
General Artificial Intelligence

Ed Grefenstette

Beyond Sequence to Sequence
with Augmented RNNs

etg@google.com

General Artificial Intelligence

1. The Transduction Bottleneck

2. Limitations of RNNs

3. RNNs Revisited

4. Attention

5. Stacks

6. Register Machines

The plan

General Artificial Intelligence

The Bottleneck

Some Preliminaries: RNNs

● Recurrent hidden layer
outputs distribution over
next symbol/label/nil

● Connects "back to itself"
● Conceptually: hidden

layer models history of
the sequence.

Some Preliminaries: RNNs

● RNNs fit variable width
problems well

● Unfold to feedforward
nets with shared weights

● Can capture long(ish)
range dependencies

General Artificial Intelligence

● Language modelling: chain rule gives us P(s) from ∏t∈(1,T)P(st|s1, ..., st-1).

● Sequence labelling: P(lt|s1, ..., st)

● Sentence classification: model P(l|s) from cell state, mean pooling, etc.

Some Obvious RNN Applications

But... simpler/better models exist for most of these.

General Artificial Intelligence

Transduction with Conditional Models

General Artificial Intelligence

Transduction with Conditional Models

General Artificial Intelligence

Many NLP (and other!) tasks are castable as transduction problems. E.g.:

Translation: English to French transduction

Parsing: String to tree transduction

Computation(?!): Input data to output data transduction

Sequence to Sequence Mapping with RNNs

General Artificial Intelligence

Generally, goal is to transform some source sequence

into some target sequence

Sequence to Sequence Mapping with RNNs

General Artificial Intelligence

Represent s and model P(ti+1|t1...tn; s) with RNNs:

1. Read in source sequence to produce s.

2. Train model to maximise the likelihood of t given s.

3. Test time: Generate target sequence t (greedily, beam search, etc) from s.

Sequence to Sequence Mapping with RNNs

General Artificial Intelligence

● Concatenate source and target sequences into joint sequences:

s1 s2 ... sm ||| t1 t2 ... tn

● Train a single RNN or pair of RNNs over joint sequences

● Ignore RNN output until separator symbol (e.g. "|||")

● Jointly learn to compose source and generate target sequences

A Simple Encoder-Decoder Model

General Artificial Intelligence

Deep LSTMs for Translation

(Sutskever et al. NIPS 2014)

General Artificial Intelligence

Task (Zaremba and Sutskever, 2014):

● Read simple python scripts character-by-character

● Output numerical result character-by-character.

Learning to Execute

General Artificial Intelligence

The Bottleneck for Simple RNNs

● Non-adaptive capacity

● Target sequence modelling

dominates training

● Gradient-starved encoder

● Fixed size considered harmful?

General Artificial Intelligence

Limitations of RNNs:
A Computational Perspective

General Artificial Intelligence

Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

General Artificial Intelligence

Any Turing Machine {Q, Γ, δ, ...} can be translated into an RNN:

● One-hot states as hidden layer, size |Q|

● One-hot encoding of symbols of Γ as input

● One-hot encoding of Γ∪{L, R} as outputs

● Identity as recurrence matrix, δ as update matrix

By extension, RNNs can express/approximate a set of Turing machines.

RNNs and Turing Machines

But expressivity ≠ learnability!

Sieglemann & Sontag (1995)

General Artificial Intelligence

Simple RNNs (basic, GRU, LSTM) cannot* learn Turing Machines:

● RNNs do not control the "tape". Sequence exposed in forced order.

● Maximum likelihood objective (p(x|θ), p(x,y|θ), ...) produces model close to

training data distribution.

● Insane to expect regularisation to yield structured computational model as

an out-of-sample generalisation mechanism.

RNNs and Turing Machines

* Through "normal" sequence-based maximum likelihood training.

General Artificial Intelligence

Not a proof, but think of simple RNNs as approximations of FSMs:

● Effectively order-N Markov chains, but N need not be specified

● Memoryless in theory, but can simulate memory through dependencies:

 E.g. ".*a...a" → p(X="a"|"a" was seen four symbols ago)

● Very limited, bounded form of memory

● No incentive under ML objectives to learn dependencies beyond the sort and

range observed during training

RNNs and Finite State Machines

General Artificial Intelligence

Some problems:

● RNN state acts as both controller and "memory"

● Longer dependencies require more "memory"

● Tracking more dependencies requires more "memory"

● More complex/structured dependencies require more "memory"

● Ultimately, FSMs are pretty basic.

RNNs and Finite State Machines

General Artificial Intelligence

Natural Language is arguably at least Context Free (need at least a PDA)

Even if it's not, rule parsimony matters!

E.g. model anbn, if in practice n is never more than N.

Why more than FSM?

Regular language (N+1 rules)

ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε

General Artificial Intelligence

Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

We are here →

We we
want to
be here

→[

General Artificial Intelligence

1. The Transduction Bottleneck

2. Limitations of RNNs

3. RNNs Revisited

4. Attention

5. Stacks

6. Register Machines

The plan

Questions?

