx ) 
    c[idx] = a[idx] + b[idx]; 
} 
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GPU accelerated libraries 
“Drop-in” Acceleration for Your Applications 

Linear Algebra 
FFT, BLAS,  

SPARSE, Matrix, cuSolver 

Numerical & Math 
RAND, Statistics 

Data Struct. & AI 
Sort, Scan, Zero Sum 

Visual Processing 
Image & Video 

NVIDIA 

cuFFT,  

cuBLAS,  

cuSPARSE 

NVIDIA 

Math Lib NVIDIA cuRAND 

NVIDIA 

NPP 

NVIDIA 

Video 

Encode 

GPU AI – 

Board 

Games 

GPU AI – 

Path Finding 
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Deep Neural Networks and GPUs 
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ACCELERATING 
INSIGHTS 

GOOGLE DATACENTER 

1,000 CPU Servers  
2,000 CPUs • 16,000 cores 

600 kWatts 

$5,000,000 

STANFORD AI LAB 

3 GPU-Accelerated Servers  
12 GPUs • 18,432 cores 

4 kWatts 

$33,000 

Now You Can Build Google’s  

$1M Artificial Brain on the Cheap 

“ “ 

Deep learning with COTS HPC systems, A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro  ICML 2013 

ACCELERATING 
INSIGHTS 
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KITTI 
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Image Recognition 

IMAGENET 

NVIDIA GPU 
Top Score 

Source: ImageNet  Source: CalTech Source: KITTI 

NVIDIA DRIVENet 
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NVIDIA cuDNN 

Building blocks for accelerating deep 
neural networks on GPUs 

High performance deep neural 
network training 

Accelerates Deep Learning: Caffe, 
CNTK, Tensorflow, Theano, Torch 

Performance continues to improve 
over time 

“NVIDIA has improved the speed of cuDNN 

with each release while extending the 

interface to more operations and devices 

at the same time.” 
 

 — Evan Shelhamer, Lead Caffe Developer, UC Berkeley 

developer.nvidia.com/cudnn 

AlexNet training throughput based on 20 iterations,  
CPU: 1x E5-2680v3 12 Core 2.5GHz. 
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Accelerating linear algebra: cuBLAS 

Accelerated Level 3 BLAS 

- GEMM, SYMM, TRSM, SYRK 

- >3 TFlops Single Precision on a single K40 

 

Multi-GPU BLAS support available in cuBLAS-XT 

developer.nvidia.com/cublas  

http://developer.nvidia.com/digits
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Accelerating sparse operations: cuSPARSE 

cusparse<T>gemvi() 

y = α ∗ op(A)∗x + β∗y 

A = dense matrix 

x = sparse vector 

y = dense vector 

 

cuSPARSE provides a full suite of accelerated sparse matrix functions 

 

The (Dense matrix) X (sparse vector) example 

- 

2 

- 

- 

1 

y1 

y2 

y3  
α + β 

y1 

y2 

y3 

A11 

A21 

A31 

A12 

A22 

A32 

A13 

A23 

A33 

A14 

A24 

A34 

Sparse vector could be frequencies 

of words in a text sample  

A15 

A25 

A35 

developer.nvidia.com/cusparse  

http://developer.nvidia.com/digits
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Multi-GPU communication: NCCL 

• Research library of accelerated collectives that is easily 

integrated and topology-aware so as to improve the scalability 

of multi-GPU applications  

 

 

• Pattern the library after MPI’s collectives 

• Handle the intra-node communication in an optimal way 

• Provide the necessary functionality for MPI to build on top to 

handle inter-node 

 

Collective library 

github.com/NVIDIA/nccl 

http://github.com/NVIDIA/nccl
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NCCL Example 

#include <nccl.h> 

ncclComm_t comm[4]; 

ncclCommInitAll(comm, 4, {0, 1, 2, 3}); 

foreach g in (GPUs) { // or foreach thread 

  cudaSetDevice(g); 

  double *d_send, *d_recv; 

  // allocate d_send, d_recv; fill d_send with data 

  ncclAllReduce(d_send, d_recv, N, ncclDouble, ncclSum, comm[g], stream[g]); 

  // consume d_recv 

} 

All-reduce 
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Platform 
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Developer workstation 
Titan X Pascal 

 

11 TFLOPS FP32 

INT8  

3,584 CUDA  

12 GB DDR5X 



17  NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE. 

DGX-1 
World’s First Deep Learning Supercomputer 

Engineered for deep learning 

170 TF FP16 

8x Tesla P100 in hybrid cube mesh 

   + SDD RAID, 4x IB 

Accelerates major AI frameworks 

nvidia.com/dgx1 
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Tesla p100 accelerator 

