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Overview

• Look at some of the recent progress with 
Convolutional Network models
– Assume familiarity with basic neural nets 

• Non-exhaustive coverage
–Huge number of recent papers

• Review some computer vision applications
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Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with specialized 
connectivity structure



Multistage Hubel-Wiesel Architecture 

Slide: Y.LeCun

• Stack multiple stages of simple cells / complex cells layers
• Higher stages compute more global, more invariant features
• Classification layer on top

History:
• Neocognitron [Fukushima 1971-1982]
• Convolutional Nets [LeCun 1988-2007] 
• HMAX [Poggio 2002-2006]
• Many others….



Overview of Convnets

• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by 

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et  al.  1998

Feature maps



Convnet Successes

• Handwritten text/digits
– MNIST      (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese   [Ciresan et al. 2012]

• Simpler  recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

• But less good at more complex datasets
– E.g. Caltech-101/256 (few training examples) 



Application to ImageNet

[NIPS 2012]

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk 



Goal

  

Validation classification

[Krizhevsky et al. NIPS 2012]

• Image Recognition
– Pixels à Class Label



Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model  (8 layers)

- More data    (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)
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Examples
• From Clarifai.com



Examples
• From Clarifai.com



Examples
• From Clarifai.com



Using Features on Other Datasets

• Train model on ImageNet 2012 training set

• Re-train classifier on new dataset
– Just the top layer (softmax)

• Classify test set of new dataset
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Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013
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The Details

• Operations in each layer

• Architecture

• Training

• Results



Components of Each Layer

Pixels /
Features

Filter with 
learned dictionary

Spatial local
max pooling

Non-linearity

Output Features



Filtering

• Convolution
– Filter is learned during training
– Same filter at each location

Input Feature Map

.

.

.



Filtering

• Local
– Each unit layer above 
look at local window

– But no weight tying

Input

Filters

• E.g. face recognition



Filtering

• Tiled
– Filters repeat every n
– More filters than

convolution for given 
# features

Input

Filters Feature maps



Non-Linearity

• Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map Output feature map

Black	
  =	
  negative;	
  white	
  =	
  positive	
  values Only	
  non-­‐negative	
  values



Non-Linearity

• Other choices:
– Tanh
– Sigmoid: 1/(1+exp(-x))
– PReLU

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0

. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=

X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0

. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏

@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai

to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).
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model. We hope for end-to-end training that will lead to
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eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:
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shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
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worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai

to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).
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[Delving Deep into Rectifiers: 
Surpassing Human-Level 
Performance on ImageNet
Classification, Kaiming He et 
al. arXiv:1502.01852v1.pdf, 
Feb 2015 ]



Pooling

• Spatial Pooling
–Non-overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum



Pooling 

Feature
Map 1 

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

• Pooling across feature groups
• Additional form of inter-feature competition
• MaxOut Networks [Goodfellow et al. ICML 2013]



Role of Pooling 

• Spatial pooling
– Invariance to small transformations
– Larger receptive fields 

(see more of input)

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Visualization technique from
[Le et al. NIPS’10]:



Components of Each Layer

Pixels /
Features

Filter with 
learned dictionary

Spatial local
max pooling

Non-linearity

Output 
Features

[Optional]
Normalization

across data/features



Normalization

FiltersInput

• Contrast normalization across features
• See Divisive Normalization in Neuroscience 



• Contrast normalization (across feature maps)
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian 
– Equalizes the features maps

Normalization

Feature Maps
Feature Maps

After Contrast Normalization



Role of Feature Normalization 

• Introduces local competition between features
– “Explaining away” in graphical models
– Just like top-down models
– But more local mechanism

• Also helps to scale activations at each layer better for learning
– Makes energy surface more isotropic
– So each gradient step makes more progress

• Empirically, seems to help a bit (1-2%) on ImageNet
• Most recent models don’t seem to have use though



Normalization across Data

• Batch Normalization
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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Overview of Convnets

• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by 

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et  al.  1998

Feature maps



Architecture

• Big issue: how to select
–Manual tuning of features à manual tuning of 

architechtures

• Depth
• Width
• Parameter count



How to Choose Architecture

• Many hyper-parameters:
– # layers, # feature maps

• Cross-validation 

• Grid search (need lots of GPUs)

• Smarter strategies:
– Random [Bergstra & Bengio JMLR 2012]
– Gaussian processes [Hinton??]



How important is Depth

• “Deep” in Deep Learning

• Ablation study

• Tap off features



Architecture of Krizhevsky et al. 

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error 

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full



Architecture of Krizhevsky et al. 

• Remove top fully 
connected layer 
– Layer 7

• Drop 16 million 
parameters

• Only 1.1% drop in 
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool



Architecture of Krizhevsky et al. 

• Remove both fully connected 
layers 
– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers:
– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full



Architecture of Krizhevsky et al. 

• Now try removing upper feature 
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

àDepth of network is key
Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool



Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max
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Scale Invariance
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Very Deep Models (1)
[Very Deep Convolutional Networks for Large-Scale Image Recognition, 
Karen Simonyan & Andrew Zisserman, arXiv:1409.1556, 2014]

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Published as a conference paper at ICLR 2015

main evaluation criterion used in ILSVRC, and is computed as the proportion of images such that
the ground-truth category is outside the top-5 predicted categories.

For the majority of experiments, we used the validation set as the test set. Certain experiments were
also carried out on the test set and submitted to the official ILSVRC server as a “VGG” team entry
to the ILSVRC-2014 competition (Russakovsky et al., 2014).

4.1 SINGLE SCALE EVALUATION

We begin with evaluating the performance of individual ConvNet models at a single scale with the
layer configurations described in Sect. 2.2. The test image size was set as follows: Q = S for fixed
S, and Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]. The results of are shown in Table 3.

First, we note that using local response normalisation (A-LRN network) does not improve on the
model A without any normalisation layers. We thus do not employ normalisation in the deeper
architectures (B–E).

Second, we observe that the classification error decreases with the increased ConvNet depth: from
11 layers in A to 19 layers in E. Notably, in spite of the same depth, the configuration C (which
contains three 1× 1 conv. layers), performs worse than the configuration D, which uses 3× 3 conv.
layers throughout the network. This indicates that while the additional non-linearity does help (C is
better than B), it is also important to capture spatial context by using conv. filters with non-trivial
receptive fields (D is better than C). The error rate of our architecture saturates when the depth
reaches 19 layers, but even deeper models might be beneficial for larger datasets. We also compared
the net B with a shallow net with five 5 × 5 conv. layers, which was derived from B by replacing
each pair of 3× 3 conv. layers with a single 5× 5 conv. layer (which has the same receptive field as
explained in Sect. 2.3). The top-1 error of the shallow net was measured to be 7% higher than that
of B (on a center crop), which confirms that a deep net with small filters outperforms a shallow net
with larger filters.

Finally, scale jittering at training time (S ∈ [256; 512]) leads to significantly better results than
training on images with fixed smallest side (S = 256 or S = 384), even though a single scale is
used at test time. This confirms that training set augmentation by scale jittering is indeed helpful for
capturing multi-scale image statistics.

Table 3: ConvNet performance at a single test scale.
ConvNet config. (Table 1) smallest image side top-1 val. error (%) top-5 val. error (%)

train (S) test (Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9

C
256 256 28.1 9.4
384 384 28.1 9.3

[256;512] 384 27.3 8.8

D
256 256 27.0 8.8
384 384 26.8 8.7

[256;512] 384 25.6 8.1

E
256 256 27.3 9.0
384 384 26.9 8.7

[256;512] 384 25.5 8.0

4.2 MULTI-SCALE EVALUATION

Having evaluated the ConvNet models at a single scale, we now assess the effect of scale jittering at
test time. It consists of running a model over several rescaled versions of a test image (corresponding
to different values of Q), followed by averaging the resulting class posteriors. Considering that a
large discrepancy between training and testing scales leads to a drop in performance, the models
trained with fixed S were evaluated over three test image sizes, close to the training one: Q =
{S − 32, S, S + 32}. At the same time, scale jittering at training time allows the network to be
applied to a wider range of scales at test time, so the model trained with variable S ∈ [Smin;Smax]
was evaluated over a larger range of sizes Q = {Smin, 0.5(Smin + Smax), Smax}.
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• Lots of 3x3 conv layers: more 
non-linearity than single 7x7 layer

• Close to SOA results on 
Imagenet: 6.8% top-5 val

• Can be hard to train



Very Deep Models (2)
[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]
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(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively
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GoogLeNet inception  module:

1. Multiple  filter  scales  at  each  layer

2. Dimensionality  reduction  to  keep  computational  requirements  down

[From  http://image-­
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]



GoogLeNet  vs  Previous  Models

GoogLeNet  

Zeiler-­Fergus  Architecture  (1  tower)

Convolution
Pooling
Softmax
Other

[From  http://image-­
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]



Google  Inception model

Width  of  inception  modules  ranges  from  256  filters  (in  early  modules)  to  1024  
in  top  inception  modules.