General Artificial Intelligence

RNNs Revisited

RNNs: More API than Model

RNNs: More API than Model

RNNs: More API than Model

RNNs: More API than Model

General Artificial Intelligence

RNNs: More API than Model

For a recurrent cell, we are modelling a function

RNN: X ⨉ P → Y ⨉ N

where xt∈X is an input, pt∈P is the previous recurrent state, yt∈Y is an output,
and nt∈N is an updated recurrent state, all possibly nested sets of vectors,
scalars, ...

Typically P = N, and pt+1 = nt for pt+1, nt ∈ P.

Sometimes X=Y, and xt+1 = f(yt) where f is not necessarily differentiable.

General Artificial Intelligence

We aim to satisfy the following constraint (with some exceptions):

RNNs: More API than Model

where the bar operator

indicates flattened sets.

General Artificial Intelligence

● Summary: keep things differentiable, use P/N to track state, do whatever you

want within the cell.

● Cells can nest/stack/be sequenced, as long as everything "type checks".

● We can address some of the issues discussed before with this API by

separating memory and controller.

● That's just the beginning!

The Controller-Memory Split

General Artificial Intelligence

The Controller-Memory Split

General Artificial Intelligence

Attention: ROM

General Artificial Intelligence

● You have an array of vectors representing some data.

● Your controller deals with I/O logic.

● You want to read your data array at each timestep.

● You want to accumulate gradients in your memory.

Attention

General Artificial Intelligence

Attention (Early Fusion)

General Artificial Intelligence

pt = (ht-1, M)

yt , ht= controller(xs, ht-1)

nt = (ht, M)

xs = xt ⊕ fatt(ht-1, M)

e.g. fatt(h, M) = M ⨉ softmax(h ⨉ Watt ⨉ M)

RNN: X ⨉ P → Y ⨉ N

General Artificial Intelligence

Attention (Late Fusion)

General Artificial Intelligence

pt = (ht-1, M)

nt = (ht, M)

wt , ht= controller(xt, ht-1)

yt = fcomp(wt, fatt(ht, M))

Alternatively:

yt = fatt(ht, M) if fatt yields a distribution

over memory positions.

RNN: X ⨉ P → Y ⨉ N

General Artificial Intelligence

● Encoder produces array of representations, e.g. one vector per token.

● Representations are packed into an attention matrix.

● Decoder is a controller + memory model with attention matrix as memory.

● Gradients of error w.r.t. memory provide gradients of error w.r.t. encoder.

ROM for Encoder-Decoder Models

General Artificial Intelligence

● Encoder is gradient starved no more!

● Compute soft alignments between sequences.

● Search for information in larger sequences.

● Memory isn't touched, so operations can be done in place.

ROM for Encoder-Decoder Models

General Artificial Intelligence

Skipping the bottleneck

General Artificial Intelligence

Skipping the bottleneck

General Artificial Intelligence

Recognizing Textual Entailment (RTE)

A wedding party is taking pictures

- There is a funeral Contradiction

- They are outside Neutral

- Someone got married Entailment

A man is crowd surfing at a concert

- The man is at a football game Contradiction

- The man is drunk Neutral

- The man is at a concert Entailment

44

Word-by-Word Attention

45

Girl + Boy = Kids

46

General Artificial Intelligence

Large-scale Supervised Reading Comprehension

The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the
“Top Gear” host, his lawyer said Friday. Clarkson, who hosted one of the most-watched
television shows in the world, was dropped by the BBC Wednesday after an internal
investigation by the British broadcaster found he had subjected producer Oisin Tymon “to
an unprovoked physical and verbal attack.” …

Cloze-style question:
Query: Producer X will not press charges against Jeremy Clarkson, his lawyer says.
Answer: Oisin Tymon

General Artificial Intelligence

Machine Reading with Attention

● Create embedding for
each token in document

● Read query word by word
● Attend over document at

each step through query
● Iteratively combine

attention distribution
● Predict answer with

increased accuracy

The Impatient Reader

General Artificial Intelligence

Example QA Heatmap

Correct prediction (ent49) - Requires anaphora resolution

General Artificial Intelligence

● Attention successfully mitigates limitations of original seq2seq

● Versatile, adaptable to many problems

● Can be tailored to specific sorts of processes, e.g. pointer networks

● Helpful for learning good source representations, although these are

strongly tied to end-task

● Read-only puts strong onus on controller to track what's been read

● Read-only means encoder needs to do a lot of the legwork

Attention Summary

General Artificial Intelligence

1. The Transduction Bottleneck

2. Limitations of RNNs

3. RNNs Revisited

4. Attention

5. Stacks

6. Register Machines

The plan

Questions?