Compute 5.3 TF DP ∙ 10.6 TF SP ∙ 21.2 TF HP 

Memory HBM2: 720 GB/s ∙ 16 GB 

Interconnect NVLink (up to 8 way) + PCIe Gen3 

Programmability 
Page Migration Engine 

Unified Memory 
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GIE (GPU Inference Engine) 
MANAGE TRAIN DEPLOY 

DIGITS 

DATA CENTER AUTOMOTIVE 

TRAIN TEST 

MANAGE / AUGMENT 
EMBEDDED 

GPU INFERENCE ENGINE 

developer.nvidia.com/gpu-inference-engine 
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EXAMPLE: DL EMBEDDED DEPLOYMENT 

Jetson TX1 

Inference at 258 img/s 

No need to change code 

Simply compile Caffe and copy a 
trained .caffemodel to TX1 

Jetson TX1 devkit 
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GPU INFERENCE ENGINE 
Optimizations 

• Fuse network layers 

• Eliminate concatenation layers 

• Kernel specialization 

• Auto-tuning for target platform 

• Select optimal tensor layout 

• Batch size tuning TRAINED 
NEURAL NETWORK 

OPTIMIZED 
INFERENCE 
RUNTIME 

developer.nvidia.com/gpu-inference-engine 

See the parallel for all blog post for GIE: 
https://devblogs.nvidia.com/parallelforall/production-deep-learning-nvidia-gpu-inference-engine/ 
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GPU INFERENCE ENGINE 
Performance 
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NVIDIA DIGITS 
Interactive Deep Learning GPU Training System 

Test Image 

Monitor Progress Configure DNN Process Data Visualize Layers  

developer.nvidia.com/digits 
github.com/NVIDIA/DIGITS 
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CUDA 
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GPU architecture 
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GPU ARCHITECTURE 

Global memory 

Analogous to RAM in a CPU server 

Accessible by both GPU and CPU 

Currently up to 24 GB 

ECC on/off options for Quadro and Tesla products 

Streaming Multiprocessors (SM) 

Perform the actual computation 

Each SM has its own: Control units, registers, execution pipelines, caches 

Two Main Components 
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GPU ARCHITECTURE 

Many CUDA Cores per SM 

Architecture dependent 

Special-function units 

cos/sin/tan, etc. 

Shared mem + L1 cache 

Thousands of 32-bit registers 

 

 

Streaming Multiprocessor (SM) Register File 

Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 

Special Func Units x 4 

Interconnect Network 

64K Configurable 

Cache/Shared Mem 

Uniform Cache 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Instruction Cache 
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GPU MEMORY HIERARCHY REVIEW 

L2 

Global Memory 

Registers 

L1 

SM-N 

SMEM 

Registers 

L1 

SM-0 

SMEM 

Registers 

L1 

SM-1 

SMEM 
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CUDA Programming model 
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ANATOMY OF A CUDA C/C++ APPLICATION 
Serial code executes in a Host (CPU) thread 

Parallel code executes in many Device (GPU) threads 
across multiple processing elements 

 CUDA C/C++ Application 

Serial code 

 

Serial code 

 

Parallel code 

 

Parallel code 

 

Device = GPU 

… 

Host = CPU 

Device = GPU 

... 

Host = CPU 
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CUDA C : C WITH A FEW KEYWORDS 

void saxpy_serial(int n, float a, float *x, float *y) 

{ 

    for (int i = 0; i < n; ++i) 

        y[i] = a*x[i] + y[i]; 

} 

// Invoke serial SAXPY kernel 

saxpy_serial(n, 2.0, x, y); 

 

__global__ void saxpy_parallel(int n, float a, float *x, float *y) 

{ 

    int i = blockIdx.x*blockDim.x + threadIdx.x; 

    if (i < n)  y[i] = a*x[i] + y[i]; 

} 

// Invoke parallel SAXPY kernel with 256 threads/block 

int nblocks = (n + 255) / 256; 

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y); 

Standard C Code 

Parallel C Code 



36  

CUDA KERNELS 

Parallel portion of application: execute as a kernel 

Entire GPU executes kernel, many threads 

CUDA threads: 

Lightweight 

Fast switching 

1000s execute simultaneously 

CPU Host Executes functions 

GPU Device Executes kernels 
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CUDA KERNELS: PARALLEL THREADS 

A kernel is a function executed 
on the GPU as an array of 
threads in parallel 

 

All threads execute the same 
code, can take different paths 

Each thread has an ID 

Select input/output data 

Control decisions 

 

float x = input[threadIdx.x]; 

float y = func(x); 

output[threadIdx.x] = y; 



