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The Bottleneck



Some Preliminaries: RNNs

● Recurrent hidden layer 
outputs distribution over 
next symbol/label/nil

● Connects "back to itself"
● Conceptually: hidden 

layer models history of 
the sequence.



Some Preliminaries: RNNs

● RNNs fit variable width 
problems well

● Unfold to feedforward 
nets with shared weights

● Can capture long(ish) 
range dependencies
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● Language modelling: chain rule gives us P(s) from ∏t∈(1,T)P(st|s1, ..., st-1).

● Sequence labelling: P(lt|s1, ..., st)

● Sentence classification: model P(l|s) from cell state, mean pooling, etc.

Some Obvious RNN Applications

But... simpler/better models exist for most of these.



General Artificial Intelligence

Transduction with Conditional Models
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Transduction with Conditional Models
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Many NLP (and other!) tasks are castable as transduction problems. E.g.:

Translation: English to French transduction

Parsing: String to tree transduction

Computation(?!): Input data to output data transduction

Sequence to Sequence Mapping with RNNs
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Generally, goal is to transform some source sequence

into some target sequence

Sequence to Sequence Mapping with RNNs
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Represent s and model P(ti+1|t1...tn; s) with RNNs:

1. Read in source sequence to produce s.

2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.

Sequence to Sequence Mapping with RNNs
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● Concatenate source and target sequences into joint sequences:

s1 s2 ... sm ||| t1 t2 ... tn

● Train a single RNN or pair of RNNs over joint sequences

● Ignore RNN output until separator symbol (e.g. "|||")

● Jointly learn to compose source and generate target sequences

A Simple Encoder-Decoder Model



General Artificial Intelligence

Deep LSTMs for Translation

(Sutskever et al. NIPS 2014)
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Task (Zaremba and Sutskever, 2014):

● Read simple python scripts character-by-character

● Output numerical result character-by-character.

Learning to Execute
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The Bottleneck for Simple RNNs

● Non-adaptive capacity

● Target sequence modelling 

dominates training

● Gradient-starved encoder

● Fixed size considered harmful?
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Limitations of RNNs: 
A Computational Perspective
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Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy
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Any Turing Machine {Q, Γ, δ, ...} can be translated into an RNN:

● One-hot states as hidden layer, size |Q|

● One-hot encoding of symbols of Γ as input

● One-hot encoding of Γ∪{L, R} as outputs

● Identity as recurrence matrix, δ as update matrix

By extension, RNNs can express/approximate a set of Turing machines.

RNNs and Turing Machines

But expressivity ≠ learnability!

Sieglemann & Sontag (1995)
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Simple RNNs (basic, GRU, LSTM) cannot* learn Turing Machines:

● RNNs do not control the "tape". Sequence exposed in forced order.

● Maximum likelihood objective (p(x|θ), p(x,y|θ), ...) produces model close to 

training data distribution.

● Insane to expect regularisation to yield structured computational model as 

an out-of-sample generalisation mechanism.

RNNs and Turing Machines

*  Through "normal" sequence-based maximum likelihood training.
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Not a proof, but think of simple RNNs as approximations of FSMs:

● Effectively order-N Markov chains, but N need not be specified

● Memoryless in theory, but can simulate memory through dependencies:

    E.g. ".*a...a" → p(X="a"|"a" was seen four symbols ago)

● Very limited, bounded form of memory

● No incentive under ML objectives to learn dependencies beyond the sort and 

range observed during training

RNNs and Finite State Machines
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Some problems:

● RNN state acts as both controller and "memory"

● Longer dependencies require more "memory"

● Tracking more dependencies requires more "memory"

● More complex/structured dependencies require more "memory"

● Ultimately, FSMs are pretty basic.

RNNs and Finite State Machines
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Natural Language is arguably at least Context Free (need at least a PDA)

Even if it's not, rule parsimony matters!

E.g. model anbn, if in practice n is never more than N.

Why more than FSM?