Can  remove  fully  connected  layers  on  top  completely

Number  of  parameters  is  reduced  to  5  million

6.7%  top-­5  validation  error  on  Imagnet

256 480 480
512 512 512

832 832 1024

Computional  cost  is  
increased  by  less  than  2X  
compared  to  Krizhevsky’s  
network.  (<1.5Bn  
operations/evaluation)

[From  http://image-­
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]



Residual  Networks
[He,  Zhang,  Ren,  Sun,  CVPR  2016]

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Really,  really  deep  convnets don’t  train  well,  
E.g.  CIFAR10:

Key  idea:  introduce  “pass  
through”  into  each  layer

Thus  only  residual  now  
needs  to  be  learned

With  ensembling,  3.57%  top-­5  
test  error  on  ImageNet



Visualizing Convnets

• Want to know what they are learning

• Raw coefficients of learned filters in higher 
layers difficult to interpret

• Two classes of method:
1. Project activations back to pixel space
2. Optimize input image to maximize a particular 

feature map or class



Visualizing Convnets

• Projection from higher layers back to input
– Several similar approaches:
– Visualizing and Understanding Convolutional 

Networks, Matt Zeiler & Rob Fergus, ECCV 2014
– Deep Inside Convolutional Networks: Visualising

Image Classification Models and Saliency Maps, 
Karen Simonyan, Andrea Vedaldi, Andrew 
Zisserman, arXiv 1312.6034, 2013

– Object Detectors Emerge in Deep Scene CNNs, Bolei
Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, 
Antonio Torralba, ICLR 2015



Projection from Higher Layers

Input ImageVisualization

Layer 1: Feature 
maps

Layer 2: Feature 
maps
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[Zeiler et al. ECCV14]



Deconvnet layer

Details of Operation

Convnet layer



Unpooling Operation



Layer 1 Filters



Visualizations of Higher Layers

• Use ImageNet 2012 validation set
• Push each image through network

Input	
  
Image

Feature
Map

Lower	
  Layers

....

Filters

Validation Images

• Take max activation from 
feature map associated 
with each filter

• Use Deconvnet to project 
back to pixel space

• Use pooling “switches” 
peculiar to that activation



Layer 1: Top-9 Patches



Layer 2: Top-1



Layer 2: Top-9

• NOT SAMPLES FROM MODEL
• Just parts of input image that give strong activation of this feature map
• Non-parametric view on invariances learned by model



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Visualizing Convnets

• Optimize input to maximize particular ouput
– Lots of approaches, e.g. Erhan et al.  [Tech Report 

2009], Le et al. [NIPS 2010].
–Depend on initialization

• Google DeepDream
[http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-
into-neural.html]

– Maximize “banana”
output 



Google DeepDream

https://photos.google.com/share/F1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWd
gQ/photo/AF1QipMYTXpt0TvZ0Q5kubkGw8VAq2isxBuL02wKZafB?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d20
5bUdEMnhB



Training Big ConvNets

• Stochastic Gradient Descent
– Compute (noisy estimate of) gradient on small batch 

of data & make step
– Take as many steps as possible (even if they are noisy)
– Large initial learning rate
– Anneal learning rate

• Momentum
– Variants [Sutskever ICML 2012]



Annealing of Learning Rate

• Start large, slowly reduce
• Explore different scales of energy surface



Evolution of Features During Training



Evolution of Features During Training



Normalization across Data

• Batch Normalization
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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Automatic Tuning of Learning Rate?

• ADAGRAD

• ADADELTA

• No more pesky 
learning rates

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for 
online leaning and stochastic optimization,” in COLT, 2010.

When gradient descent nears a minima in the cost sur-
face, the parameter values can oscillate back and forth around
the minima. One method to prevent this is to slow down the
parameter updates by decreasing the learning rate. This can
be done manually when the validation accuracy appears to
plateau. Alternatively, learning rate schedules have been pro-
posed [1] to automatically anneal the learning rate based on
how many epochs through the data have been done. These ap-
proaches typically add additional hyperparameters to control
how quickly the learning rate decays.

2.2. Per-Dimension First Order Methods

The heuristic annealing procedure discussed above modifies
a single global learning rate that applies to all dimensions of
the parameters. Since each dimension of the parameter vector
can relate to the overall cost in completely different ways,
a per-dimension learning rate that can compensate for these
differences is often advantageous.

2.2.1. Momentum

One method of speeding up training per-dimension is the mo-
mentum method [2]. This is perhaps the simplest extension to
SGD that has been successfully used for decades. The main
idea behind momentum is to accelerate progress along dimen-
sions in which gradient consistently point in the same direc-
tion and to slow progress along dimensions where the sign
of the gradient continues to change. This is done by keeping
track of past parameter updates with an exponential decay:

�x
t

= ⇢�x
t�1 � ⌘g

t

(4)
where ⇢ is a constant controlling the decay of the previous
parameter updates. This gives a nice intuitive improvement
over SGD when optimizing difficult cost surfaces such as a
long narrow valley. The gradients along the valley, despite
being much smaller than the gradients across the valley, are
typically in the same direction and thus the momentum term
accumulates to speed up progress. In SGD the progress along
the valley would be slow since the gradient magnitude is small
and the fixed global learning rate shared by all dimensions
cannot speed up progress. Choosing a higher learning rate
for SGD may help but the dimension across the valley would
then also make larger parameter updates which could lead
to oscillations back as forth across the valley. These oscil-
lations are mitigated when using momentum because the sign
of the gradient changes and thus the momentum term damps
down these updates to slow progress across the valley. Again,
this occurs per-dimension and therefore the progress along the
valley is unaffected.

2.2.2. ADAGRAD

A recent first order method called ADAGRAD [3] has shown
remarkably good results on large scale learning tasks in a dis-
tributed environment [4]. This method relies on only first

order information but has some properties of second order
methods and annealing. The update rule for ADAGRAD is
as follows:

�x
t

= � ⌘qP
t

⌧=1 g
2
⌧

g
t

(5)

Here the denominator computes the `2 norm of all previous
gradients on a per-dimension basis and ⌘ is a global learning
rate shared by all dimensions.

While there is the hand tuned global learning rate, each
dimension has its own dynamic rate. Since this dynamic rate
grows with the inverse of the gradient magnitudes, large gra-
dients have smaller learning rates and small gradients have
large learning rates. This has the nice property, as in second
order methods, that the progress along each dimension evens
out over time. This is very beneficial for training deep neu-
ral networks since the scale of the gradients in each layer is
often different by several orders of magnitude, so the optimal
learning rate should take that into account. Additionally, this
accumulation of gradient in the denominator has the same ef-
fects as annealing, reducing the learning rate over time.

Since the magnitudes of gradients are factored out in
ADAGRAD, this method can be sensitive to initial conditions
of the parameters and the corresponding gradients. If the ini-
tial gradients are large, the learning rates will be low for the
remainder of training. This can be combatted by increasing
the global learning rate, making the ADAGRAD method sen-
sitive to the choice of learning rate. Also, due to the continual
accumulation of squared gradients in the denominator, the
learning rate will continue to decrease throughout training,
eventually decreasing to zero and stopping training com-
pletely. We created our ADADELTA method to overcome the
sensitivity to the hyperparameter selection as well as to avoid
the continual decay of the learning rates.

2.3. Methods Using Second Order Information

Whereas the above methods only utilized gradient and func-
tion evaluations in order to optimize the objective, second
order methods such as Newton’s method or quasi-Newtons
methods make use of the Hessian matrix or approximations
to it. While this provides additional curvature information
useful for optimization, computing accurate second order in-
formation is often expensive.