CUDA Kernels: Subdivide into Blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 

A kernel is executed as a grid of blocks of threads 



CUDA Kernels: Subdivide into Blocks 

Threads are grouped into blocks 

Blocks are grouped into a grid 

A kernel is executed as a grid of blocks of threads 

GPU 



Kernel Execution 

• Each kernel is executed on 

one device 

• Multiple kernels can execute 

on a device at one time 

… 
… 
… 

CUDA-enabled GPU 

CUDA thread • Each thread is executed by a 

core 

CUDA core 

CUDA thread block 

 

• Each block is executed by 

one SM and does not migrate 

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources 

… 

CUDA Streaming 

Multiprocessor 

CUDA kernel grid 

... 



Thread blocks allow cooperation 

Register File 

Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 

Special Func Units x 4 

Interconnect Network 

64K Configurable 

Cache/Shared Mem 

Uniform Cache 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Core 

Instruction Cache 

Threads may need to cooperate: 

Cooperatively load/store blocks of 

memory all will use 

Share results with each other or 

cooperate to produce a single result 

Synchronize with each other 
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THREAD BLOCKS ALLOW SCALABILITY 

Blocks can execute in any order, concurrently or sequentially 

This independence between blocks gives scalability: 

A kernel scales across any number of SMs 

Device with 2 SMs 

SM 0 SM 1 

 Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel Grid 

Launch 

Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Device with 4 SMs 

SM 0 SM 1 

 
SM 2 SM 3 

 Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 
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Memory System Hierarchy 
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MEMORY HIERARCHY 

Thread: 

Registers 
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MEMORY HIERARCHY 

Thread: 

Registers 

Local memory 

 

Local Local Local Local Local Local Local 
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MEMORY HIERARCHY 

Thread: 

Registers 

Local memory 

 

Block of threads: 

Shared memory 
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MEMORY HIERARCHY : SHARED MEMORY 

__shared__ int a[SIZE]; 

 

Allocated per thread block, same 
lifetime as the block 

Accessible by any thread in the block 

Several uses: 

Sharing data among threads in a block 

User-managed cache (reducing gmem 
accesses) 
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MEMORY HIERARCHY 

Thread: 

Registers 

Local memory 

Block of threads: 

Shared memory 

All blocks: 

Global memory 
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MEMORY HIERARCHY : GLOBAL MEMORY 

Accessible by all threads of any kernel 

Data lifetime: from allocation to 
deallocation by host code 

cudaMalloc (void ** pointer, size_t nbytes) 

cudaMemset (void * pointer, int value, size_t 
count) 

cudaFree (void* pointer) 
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CUDA memory management 
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MEMORY SPACES 

CPU and GPU have separate memory spaces 

Data is moved across PCIe bus 

Use functions to allocate/set/copy memory on GPU just like standard C 

Pointers are just addresses 

Can’t tell from the pointer value whether the address is on CPU or GPU 

Must use cudaPointerGetAttributes(…)  

Must exercise care when dereferencing: 

Dereferencing CPU pointer on GPU will likely crash 

Dereferencing GPU pointer on CPU will likely crash 
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GPU MEMORY ALLOCATION / RELEASE 

Host (CPU) manages device (GPU) memory 

cudaMalloc (void ** pointer, size_t nbytes) 

cudaMemset (void * pointer, int value, size_t count) 

cudaFree (void* pointer) 

int n = 1024; 

int nbytes = 1024*sizeof(int); 

int * d_a = 0; 

cudaMalloc( (void**)&d_a,  nbytes ); 

cudaMemset( d_a, 0, nbytes); 

cudaFree(d_a); 

 

Note:  Device memory from 

 GPU point of view  

  is also referred to as 

 global memory. 
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DATA COPIES 

cudaMemcpy( void *dst,   void *src,   size_t nbytes,           
enum cudaMemcpyKind direction); 

returns after the copy is complete 

blocks CPU thread until all bytes have been copied 

doesn’t start copying until previous CUDA calls complete 

enum cudaMemcpyKind 

cudaMemcpyHostToDevice 

cudaMemcpyDeviceToHost 

cudaMemcpyDeviceToDevice 

Non-blocking memcopies are provided 
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Basic kernels and execution 
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CUDA PROGRAMMING MODEL REVISITED 

Parallel code (kernel) is launched and executed on a device by many 
threads 

Threads are grouped into thread blocks 

Parallel code is written for a thread 

Each thread is free to execute a unique code path 

Built-in thread and block ID variables 
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THREAD HIERARCHY 

Threads launched for a parallel section are partitioned into thread blocks 

Grid = all blocks for a given launch 

Thread block is a group of threads that can: 