Regular language (N+1 rules)

ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε
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Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

We are here →

We we 
want to 
be here

→[
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RNNs Revisited



RNNs: More API than Model
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RNNs: More API than Model

For a recurrent cell, we are modelling a function 

RNN: X ⨉ P → Y ⨉ N

where xt∈X is an input, pt∈P is the previous recurrent state, yt∈Y is an output, 
and nt∈N is an updated recurrent state, all possibly nested sets of vectors, 
scalars, ...

Typically P = N, and pt+1 = nt for pt+1, nt ∈ P.

Sometimes X=Y, and xt+1 = f(yt) where f is not necessarily differentiable.
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We aim to satisfy the following constraint (with some exceptions):

RNNs: More API than Model

where the bar operator 

indicates flattened sets.
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● Summary: keep things differentiable, use P/N to track state, do whatever you 

want within the cell.

● Cells can nest/stack/be sequenced, as long as everything "type checks".

● We can address some of the issues discussed before with this API by 

separating memory and controller.

● That's just the beginning!

The Controller-Memory Split
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The Controller-Memory Split
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Attention: ROM
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● You have an array of vectors representing some data.

● Your controller deals with I/O logic.

● You want to read your data array at each timestep.

● You want to accumulate gradients in your memory.

Attention
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Attention (Early Fusion)
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pt = (ht-1, M)

yt , ht= controller(xs, ht-1)

nt = (ht, M)

xs = xt ⊕ fatt(ht-1, M)

e.g. fatt(h, M) = M ⨉ softmax(h ⨉ Watt ⨉ M)

RNN: X ⨉ P → Y ⨉ N
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Attention (Late Fusion)
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pt = (ht-1, M)

nt = (ht, M)

wt , ht= controller(xt, ht-1)

yt = fcomp(wt, fatt(ht, M))

Alternatively:

yt = fatt(ht, M) if fatt yields a distribution 

over memory positions.

RNN: X ⨉ P → Y ⨉ N
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● Encoder produces array of representations, e.g. one vector per token.

● Representations are packed into an attention matrix.

● Decoder is a controller + memory model with attention matrix as memory.

● Gradients of error w.r.t. memory provide gradients of error w.r.t. encoder.

ROM for Encoder-Decoder Models
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● Encoder is gradient starved no more!

● Compute soft alignments between sequences.

● Search for information in larger sequences.

● Memory isn't touched, so operations can be done in place.

ROM for Encoder-Decoder Models
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Skipping the bottleneck
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Skipping the bottleneck
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Recognizing Textual Entailment (RTE)

A wedding party is taking pictures

- There is a funeral Contradiction

- They are outside Neutral

- Someone got married Entailment

A man is crowd surfing at a concert

- The man is at a football game Contradiction

- The man is drunk Neutral

- The man is at a concert Entailment

44



Word-by-Word Attention

45



Girl + Boy = Kids

46
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Large-scale Supervised Reading Comprehension

The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the 
“Top Gear” host, his lawyer said Friday. Clarkson, who hosted one of the most-watched 
television shows in the world, was dropped by the BBC Wednesday after an internal 
investigation by the British broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” … 

Cloze-style question:
Query: Producer X will not press charges against Jeremy Clarkson, his lawyer says.
Answer: Oisin Tymon
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Machine Reading with Attention

● Create embedding for 
each token in document

● Read query word by word
● Attend over document at 

each step through query
● Iteratively combine 

attention distribution
● Predict answer with 

increased accuracy

The Impatient Reader
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Example QA Heatmap

Correct prediction (ent49) - Requires anaphora resolution
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● Attention successfully mitigates limitations of original seq2seq

● Versatile, adaptable to many problems

● Can be tailored to specific sorts of processes, e.g. pointer networks

● Helpful for learning good source representations, although these are 

strongly tied to end-task

● Read-only puts strong onus on controller to track what's been read

● Read-only means encoder needs to do a lot of the legwork

Attention Summary
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Stacks: Neural PDAs
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Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy
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The Controller-Memory Split
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Controlling a Neural Stack
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Controller API
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Controller + Stack Interaction
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Example: A Continuous Stack
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Copy

a1a2a3...an → a1a2a3...an

Reversal

a1a2a3...an → an...a3a2a1

Synthetic Transduction Tasks
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Subject-Verb-Object to Subject-Object-Verb Reordering

si1 vi28 oi5 oi7 si15 rpi si19 vi16 oi10 oi24 → so1 oo5 oo7 so15 rpo so19 vo16 oo10 oo24 vo28