Since computing the entire Hessian matrix of second
derivatives is too computationally expensive for large models,
Becker and LecCun [5] proposed a diagonal approximation to
the Hessian. This diagonal approximation can be computed
with one additional forward and back-propagation through
the model, effectively doubling the computation over SGD.
Once the diagonal of the Hessian is computed, diag(H), the
update rule becomes:

�x
t

= � 1

|diag(H
t

)|+ µ
g
t

(6)

where the absolute value of this diagonal Hessian is used to
ensure the negative gradient direction is always followed and

µ is a small constant to improve the conditioning of the Hes-
sian for regions of small curvature.

A recent method by Schaul et al. [6] incorporating the
diagonal Hessian with ADAGRAD-like terms has been intro-
duced to alleviate the need for hand specified learning rates.
This method uses the following update rule:

�x
t

= � 1

|diag(H
t

)|
E[g

t�w:t]2

E[g2
t�w:t]

g
t

(7)

where E[g
t�w:t] is the expected value of the previous w gra-

dients and E[g2
t�w:t] is the expected value of squared gradi-

ents over the same window w. Schaul et al. also introduce a
heuristic for this window size w (see [6] for more details).

3. ADADELTA METHOD

The idea presented in this paper was derived from ADA-
GRAD [3] in order to improve upon the two main draw-
backs of the method: 1) the continual decay of learning rates
throughout training, and 2) the need for a manually selected
global learning rate. After deriving our method we noticed
several similarities to Schaul et al. [6], which will be com-
pared to below.

In the ADAGRAD method the denominator accumulates
the squared gradients from each iteration starting at the be-
ginning of training. Since each term is positive, this accumu-
lated sum continues to grow throughout training, effectively
shrinking the learning rate on each dimension. After many it-
erations, this learning rate will become infinitesimally small.

3.1. Idea 1: Accumulate Over Window

Instead of accumulating the sum of squared gradients over all
time, we restricted the window of past gradients that are ac-
cumulated to be some fixed size w (instead of size t where
t is the current iteration as in ADAGRAD). With this win-
dowed accumulation the denominator of ADAGRAD cannot
accumulate to infinity and instead becomes a local estimate
using recent gradients. This ensures that learning continues
to make progress even after many iterations of updates have
been done.

Since storing w previous squared gradients is inefficient,
our methods implements this accumulation as an exponen-
tially decaying average of the squared gradients. Assume at
time t this running average is E[g2]

t

then we compute:
E[g2]

t

= ⇢ E[g2]
t�1 + (1� ⇢) g2

t

(8)
where ⇢ is a decay constant similar to that used in the momen-
tum method. Since we require the square root of this quantity
in the parameter updates, this effectively becomes the RMS
of previous squared gradients up to time t:

RMS[g]
t

=
p

E[g2]
t

+ ✏ (9)
where a constant ✏ is added to better condition the denomina-
tor as in [5]. The resulting parameter update is then:

�x
t

= � ⌘

RMS[g]
t

g
t

(10)

Algorithm 1 Computing ADADELTA update at time t

Require: Decay rate ⇢, Constant ✏
Require: Initial parameter x1

1: Initialize accumulation variables E[g2]0 = 0, E[�x

2]0 = 0
2: for t = 1 : T do %% Loop over # of updates
3: Compute Gradient: g

t

4: Accumulate Gradient: E[g2]
t

= ⇢E[g2]
t�1 + (1� ⇢)g2

t

5: Compute Update: �x

t

= � RMS[�x]t�1

RMS[g]t
g

t

6: Accumulate Updates: E[�x

2]
t

= ⇢E[�x

2]
t�1+(1�⇢)�x

2
t

7: Apply Update: x
t+1 = x

t

+�x

t

8: end for

3.2. Idea 2: Correct Units with Hessian Approximation

When considering the parameter updates, �x, being applied
to x, the units should match. That is, if the parameter had
some hypothetical units, the changes to the parameter should
be changes in those units as well. When considering SGD,
Momentum, or ADAGRAD, we can see that this is not the
case. The units in SGD and Momentum relate to the gradient,
not the parameter:

units of �x / units of g / @f

@x
/ 1

units of x
(11)

assuming the cost function, f , is unitless. ADAGRAD also
does not have correct units since the update involves ratios of
gradient quantities, hence the update is unitless.

In contrast, second order methods such as Newton’s
method that use Hessian information or an approximation
to the Hessian do have the correct units for the parameter
updates:

�x / H�1g /
@f

@x

@

2
f

@x

2

/ units of x (12)

Noticing this mismatch of units we considered terms to
add to Eqn. 10 in order for the units of the update to match
the units of the parameters. Since second order methods are
correct, we rearrange Newton’s method (assuming a diagonal
Hessian) for the inverse of the second derivative to determine
the quantities involved:

�x =
@f

@x

@

2
f

@x

2

) 1
@

2
f

@x

2

=
�x
@f

@x

(13)

Since the RMS of the previous gradients is already repre-
sented in the denominator in Eqn. 10 we considered a mea-
sure of the �x quantity in the numerator. �x

t

for the current
time step is not known, so we assume the curvature is locally
smooth and approximate �x

t

by compute the exponentially
decaying RMS over a window of size w of previous �x to
give the ADADELTA method:

�x
t

= �RMS[�x]
t�1

RMS[g]
t

g
t

(14)

where the same constant ✏ is added to the numerator RMS as
well. This constant serves the purpose both to start off the first

µ is a small constant to improve the conditioning of the Hes-
sian for regions of small curvature.

A recent method by Schaul et al. [6] incorporating the
diagonal Hessian with ADAGRAD-like terms has been intro-
duced to alleviate the need for hand specified learning rates.
This method uses the following update rule:

�x
t

= � 1

|diag(H
t

)|
E[g

t�w:t]2

E[g2
t�w:t]

g
t

(7)

where E[g
t�w:t] is the expected value of the previous w gra-

dients and E[g2
t�w:t] is the expected value of squared gradi-

ents over the same window w. Schaul et al. also introduce a
heuristic for this window size w (see [6] for more details).

3. ADADELTA METHOD

The idea presented in this paper was derived from ADA-
GRAD [3] in order to improve upon the two main draw-
backs of the method: 1) the continual decay of learning rates
throughout training, and 2) the need for a manually selected
global learning rate. After deriving our method we noticed
several similarities to Schaul et al. [6], which will be com-
pared to below.

In the ADAGRAD method the denominator accumulates
the squared gradients from each iteration starting at the be-
ginning of training. Since each term is positive, this accumu-
lated sum continues to grow throughout training, effectively
shrinking the learning rate on each dimension. After many it-
erations, this learning rate will become infinitesimally small.

3.1. Idea 1: Accumulate Over Window

Instead of accumulating the sum of squared gradients over all
time, we restricted the window of past gradients that are ac-
cumulated to be some fixed size w (instead of size t where
t is the current iteration as in ADAGRAD). With this win-
dowed accumulation the denominator of ADAGRAD cannot
accumulate to infinity and instead becomes a local estimate
using recent gradients. This ensures that learning continues
to make progress even after many iterations of updates have
been done.

Since storing w previous squared gradients is inefficient,
our methods implements this accumulation as an exponen-
tially decaying average of the squared gradients. Assume at
time t this running average is E[g2]

t

then we compute:
E[g2]

t

= ⇢ E[g2]
t�1 + (1� ⇢) g2

t

(8)
where ⇢ is a decay constant similar to that used in the momen-
tum method. Since we require the square root of this quantity
in the parameter updates, this effectively becomes the RMS
of previous squared gradients up to time t:

RMS[g]
t

=
p

E[g2]
t

+ ✏ (9)
where a constant ✏ is added to better condition the denomina-
tor as in [5]. The resulting parameter update is then:

�x
t

= � ⌘

RMS[g]
t

g
t

(10)

Algorithm 1 Computing ADADELTA update at time t

Require: Decay rate ⇢, Constant ✏
Require: Initial parameter x1

1: Initialize accumulation variables E[g2]0 = 0, E[�x

2]0 = 0
2: for t = 1 : T do %% Loop over # of updates
3: Compute Gradient: g

t

4: Accumulate Gradient: E[g2]
t

= ⇢E[g2]
t�1 + (1� ⇢)g2

t

5: Compute Update: �x

t

= � RMS[�x]t�1

RMS[g]t
g

t

6: Accumulate Updates: E[�x

2]
t

= ⇢E[�x

2]
t�1+(1�⇢)�x

2
t

7: Apply Update: x
t+1 = x

t

+�x

t

8: end for

3.2. Idea 2: Correct Units with Hessian Approximation

When considering the parameter updates, �x, being applied
to x, the units should match. That is, if the parameter had
some hypothetical units, the changes to the parameter should
be changes in those units as well. When considering SGD,
Momentum, or ADAGRAD, we can see that this is not the
case. The units in SGD and Momentum relate to the gradient,
not the parameter:

units of �x / units of g / @f

@x
/ 1

units of x
(11)

assuming the cost function, f , is unitless. ADAGRAD also
does not have correct units since the update involves ratios of
gradient quantities, hence the update is unitless.