General Artificial Intelligence

Stacks: Neural PDAs

General Artificial Intelligence

Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

General Artificial Intelligence

The Controller-Memory Split

General Artificial Intelligence

Controlling a Neural Stack

General Artificial Intelligence

Controller API

General Artificial Intelligence

Controller + Stack Interaction

General Artificial Intelligence

Example: A Continuous Stack

General Artificial Intelligence

Copy

a1a2a3...an → a1a2a3...an

Reversal

a1a2a3...an → an...a3a2a1

Synthetic Transduction Tasks

General Artificial Intelligence

Subject-Verb-Object to Subject-Object-Verb Reordering

si1 vi28 oi5 oi7 si15 rpi si19 vi16 oi10 oi24 → so1 oo5 oo7 so15 rpo so19 vo16 oo10 oo24 vo28

Genderless to Gendered Grammar

we11 the en19 and the em17 → wg11 das gn19 und der gm17

Synthetic ITG Transduction Tasks

General Artificial Intelligence

Results

Experiment Stack Queue DeQue Deep LSTM

Copy Poor Solved Solved Poor

Reversal Solved Poor Solved Poor

SVO-SOV Solved Solved Solved Converges

Conjugation Converges Solved Solved Converges

Every Neural Stack/Queue/DeQue that solves a problem preserves the solution for
longer sequences (tested up to 2x length of training sequences).

General Artificial Intelligence

Rapid Convergence
Regular language (N+1 rules)

ε|(ab)|(aabb)|(aaabbb)|...

CFG (2 rules)

S → a S b

S → ε

General Artificial Intelligence

● Grefenstette et al. 2015: Stacks, Queues, Double Ended Queues

○ Presented here

● Joulin and Mikolov 2015: Stacks, Lists

○ More lightweight stack semantics

○ Check out the experiments!

● Dyer et al. 2015: Stack LSTMs

○ Supervision needed for push/pop

○ Doesn't fit the controller/memory framework, but worth reading!

Differentiable Stacks / Queues / Etc

General Artificial Intelligence

● Decent approximations of classical PDA

● Architectural bias towards recursive/nested dependencies

● Should be useful for syntactically rich natural language

○ Parsing

○ Compositionality

○ But little work on applying these architectures

● Does going up in the computational hierarchy help? We need to find out.

Neural PDA Summary

General Artificial Intelligence

Register Machines: RAM

General Artificial Intelligence

Turing Machines (computable functions)

⬆⬆⬆

Pushdown Automata (context free languages)

⬆⬆⬆

Finite State Machines (regular languages)

Computational Hierarchy

General Artificial Intelligence

Attention as ROM

General Artificial Intelligence

Register Memory as RAM

General Artificial Intelligence

● Controller deals with I/O

● Controller also produces distributions over memory registers for

reading/writing

● Controller decides what to write, how much to erase, etc.

● Controller and memory state are updated, and recurrent cell produces

output, next state

Neural RAM: General Idea

General Artificial Intelligence

pt = (ht-1, Mt-1, rt-1)

xs =xt ⊕ rt-1

yt, k
read, kwrite, v, ht = controller(xs, ht-1)

rt = fread(kread, Mt-1) where e.g. fread = fatt

Mt = fwrite(v, kwrite, Mt-1)

e.g. Mt[i] = a[i]·v + (1-a[i])·Mt-1[i]

where a = softmax(kwrite·Wwrite·Mt-1)

RNN: X ⨉ P → Y ⨉ N (an example of)

General Artificial Intelligence

● Location based addressing: e.g. state tracks an initially one-hot key which is

shifted by the controller.

● Mix of location and content based.

● Hard addressing with REINFORCE

● More esoteric/heuristic addressing mechanisms (better to be kept diff.)

● Memory key/content factorization (e.g. NPI)

● Memory Prefixes

Extensions

General Artificial Intelligence

● Part of the "tape" is internalised

● Controller can control tape motion via various mechanisms

● RNN could model state transitions

● Weird split between external and internal tape in seq2seq paradigm

● In ML-based training, number of computational steps is tied to data

● Unlikely to learn a general algorithm, but experiments (e.g. Graves et al.

2014) show better generalisation on symbolic tasks.

Relation to actual Turing Machines

General Artificial Intelligence

● Complex reasoning probably requires something both more expressive and

more structured than RNNs + Attention

● These architectures are complex, hard to train, many design choices

● Not always an immediate mapping of problems to purported capabilities of

these architectures.

● Fascinating research to be done here, but don't forget about simpler models!

Register Machines and NLU

General Artificial Intelligence

● Easy to design an overly complex model. Not always worth it.

● Better to understand the limits of current architectures within the context of

a problem.

● By understanding the limitations and their nature, often better solutions pop

out of analysis. Best example: Chapters 1-3 of Felix Gers' thesis (2001).

● Think not just about the model, but about the complexity of the problem you

want to solve.

● Nonetheless, be creative. Plenty of problems to solve in NLU and elsewhere.

Conclusions

General Artificial Intelligence

Thanks for listening!

joinus@deepmind.com