Genderless to Gendered Grammar

we11 the en19 and the em17 → wg11 das gn19 und der gm17

Synthetic ITG Transduction Tasks
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Results

Experiment Stack Queue DeQue Deep LSTM

Copy Poor Solved Solved Poor

Reversal Solved Poor Solved Poor

SVO-SOV Solved Solved Solved Converges

Conjugation Converges Solved Solved Converges

Every Neural Stack/Queue/DeQue that solves a problem preserves the solution for 
longer sequences (tested up to 2x length of training sequences).
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Rapid Convergence
Regular language (N+1 rules)

ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε
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● Grefenstette et al. 2015: Stacks, Queues, Double Ended Queues

○ Presented here

● Joulin and Mikolov 2015: Stacks, Lists

○ More lightweight stack semantics

○ Check out the experiments!

● Dyer et al. 2015: Stack LSTMs

○ Supervision needed for push/pop

○ Doesn't fit the controller/memory framework, but worth reading!

Differentiable Stacks / Queues / Etc
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● Decent approximations of classical PDA

● Architectural bias towards recursive/nested dependencies

● Should be useful for syntactically rich natural language

○ Parsing

○ Compositionality

○ But little work on applying these architectures

● Does going up in the computational hierarchy help? We need to find out.

Neural PDA Summary
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Register Machines: RAM



General Artificial Intelligence

Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy
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Attention as ROM
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Register Memory as RAM
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● Controller deals with I/O

● Controller also produces distributions over memory registers for 

reading/writing

● Controller decides what to write, how much to erase, etc.

● Controller and memory state are updated, and recurrent cell produces 

output, next state

Neural RAM: General Idea
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pt = (ht-1, Mt-1, rt-1)

xs =xt ⊕ rt-1

yt, k
read, kwrite, v, ht = controller(xs, ht-1)

rt = fread(kread, Mt-1) where e.g. fread = fatt

Mt = fwrite(v, kwrite, Mt-1)

e.g.  Mt[i] = a[i]·v + (1-a[i])·Mt-1[i] 

where a = softmax(kwrite·Wwrite·Mt-1)

RNN: X ⨉ P → Y ⨉ N (an example of)
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● Location based addressing: e.g. state tracks an initially one-hot key which is 

shifted by the controller.

● Mix of location and content based.

● Hard addressing with REINFORCE

● More esoteric/heuristic addressing mechanisms (better to be kept diff.)

● Memory key/content factorization (e.g. NPI)

● Memory Prefixes

Extensions
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● Part of the "tape" is internalised

● Controller can control tape motion via various mechanisms

● RNN could model state transitions

● Weird split between external and internal tape in seq2seq paradigm

● In ML-based training, number of computational steps is tied to data

● Unlikely to learn a general algorithm, but experiments (e.g. Graves et al. 

2014) show better generalisation on symbolic tasks.

Relation to actual Turing Machines
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● Complex reasoning probably requires something both more expressive and 

more structured than RNNs + Attention

● These architectures are complex, hard to train, many design choices

● Not always an immediate mapping of problems to purported capabilities of 

these architectures.

● Fascinating research to be done here, but don't forget about simpler models!

Register Machines and NLU
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● Easy to design an overly complex model. Not always worth it.

● Better to understand the limits of current architectures within the context of 

a problem.

● By understanding the limitations and their nature, often better solutions pop 

out of analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

● Think not just about the model, but about the complexity of the problem you 

want to solve.

● Nonetheless, be creative. Plenty of problems to solve in NLU and elsewhere.

Conclusions
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Thanks for listening!

joinus@deepmind.com