In contrast, second order methods such as Newton’s
method that use Hessian information or an approximation
to the Hessian do have the correct units for the parameter
updates:

�x / H�1g /
@f

@x

@

2
f

@x

2

/ units of x (12)

Noticing this mismatch of units we considered terms to
add to Eqn. 10 in order for the units of the update to match
the units of the parameters. Since second order methods are
correct, we rearrange Newton’s method (assuming a diagonal
Hessian) for the inverse of the second derivative to determine
the quantities involved:

�x =
@f

@x

@

2
f

@x

2

) 1
@

2
f

@x

2

=
�x
@f

@x

(13)

Since the RMS of the previous gradients is already repre-
sented in the denominator in Eqn. 10 we considered a mea-
sure of the �x quantity in the numerator. �x

t

for the current
time step is not known, so we assume the curvature is locally
smooth and approximate �x

t

by compute the exponentially
decaying RMS over a window of size w of previous �x to
give the ADADELTA method:

�x
t

= �RMS[�x]
t�1

RMS[g]
t

g
t

(14)

where the same constant ✏ is added to the numerator RMS as
well. This constant serves the purpose both to start off the first

ADADELTA: An Adaptive Learning Rate Method, Matthew D. 
Zeiler, arXiv 1212.5701, 2012.

T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,” 
arXiv:1206.1106, 2012.
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Figure 3: Distributions of the scaled test losses for the spin-glass (left) and the neural network (right) experiments.
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Scaling loss values To observe qualitative di↵er-
ences in behavior for di↵erent values of ⇤ or n1, it is
necessary to rescale the loss values to make their ex-
pected values approximately equal. For spin-glasses,
the expected value of the loss at critical points scales
linearly with ⇤, therefore we divided the losses by ⇤
(note that this normalization is in the statement of
Theorem 4.1) which gave us the histogram of points
at the correct scale. For MNIST experiments, we em-
pirically found that the loss with respect to number
of hidden units approximately follows an exponential

power law: E[L] / e↵n
�
1 . We fitted the coe�cients ↵,�

and scaled the loss values to L/e↵n
�
1 .

5.2 Results

Figure 3 shows the distributions of the scaled test
losses for both sets of experiments. For the spin-glasses
(left plot), we see that for small values of ⇤, we ob-
tain poor local minima on many experiments, while
for larger values of ⇤ the distribution becomes increas-
ingly concentrated around the energy barrier where lo-
cal minima have high quality. We observe that the left
tails for all ⇤ touches the barrier that is hard to pene-
trate and as ⇤ increases the values concentrate around
�E1. In fact this concentration result has long been
predicted but not proved until [Au�nger et al., 2010].
We see that qualitatively the distribution of losses for
the neural network experiments (right plot) exhibits
similar behavior. Even after scaling, the variance de-
creases with higher network sizes. This is also clearly
captured in Figure 8 and 9 in the Supplementary ma-

terial. This indicates that getting stuck in poor lo-
cal minima is a major problem for smaller networks
but becomes gradually of less importance as the net-
work size increases. This is because critical points
of large networks exhibit the layered structure where
high-quality low-index critical points lie close to the
global minimum.

5.3 Relationship between train and test loss

n1 25 50 100 250 500
⇢ 0.7616 0.6861 0.5983 0.5302 0.4081

Table 1: Pearson correlation between training and test
loss for di↵erent numbers of hidden units.

The theory and experiments thus far indicate that
minima lie in a band which gets smaller as the network
size increases. This indicates that computable solu-
tions become increasingly equivalent with respect to
training error, but how does this relate to error on the
test set? To determine this, we computed the correla-
tion ⇢ between training and test loss for all solutions
for each network size. The results are captured in Ta-
ble 1 and Figure 7 (the latter is in the Supplementary
material). The training and test error become increas-
ingly decorrelated as the network size increases. This
provides further indication that attempting to find the
absolute possible minimum is of limited use with re-
gards to generalization performance.

6 Conclusion

This paper establishes a connection between the neural
network and the spin-glass model. We show that under
certain assumptions, the loss function of the fully de-
coupled large-size neural network of depth H has simi-
lar landscape to the Hamiltonian of the H-spin spheri-
cal spin-glass model. We empirically demonstrate that
both models studied here are highly similar in real set-
tings, despite the presence of variable dependencies in
real networks. To the best of our knowledge our work
is one of the first e↵orts in the literature to shed light
on the theory of neural network optimization.

[The Loss Surfaces of Multilayer Networks
Choromanska et al. http://arxiv.org/pdf/1412.0233v3.pdf]

Distribution of test losses



What about 2nd order methods?

• Newton’s method:
• Full Hessian impractical to compute
• Approximations:
– Diagonal [Becker & Lecun ‘88]
– Truncated CG [Martens, ICML’10]
– Per-batch low-rank [Sohl-Dickstien et al., ICML’14]
– Saddle free (|H|) [Dauphin et al. NIPS’14]

• Generally, extra computation needed seems not worth 
it: take more (dumb) steps instead!

When gradient descent nears a minima in the cost sur-
face, the parameter values can oscillate back and forth around
the minima. One method to prevent this is to slow down the
parameter updates by decreasing the learning rate. This can
be done manually when the validation accuracy appears to
plateau. Alternatively, learning rate schedules have been pro-
posed [1] to automatically anneal the learning rate based on
how many epochs through the data have been done. These ap-
proaches typically add additional hyperparameters to control
how quickly the learning rate decays.

2.2. Per-Dimension First Order Methods

The heuristic annealing procedure discussed above modifies
a single global learning rate that applies to all dimensions of
the parameters. Since each dimension of the parameter vector
can relate to the overall cost in completely different ways,
a per-dimension learning rate that can compensate for these
differences is often advantageous.

2.2.1. Momentum

One method of speeding up training per-dimension is the mo-
mentum method [2]. This is perhaps the simplest extension to
SGD that has been successfully used for decades. The main
idea behind momentum is to accelerate progress along dimen-
sions in which gradient consistently point in the same direc-
tion and to slow progress along dimensions where the sign
of the gradient continues to change. This is done by keeping
track of past parameter updates with an exponential decay:

�x
t

= ⇢�x
t�1 � ⌘g

t

(4)
where ⇢ is a constant controlling the decay of the previous
parameter updates. This gives a nice intuitive improvement
over SGD when optimizing difficult cost surfaces such as a
long narrow valley. The gradients along the valley, despite
being much smaller than the gradients across the valley, are
typically in the same direction and thus the momentum term
accumulates to speed up progress. In SGD the progress along
the valley would be slow since the gradient magnitude is small
and the fixed global learning rate shared by all dimensions
cannot speed up progress. Choosing a higher learning rate
for SGD may help but the dimension across the valley would
then also make larger parameter updates which could lead
to oscillations back as forth across the valley. These oscil-
lations are mitigated when using momentum because the sign
of the gradient changes and thus the momentum term damps
down these updates to slow progress across the valley. Again,
this occurs per-dimension and therefore the progress along the
valley is unaffected.

2.2.2. ADAGRAD

A recent first order method called ADAGRAD [3] has shown
remarkably good results on large scale learning tasks in a dis-
tributed environment [4]. This method relies on only first

order information but has some properties of second order
methods and annealing. The update rule for ADAGRAD is
as follows:

�x
t

= � ⌘qP
t

⌧=1 g
2
⌧

g
t

(5)

Here the denominator computes the `2 norm of all previous
gradients on a per-dimension basis and ⌘ is a global learning
rate shared by all dimensions.

While there is the hand tuned global learning rate, each
dimension has its own dynamic rate. Since this dynamic rate
grows with the inverse of the gradient magnitudes, large gra-
dients have smaller learning rates and small gradients have
large learning rates. This has the nice property, as in second
order methods, that the progress along each dimension evens
out over time. This is very beneficial for training deep neu-
ral networks since the scale of the gradients in each layer is
often different by several orders of magnitude, so the optimal
learning rate should take that into account. Additionally, this
accumulation of gradient in the denominator has the same ef-
fects as annealing, reducing the learning rate over time.