Synchronize their execution 

Communicate via shared memory 
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IDS AND DIMENSIONS 

 
Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(2, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

Block 

(2, 1) 

(Continued) 

Threads 

3D IDs, unique within a block 

Blocks 

2D IDs, unique within a grid 

Dimensions set at launch time 

Can be unique for each grid 

Built-in variables 

threadIdx, blockIdx 

blockDim, gridDim 
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IDS AND DIMENSIONS 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(2, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

Block 

(2, 1) 

Block (1, 1) 

Thread 

(0, 1) 

Thread 

(1, 1) 

Thread 

(2, 1) 

Thread 

(3, 1) 

Thread 

(4, 1) 

Thread 

(0, 2) 

Thread 

(1, 2) 

Thread 

(2, 2) 

Thread 

(3, 2) 

Thread 

(4, 2) 

Thread 

(0, 0) 

Thread 

(1, 0) 

Thread 

(2, 0) 

Thread 

(3, 0) 

Thread 

(4, 0) 

Threads 

3D IDs, unique within a block 

Blocks 

2D IDs, unique within a grid 

Dimensions set at launch time 

Can be unique for each grid 

Built-in variables 

threadIdx, blockIdx 

blockDim, gridDim 
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LAUNCHING KERNELS ON GPU 

Launch parameters (triple chevron <<<>>> notation) 

grid dimensions (up to 2D), dim3 type 

thread-block dimensions (up to 3D), dim3 type 

shared memory: number of bytes per block 

for extern smem variables declared without size 

Optional, 0 by default 

stream ID 

Optional, 0 by default 

dim3 grid(16, 16); 

dim3 block(16,16); 

kernel<<<grid, block, 0, 0>>>(...); 

kernel<<<32, 512>>>(...); 
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GPU KERNEL EXECUTION 

Kernel launches on a grid of blocks, <<<grid,block>>>(arg1,…) 

Each block is launched on one SM 

A block is divided into warps of 32 threads each (think 32-way vector) 

Warps in a block are scheduled and executed.   

All threads in a warp execute same instruction simultaneously (think SIMD) 

Number of blocks/SM determined by resources required by the block 

Registers, shared memory, total warps, etc. 

Block runs to completion on SM it started on, no migration. 
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BLOCKS MUST BE INDEPENDENT 

Any possible interleaving of blocks should be valid 

presumed to run to completion without pre-emption 

can run in any order 

can run concurrently OR sequentially 

Blocks may coordinate but not synchronize 

shared queue pointer: OK 

shared lock: BAD … any dependence on order easily deadlocks 

Independence requirement gives scalability 
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Hands-on labs 
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Prepare and Start AWS Instance 

• Open a browser, go to nvlabs.qwiklab.com 

• Register (it’s free) and Sign in. 

• Select the correct lab (Montreal GPU Programming Workshop) and once enabled press 
“Start Lab” 

• Instance can take up to 10 minutes to start. 

• Three labs are available: 

• Accelerating Applications with CUDA C/C++ 

• (optional) Accelerating Applications with GPU-Accelerated Libraries in C/C++  

• (optional) GPU Memory Optimizations (C/C++) 

 

 

 



69  



70  



71  

Wrap up 
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Software 

• GPU Driver 

• CUDA toolkit 

• Includes all the software necessary for developers to write applications 

• Compiler (nvcc), libraries, profiler, debugger, documentation 

• CUDA Samples 

• Samples illustrating GPU functionality and performance 

• Examples illustrating important programming constructs and techniques. 

• www.nvidia.com/getcuda  -- all above software is free 

http://www.nvidia.com/getcuda
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Want to try? 

Deep Learning https://developer.nvidia.com/deep-learning  

 

Hands-on labs https://nvidia.qwiklab.com/ 

 

Question? Email jbernauer@nvidia.com 

 

 

Links and resources 

https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://developer.nvidia.com/deep-learning
https://nvidia.qwiklab.com/
https://nvidia.qwiklab.com/
mailto:jbernauer@nvidia.com


COME DO YOUR LIFE’S WORK 
JOIN NVIDIA 

 
We are looking for great people at all levels to help us accelerate the next wave of AI-driven 

computing in Research, Engineering, and Sales and Marketing.  

 

Our work opens up new universes to explore, enables amazing creativity and discovery, and 

powers what were once science fiction inventions like artificial intelligence and autonomous 

cars. 

 

Check out our career opportunities: 

• www.nvidia.com/careers   

• Reach out to your NVIDIA social network or NVIDIA recruiter at 

DeepLearningRecruiting@nvidia.com 

 

 