Since the magnitudes of gradients are factored out in
ADAGRAD, this method can be sensitive to initial conditions
of the parameters and the corresponding gradients. If the ini-
tial gradients are large, the learning rates will be low for the
remainder of training. This can be combatted by increasing
the global learning rate, making the ADAGRAD method sen-
sitive to the choice of learning rate. Also, due to the continual
accumulation of squared gradients in the denominator, the
learning rate will continue to decrease throughout training,
eventually decreasing to zero and stopping training com-
pletely. We created our ADADELTA method to overcome the
sensitivity to the hyperparameter selection as well as to avoid
the continual decay of the learning rates.

2.3. Methods Using Second Order Information

Whereas the above methods only utilized gradient and func-
tion evaluations in order to optimize the objective, second
order methods such as Newton’s method or quasi-Newtons
methods make use of the Hessian matrix or approximations
to it. While this provides additional curvature information
useful for optimization, computing accurate second order in-
formation is often expensive.

Since computing the entire Hessian matrix of second
derivatives is too computationally expensive for large models,
Becker and LecCun [5] proposed a diagonal approximation to
the Hessian. This diagonal approximation can be computed
with one additional forward and back-propagation through
the model, effectively doubling the computation over SGD.
Once the diagonal of the Hessian is computed, diag(H), the
update rule becomes:

�x
t

= � 1

|diag(H
t

)|+ µ
g
t

(6)

where the absolute value of this diagonal Hessian is used to
ensure the negative gradient direction is always followed and

S. Becker and Y. LeCun, “Improving the 
convergence of back-propagation learning with 
second order methods,” Tech. Rep., 
Department of Computer Science, University 
of Toronto, Toronto, ON, Canada, 1988.

ADADELTA: AN ADAPTIVE LEARNING RATE METHOD

Matthew D. Zeiler1,2⇤

1Google Inc., USA 2New York University, USA

ABSTRACT

We present a novel per-dimension learning rate method for
gradient descent called ADADELTA. The method dynami-
cally adapts over time using only first order information and
has minimal computational overhead beyond vanilla stochas-
tic gradient descent. The method requires no manual tuning of
a learning rate and appears robust to noisy gradient informa-
tion, different model architecture choices, various data modal-
ities and selection of hyperparameters. We show promising
results compared to other methods on the MNIST digit clas-
sification task using a single machine and on a large scale
voice dataset in a distributed cluster environment.

Index Terms— Adaptive Learning Rates, Machine Learn-
ing, Neural Networks, Gradient Descent

1. INTRODUCTION

The aim of many machine learning methods is to update a
set of parameters x in order to optimize an objective function
f(x). This often involves some iterative procedure which ap-
plies changes to the parameters, �x at each iteration of the
algorithm. Denoting the parameters at the t-th iteration as x

t

,
this simple update rule becomes:

x
t+1 = x

t

+�x
t

(1)

In this paper we consider gradient descent algorithms which
attempt to optimize the objective function by following the
steepest descent direction given by the negative of the gradi-
ent g

t

. This general approach can be applied to update any
parameters for which a derivative can be obtained:

�x
t

= �⌘g
t

(2)

where g
t

is the gradient of the parameters at the t-th iteration
@f(xt)
@xt

and ⌘ is a learning rate which controls how large of
a step to take in the direction of the negative gradient. Fol-
lowing this negative gradient for each new sample or batch
of samples chosen from the dataset gives a local estimate
of which direction minimizes the cost and is referred to as
stochastic gradient descent (SGD) [1]. While often simple to
derive the gradients for each parameter analytically, the gradi-
ent descent algorithm requires the learning rate hyperparam-
eter to be chosen.

⇤This work was done while Matthew D. Zeiler was an intern at Google.

Setting the learning rate typically involves a tuning pro-
cedure in which the highest possible learning rate is chosen
by hand. Choosing higher than this rate can cause the system
to diverge in terms of the objective function, and choosing
this rate too low results in slow learning. Determining a good
learning rate becomes more of an art than science for many
problems.

This work attempts to alleviate the task of choosing a
learning rate by introducing a new dynamic learning rate that
is computed on a per-dimension basis using only first order
information. This requires a trivial amount of extra compu-
tation per iteration over gradient descent. Additionally, while
there are some hyper parameters in this method, we has found
their selection to not drastically alter the results. The benefits
of this approach are as follows:

• no manual setting of a learning rate.
• insensitive to hyperparameters.
• separate dynamic learning rate per-dimension.
• minimal computation over gradient descent.
• robust to large gradients, noise and architecture choice.
• applicable in both local or distributed environments.

2. RELATED WORK

There are many modifications to the gradient descent algo-
rithm. The most powerful such modification is Newton’s
method which requires second order derivatives of the cost
function:

�x
t

= H�1
t

g
t

(3)
where H�1

t

is the inverse of the Hessian matrix of second
derivatives computed at iteration t. This determines the op-
timal step size to take for quadratic problems, but unfortu-
nately is prohibitive to compute in practice for large models.
Therefore, many additional approaches have been proposed
to either improve the use of first order information or to ap-
proximate the second order information.

2.1. Learning Rate Annealing

There have been several attempts to use heuristics for estimat-
ing a good learning rate at each iteration of gradient descent.
These either attempt to speed up learning when suitable or to
slow down learning near a local minima. Here we consider
the latter.
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Saddle Point Perspective

border of the trust region. So we must ask how far from ✓ can we trust the first order approximation
of f? One answer is to bound the discrepancy between the first and second order Taylor expansions
of f by imposing the following constraint:

d(✓, ✓ +�✓) =

����f(✓) +rf�✓ +
1

2
�✓>H�✓ � f(✓)�rf�✓

���� =
1

2

���✓>H�✓
��  �, (3)

Algorithm 1 Approximate saddle-free Newton
Require: Function f(✓) to minimize

for i = 1!M do
V k Lanczos vectors of @2f

@✓2

f̂(↵) g(✓ +V↵)

|Ĥ|  
��� @

2f̂
@↵2

��� by using an eigen decomposi-

tion of Ĥ
for j = 1! m do

g � @f̂
@↵

� argmin� f̂(g(|Ĥ| + �I)�1)
✓  ✓ + g(|Ĥ| + �I)�1V

end for
end for

where rf is the partial derivative of f with re-
spect to ✓ and � 2 R is some small value that
indicates how much discrepancy we are will-
ing to accept. Note that the distance measure d
takes into account the curvature of the function.

Eq. (3) is not easy to solve for �✓ in more than
one dimension. Alternatively, one could take
the square of the distance, but this would yield
an optimization problem with a constraint that
is quartic in �✓, and therefore also difficult to
solve. We circumvent these difficulties through
a Lemma:
Lemma 1. Let A be a nonsingular square ma-
trix in Rn ⇥ Rn, and x 2 Rn be some vector.
Then it holds that |x>Ax|  x>|A|x, where
|A| is the matrix obtained by taking the abso-
lute value of each of the eigenvalues of A.

Proof. See Appendix D for the proof.

Instead of the originally proposed distance
measure in Eq. (3), we approximate the distance by its upper bound �✓|H|�✓ based on Lemma 1.
This results in the following generalized trust region method:

�✓ = argmin
�✓

f(✓) +rf�✓

s. t. �✓>|H|�✓  �.
(4)

Note that as discussed before, we can replace the inequality constraint with an equality one, as the
first order approximation of f has a minimum at infinity and the algorithm always jumps to the
border of the trust region. Similar to (Pascanu and Bengio, 2014), we use Lagrange multipliers to
obtain the solution of this constrained optimization. This gives (up to a scalar that we fold into the
learning rate) a step of the form:

�✓ = �rf |H|�1 (5)

This algorithm, which we call the saddle-free Newton method (SFN), leverages curvature informa-
tion in a fundamentally different way, to define the shape of the trust region, rather than Taylor
expansion to second order, as in classical methods. Unlike gradient descent, it can move further
(less) in the directions of low (high) curvature. It is identical to the Newton method when the Hes-
sian is positive definite, but unlike the Newton method, it can escape saddle points. Furthermore,
unlike gradient descent, the escape is rapid even along directions of weak negative curvature (see
Fig. 2).

The exact implementation of this algorithm is intractable in a high dimensional problem, because
it requires the exact computation of the Hessian. Instead we use an approach similar to Krylov
subspace descent (Vinyals and Povey, 2012). We optimize that function in a lower-dimensional
Krylov subspace f̂(↵) = f(✓+↵V). The k Krylov subspace vectors V are found through Lanczos
iteration of the Hessian. These vectors will span the k biggest eigenvectors of the Hessian with
high-probability. This reparametrization through ↵ greatly reduces the dimensionality and allows us
to use exact saddle-free Newton in the subspace.1 See Alg. 1 for the pseudocode.

1 In the Krylov subspace, @f̂
@↵ = V

�
@f
@✓

�> and @2f̂
@↵2 = V

⇣
@2f
@✓2

⌘
V>.

6

[Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization, Dauphin et al., NIPS 2014] 

• During optimization Hessian has 
both +ve and –ve eigenvalues
– and maybe some zeros too (flat 

directions)
– At minimum, all are +ve

• Cause problems for SGD

• Saddle Free  Newton (SFN)
– Use |H| (matrix where take 

absolute value of each eigenvalue 
of H)
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Figure 3: Empirical evaluation of different optimization algorithms for a single-layer MLP trained
on the rescaled MNIST and CIFAR-10 dataset. In (a) and (d) we look at the minimum error obtained
by the different algorithms considered as a function of the model size. (b) and (e) show the optimal
training curves for the three algorithms. The error is plotted as a function of the number of epochs.
(c) and (f) track the norm of the largest negative eigenvalue.

7 Experimental validation of the saddle-free Newton method

In this section, we empirically evaluate the theory suggesting the existence of many saddle points in
high-dimensional functions by training neural networks.

7.1 Feedforward Neural Networks

7.1.1 Existence of Saddle Points in Neural Networks

In this section, we validate the existence of saddle points in the cost function of neural networks,
and see how each of the algorithms we described earlier behaves near them. In order to minimize
the effect of any type of approximation used in the algorithms, we train small neural networks on
the scaled-down version of MNIST and CIFAR-10, where we can compute the update directions by
each algorithm exactly. Both MNIST and CIFAR-10 were downsampled to be of size 10 ⇥ 10.

We compare minibatch stochastic gradient descent (MSGD), damped Newton and the proposed
saddle-free Newton method (SFN). The hyperparameters of SGD were selected via random
search (Bergstra and Bengio, 2012), and the damping coefficients for the damped Newton and
saddle-free Newton2 methods were selected from a small set at each update.

The theory suggests that the number of saddle points increases exponentially as the dimensionality
of the function increases. From this, we expect that it becomes more likely for the conventional algo-
rithms such as SGD and Newton methods to stop near saddle points, resulting in worse performance
(on training samples). Figs. 3 (a) and (d) clearly confirm this. With the smallest network, all the al-
gorithms perform comparably, but as the size grows, the saddle-free Newton algorithm outperforms
the others by a large margin.

A closer look into the different behavior of each algorithm is presented in Figs. 3 (b) and (e) which
show the evolution of training error over optimization. We can see that the proposed saddle-free
Newton escapes, or does not get stuck at all, near a saddle point where both SGD and Newton
methods appear trapped. Especially, at the 10-th epoch in the case of MNIST, we can observe the
saddle-free Newton method rapidly escaping from the saddle point. Furthermore, Figs. 3 (c) and (f)
provide evidence that the distribution of eigenvalues shifts more toward the right as error decreases

2Damping is used for numerical stability.
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Improving Generalization

• Data Augmentation (jitter, peturb)
• Weight decay (L1/2 penalty on weights)
• Weight sharing (reduces # parameters)
• Multi-task learning
• Inject Noise into network
–DropOut [Hinton et al. 2012]
–DropConnect [Wan et al. ICML 2012]
– Stochastic Pooling [Zeiler & Fergus ICLR’13]



Big Model + Regularize vs Small Model

Small model Big model Big model
+ Regularize



Fooling Convnets

• Search for images that are misclassified 
by the network 

• Intriguing properties of neural 
networks, Christian Szegedy et al. arXiv
1312.6199, 2013

• Deep Neural Networks are Easily 
Fooled: High Confidence Predictions 
for Unrecognizable Images, Anh
Nguyen, Jason Yosinski, Jeff Clune, 
arXiv 1412.1897.

• Problem common to any discriminative 
method

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen
University of Wyoming
anguyen8@uwyo.edu

Jason Yosinski
Cornell University

yosinski@cs.cornell.edu

Jeff Clune
University of Wyoming
jeffclune@uwyo.edu

Full Citation: Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [30] revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

1. Introduction
Deep neural networks (DNNs) learn hierarchical lay-

ers of representation from sensory input in order to per-
form pattern recognition [2, 14]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[16, 7, 31, 17]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN
and human vision [30]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static

1

ar
X

iv
:1

41
2.

18
97

v4
  [

cs
.C

V
]  

2 
A

pr
 2

01
5



DropOut

• G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. 
Salakhutdinov, Improving neural networks by preventing co-adaptation of 
feature detectors, arXiv:1207.0580 2012

that had only 4 training examples. We also removed one category that covered a huge chunk
(25%) of the examples. This left us with 50 classes and 402,738 documents. We divided the
documents into equal-sized training and test sets randomly. Each document was represented
using the 2000 most frequent non-stopwords in the dataset.

(a) (b)

Fig. 7: Classification error rate on the (a) training and (b) validation sets of the Reuters dataset
as learning progresses. The training error is computed using the stochastic nets.

We trained a neural network using dropout-backpropagation and compared it with standard
backpropagation. We used a 2000-2000-1000-50 architecture. The training hyperparameters are
same as that in MNIST dropout training (Appendix A.1). Training was done for 500 epochs.

Figure 7 shows the training and test set errors as learning progresses. We show two nets
- one with a 2000-2000-1000-50 and another with a 2000-1000-1000-50 architecture trained
with and without dropout. As in all previous datasets discussed so far, we obtain significant
improvements here too. The learning not only results in better generalization, but also proceeds
smoothly, without the need for early stopping.

D Tiny Images and CIFAR-10
The Tiny Images dataset contains 80 million 32⇥ 32 color images collected from the web. The
images were found by searching various image search engines for English nouns, so each image
comes with a very unreliable label, which is the noun that was used to find it. The CIFAR-10
dataset is a subset of the Tiny Images dataset which contains 60000 images divided among ten
classes5. Each class contains 5000 training images and 1000 testing images. The classes are

5The CIFAR dataset is available at http://www.cs.toronto.edu/⇠kriz/cifar.html.

13

• Fully connected layers only
• Randomly set activations in 

layer to zero
• Gives ensemble of models
• Similar to bagging 

[Breiman’94], but differs in 
that parameters are shared.



DropConnect
Thesis Proposal: Object Detection with Deep Learning

Image Classification with Deep Network

Motiviation of DropConnect Network

DropConnect Network
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• Wan et al. ICML 2013
• Fully-connected layers only
• Random binary mask on weights

Thesis Proposal: Object Detection with Deep Learning

Image Classification with Deep Network

Empirical Study of DropConnect Network

Understand DropConnect Network with MNIST data set

200 400 800 1600
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Hidden Units

%
 T

es
t E

rro
r

 

 

No−Drop
Dropout
DropConnect

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.2

1.4

1.6

1.8

2

2.2

2.4

% of Elements Kept

%
 T

es
t E

rro
r

 

 

Dropout
DropConnect

100 200 300 400 500 600 700 800 900
10−3

10−2

Epoch

C
ro

ss
 E

nt
ro

py

 

 

No−Drop Train
No−Drop Test
Dropout Train
Dropout Test
DropConnect Train
DropConnect Test

1. Testing error by varying the size of n-n network

2. Testing error by varying the drop-rate in a 400-400 network

3. Convergence properties of the train/test sets.

17 / 29

MNIST



Stochastic Pooling

• For conv layers
• Compute activations :         
• Normalize to sum to 1      -> 
• Sample location, , from multinomial
• Use activation from the location: 

★!

a)!Image!

b)!Filter!

c)!Rec0fied!Linear! e)!Probabili0es,!pi 

0! 0! 0!

0!0!

0!0!

1.6!

2.4!

0! 0! 0!

0!0!

0!0!

0.4!

0.6!

d)!Ac0va0ons,!ai 

1.6!

f)!Sampled!!
!!!!Ac0va0on,!s!

Sample!a!loca0on!
from!P():!e.g.!!l = 1 

[Zeiler and Fergus, ICLR 2013]
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OTHER THINGS GOOD TO KNOW

Check gradients numerically by finite differences
Visualize features (feature maps need to be uncorrelated) 

and have high variance.
sa

m
pl

es

hidden unit
Good training: hidden units are sparse across samples 

and across features. Ranzato
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OTHER THINGS GOOD TO KNOW

Check gradients numerically by finite differences
Visualize features (feature maps need to be uncorrelated) 

and have high variance.
sa

m
pl

es

hidden unit
Bad training: many hidden units ignore the input and/or

exhibit strong correlations. Ranzato
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OTHER THINGS GOOD TO KNOW

Check gradients numerically by finite differences
Visualize features (feature maps need to be uncorrelated) 

and have high variance.
Visualize parameters

Good training: learned filters exhibit structure and are uncorrelated. 

GOOD BADBAD BAD

too noisy too 
correlated

lack 
structure

Ranzato
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OTHER THINGS GOOD TO KNOW

Check gradients numerically by finite differences
Visualize features (feature maps need to be uncorrelated) 

and have high variance.
Visualize parameters
Measure error on both training and validation set.
Test on a small subset of the data and check the error → 0.

Ranzato
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WHAT IF IT DOES NOT WORK?

Training diverges:
Learning rate may be too large → decrease learning rate
BPROP is buggy → numerical gradient checking

Parameters collapse / loss is minimized but accuracy is low
Check loss function:
Is it appropriate for the task you want to solve?
Does it have degenerate solutions? Check “pull-up” term.

Network is underperforming
Compute flops and nr. params. → if too small, make net larger
Visualize hidden units/params → fix optmization

Network is too slow
Compute flops and nr. params. → GPU,distrib. framework, make 
net smaller 

Ranzato



Industry Deployment

• Used in Facebook, Google, Microsoft
• Face recognition, image search, photo 

organization….
• Very fast at test time (~100 images/sec/GPU)

[Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face 
Verification, CVPR’14]



Labeled Faces in Wild Dataset
• Task: given pair of images, same person or not?

[Tagman et al. CVPR’14]



Detection with ConvNets

• So far, all about
classification

• What about
localizing objects
within the scene?



Two General Approaches

1. Examine very position / scale
– E.g. Overfeat: Integrated recognition, localization 

and detection using convolutional networks, 
Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to 
attend to a set of possible regions
– E.g. Region-CNN [Rich feature hierarchies for 

accurate object detection and semantic 
segmentation, Girshick et al., CVPR 2014]



Sliding Window with ConvNet
Conv Conv Conv Conv Conv Full Full



Sliding Window with ConvNet

Input Window
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C
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Feature Extractor Classifier



Sliding Window with ConvNet

Input Window

224 6
256

Conv Conv Conv Conv Conv Full Full

Feature Extractor16
7

240

1

No need to compute two separate windows --- Just one big input window

C
classes



Multi-Scale Sliding Window ConvNet
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Multi-Scale Sliding Window ConvNet
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OverFeat – Output before NMS



Overfeat Detection Results

[Sermanet et al. ICLR 2014]



R-CNN Approach

• Bottom-up proposal
mechanism

• Scored by classifier

• Current best
detection approach 
on PASCAL VOC

• Further work combines proposal mechanism with classification network:
– Fast R-CNN, Ross Girshick, arXiv 1504.08083, 2015.
– Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 

Networks, Shaoqing Ren et al., arXiv 1506.01497, 2015

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [27] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [13], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [17], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

gorithm. Building on Rumelhart et al. [30], LeCun et al.
[24] showed that stochastic gradient descent via backprop-
agation was effective for training convolutional neural net-
works (CNNs), a class of models that extend the neocogni-
tron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [23] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
object detection results on the PASCAL VOC Challenge?

We answer this question by bridging the gap between
image classification and object detection. This paper is the
first to show that a CNN can lead to dramatically higher ob-
ject detection performance on PASCAL VOC as compared
to systems based on simpler HOG-like features. To achieve
this result, we focused on two problems: localizing objects

1

[Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]



Video Classification

• Want to capture temporal structure 
• 3D convolutions & 3D max-pooling
• E.g. C3D model

8 convolution, 5 pool, 2 fully-connected layers
3x3x3 convolution kernels
2x2x2 pooling kernels

[Learning Spatiotemporal Features with 3D Convolutional Networks, Tran et al., 
arXiv:1412.0767, 2014]

[Slide: Manohar Paluri]



Action Recognition – UCF101 dataset

[Slide: Manohar Paluri]



Action Recognition Results

Use optical 
flows

Use raw pixel 
inputs

Baselines

[Slide: Manohar Paluri]



2D vs 3D Convnets

[Slide: Manohar Paluri]

• UCF101 training

t-SNE visualization



Sport Classification Results

[Slide: Manohar Paluri]



Dense Scene Labeling

• Classification: pixels -> label
• Detection: pixels -> boxes

• Use Convnets to do pixels -> pixels
– Segmentation of image
– Image processing tasks (denoising etc.)
–Don’t want pooling



Dense Scene Labeling

Input Image

• Convnet output is per-pixel label map

Semantic Map



Dense Scene Labeling

Input Image

• Convnet output is per-pixel depth map

Depth

Semantic Map



Semantic Map

Dense Scene Labeling

Input Image

• Convnet output is per-pixel normal map

Depth

Normals



Eigen et al. architecture
96 256 384 384 256 4096

64 128 64 64

63 64 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input:	
  320x240

Output:	
  147x109[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Architecture

convolutionsconv+pool concat

upsample

upsample

Input:	
  320x240

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Multi-Scale Convnets
96 256 384 384 256 4096

64 128 64 64

64 64+C 64 64

convolutionsconv+pool concat

64

upsample

upsample

Input:	
  320x240

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Use Appropriate Loss Functions
Depth:

Normals

Labels

ground truth, using a dot product:

Lnormals(N,N�) = � 1

n

⇥

i

Ni ·N�
i = � 1

n
N ·N� (6.2)

where N and N� are predicted and ground truth normal vector maps, and the sums

again run over valid pixels (i.e. those with a ground truth normal).

For ground truth targets, we compute the normal map using the same method as in

Silberman et al. [111], which estimates normals from depth by fitting least-squares planes

to neighboring sets of points in the point cloud.

6.4.3 Semantic Labels

For semantic labeling, we use a pixelwise softmax classifier to predict a class label for

each pixel. The final output then has as many channels as there are classes. We use a

simple pixelwise cross-entropy loss,

Lsemantic(C,C
�) = � 1

n

⇥

i

C�
i log(Ci) (6.3)

where Ci = ezi/
�

c e
zi,c is the class prediction at pixel i given the output z of the final

convolutional linear layer 3.4.

When labeling the NYUDepth RGB-D dataset, we use the ground truth depth and

normals as additional input channels. We convolve each of the three input types (RGB,

depth and normals) with a di�erent set of 32⇥9⇥9 filters, then concatenate the resulting

three feature sets along with the network output from the previous scale to form the input

to the next. 2 Note the first scale is initialized using ImageNet, and we keep it RGB-

only. Applying convolutions to each input type separately, rather than concatenating all

the channels together in pixel space and filtering the joint input, enforces independence

between the features at the lowest filter level, which we found helped performance.

2We also tried the “HHA” encoding proposed by [47], but did not see a benefit in our case, thus we
opt for the simpler approach of using the depth and xyz-normals directly.
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6.4 Tasks

We apply this same basic architecture structure to each of the three tasks we investigate:

depths, normals and semantic labeling. Each makes use of a di�erent loss function

describing the task, as well as other minor adaptations.

6.4.1 Depth

For depth prediction, we make use of the same loss function described in Chapter 5,

using both elementwise l2 and scale-invariant terms. We further augment this with a

spatial consistency term that matches the change in depth between adjacent pixels to

the corresponding change in the ground truth. This is similar to a spatial smoothness

constraint, but matches spatial derivatives to the ground truth rather than to zero,

and we found it indeed produces smoother outputs with no degradation in measured

performance.

More exactly, ifD andD� are the predicted and ground truth log depths, and d = D�D�

is their di�erence, the depth loss is

Ldepth(D,D�) =
1

n

⇤

i

d2i �
1

2n2

�
⇤

i

di

⇥2

+
1

n

⇤

i

[(⇥xdi)
2 + (⇥ydi)

2] (6.1)

where the sums are over valid1 pixels i and n is the number of valid pixels. Here, ⇥xdi

and ⇥ydi are the horizontal and vertical image gradients of the di�erence.

6.4.2 Surface Normals

To predict surface normals, we change the output from one channel to three, to predict

the x, y and z components of the normal at each pixel. We also normalize the vector

at each pixel to unit l2 norm, and backpropagate through this normalization. We then

employ a simple elementwise loss comparing the predicted normal at each pixel to the

1We mask out pixels where the ground truth is missing.
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at each pixel to unit l2 norm, and backpropagate through this normalization. We then

employ a simple elementwise loss comparing the predicted normal at each pixel to the

1We mask out pixels where the ground truth is missing.

72

D	
  =	
  log	
  predicted	
  depth,	
  	
  D*	
  =	
  log	
  true	
  depth

Per-­‐pixel	
  soft-­‐max

Angle	
  between	
  
true	
  /	
  predicted	
  
normals

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Depths Comparison

1

1

Ground	
  TruthOursEigen	
  NIPS’14	
  (2	
  scales)
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#1884

ICCV
#1884

ICCV 2015 Submission #1884. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) (b) (c) (d)

Figure 2. Example depth results. (a) RGB input; (b) result of [4];
(c) our result; (d) ground truth. Note the color range of each image
is individually scaled.

Depth Prediction
Ladicky[20]Karsch[14] Baig [1] Liu [18] Eigen[4] Ours(A) Ours(VGG)

� < 1.25 0.542 – 0.597 0.614 0.614 0.697 0.769
� < 1.252 0.829 – – 0.883 0.888 0.912 0.950
� < 1.253 0.940 – – 0.971 0.972 0.977 0.988
abs rel – 0.350 0.259 0.230 0.214 0.198 0.158
sqr rel – – – – 0.204 0.180 0.121
RMS(lin) – 1.2 0.839 0.824 0.877 0.753 0.641
RMS(log) – – – – 0.283 0.255 0.214
sc-inv. – – 0.242 – 0.219 0.202 0.171
Table 1. Depth estimation measurements. Note higher is better for
top rows of the table, while lower is better for the bottom section.

and improved training. In addition, the VGG version of our
model significantly outperforms the smaller AlexNet ver-
sion, reenforcing the importance of model size; this is the
case even though the depth task is seemingly far removed
from the classification task with which the initial coarse
weights were first trained. Qualitative results in Fig. 2 show
substantial improvement in detail sharpness over [4].

6.2. Surface Normals
Next we apply our method to surface normals prediction.

We compare against the 3D Primitives (3DP) and “Indoor
Origami” works of Fouhey et al. [6, 7], Ladicky et al. [16],
and Wang et al. [33]. As with the depth network, we used
the full raw dataset for training, since ground-truth normal
maps can be generated for all images. Since different sys-
tems have different ways of calculating ground truth nor-
mal maps, we compare using both the ground truth as con-
structed in [6, 7] as well as the method used in [27], using
precomputed predictions supplied by the authors of method.
Note that Wang et al. use a method similar to [6] to con-
struct training targets, while we use the method of [27] for
this purpose. We measure performance with the same met-
rics as in [6]: The mean and median angle from the ground
truth across all unmasked pixels, as well as the percent of
vectors whose angle falls within a series of three thresholds.

Surface Normal Estimation (GT [6])
Angle Distance Within t

� Deg.
Mean Median 11.25� 22.5� 30�

3DP [6] 34.2 30.0 18.5 38.6 50.0
Ladicky &al [16] 32.5 22.3 27.4 50.2 60.1
Fouhey &al [7] 35.1 19.2 37.6 53.3 58.9
Wang &al [33] 26.6 15.3 40.1 61.4 69.0
Ours (AlexNet) 23.1 15.1 39.4 63.6 72.7
Ours (VGG) 20.5 13.2 44.0 68.5 77.2

Surface Normal Estimation (GT [27])
Angle Distance Within t

� Deg.
Mean Median 11.25� 22.5� 30�

3DP [6] 37.7 34.1 14.0 32.7 44.1
Ladicky &al [16] 35.5 25.5 24.0 45.6 55.9
Wang &al [33] 28.8 17.9 35.2 57.1 65.5
Ours (AlexNet) 25.9 18.2 33.2 57.5 67.7
Ours (VGG) 22.2 15.3 38.6 64.0 73.9

Table 2. Surface normals prediction measured against the ground
truth constructed by [6] (top) and [27] (bottom).

Results are shown in Table 2. The smaller version of
our model performs similarly or slightly better than Wang
et al. , while the larger version substantially outperforms all
comparison methods. Note that of the ground truths, [6] is
somewhat more pre-processed compared to [27], and thus
[6] tends to present flatter areas, while [27] is noisier but
keeps more details present.

Figure 3 shows example predictions. Note the details
captured by our method, such as the curvature of the blanket
on the bed in the first row, sofas in the second row, and
objects in the last row.

6.3. Semantic Labels
6.3.1 NYU Depth

We finally apply our method to semantic segmentation, first
also on NYUDepth. Because this data provides a depth
channel, we use the ground-truth depth and normals as in-
put into the semantic segmentation network, as described
in Section 4.3. We evaluate our method on semantic class
sets with 4, 13 and 40 labels, described in [27], [3] and
[9], respectively. The 4-class segmentation task uses high-
level category labels “floor”, “structure”, “furniture” and
“props”, while the 13- and 40-class tasks use different sets
of more fine-grained categories. We compare with several
recent methods, using the metrics commonly used to eval-
uate each task: For the 4- and 13-class tasks we use pixel-
wise and per-class accuracy; for the 40-class task, we also
compare using the mean pixel-frequency weighted Jaccard
index of each class, and the flat mean Jaccard index.

Results are shown in Table 3. We decisively outperform
the comparison methods on the 4- and 14-class tasks. In
the 40-class task, our model outperforms Gupta et al. ’14
with both model sizes, and Long et al. with the larger size.
Qualitative results are shown in Fig. 4. Even though our
method does not use superpixels or any piecewise constant
assumptions, it nevertheless tends to produce large constant
regions most of the time.
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RGB input 3DP [6] Ladicky&al [16] Wang&al [33] Ours (VGG) Ground Truth

Figure 3. Comparison of surface normal maps.

Contributions of Scales
Depth Normals 4-Class 13-Class

RGB+D+N RGB RGB+D+N RGB
Pixelwise Error Pixelwise Accuracy
lower is better higher is better

Scale 1 only 0.218 29.7 71.5 71.5 58.1 58.1
Scale 2 only 0.290 31.8 77.4 67.2 65.1 53.1
Scales 1 + 2 0.216 26.1 80.1 74.4 69.8 63.2
Scales 1 + 2 + 3 0.198 25.9 80.6 75.3 70.5 64.0

Table 6. Comparison of networks for different scales for depth,
normals and semantic labeling tasks with 4 and 13 categories.
Largest single contributing scale is underlined.

Effect of Depth/Normals Inputs
Scale 2 only Scales 1 + 2

Pix. Acc. Per-class Pix. Acc. Per-class
RGB only 53.1 38.3 63.2 50.6
RGB + pred. D&N 58.7 43.8 65.0 49.5
RGB + g.t. D&N 65.1 52.3 69.8 58.9

Table 7. Comparison of RGB-only, predicted depth/normals, and
ground-truth depth/normals as input to the 13-class semantic la-
beling task.

7.2. Effect of Depth and Normals Inputs
The fact that we can recover much of the depth and nor-

mals information from the RGB image naturally leads to
two questions: (i) How important are the depth and normals
inputs relative to RGB in the semantic labeling task? (ii)
What might happen if we were to replace the true depth and
normals inputs with the predictions made by our network?

To study this, we trained and tested our network using
either Scale 2 alone or both Scales 1 and 2 for the 13-
class semantic labeling task under three input conditions:
(a) the RGB image only, (b) the RGB image along with
predicted depth and normals, or (c) RGB plus true depth

and normals. Results are in Table 7. Using ground truth
depth/normals shows substantial improvements over RGB
alone. Predicted depth/normals appear to have little effect
when using both scales, but a tangible improvement when
using only Scale 2. We believe this is because any relevant
information provided by predicted depths/normals for label-
ing can also be extracted from the input; thus the labeling
network can learn this same information itself, just from the
label targets. However, this supposes that the network struc-
ture is capable of learning these relations: If this is not the
case, e.g. when using only Scale 2, we do see improvement.
This is also consistent with Section 7.1, where we found the
coarse network was important for prediction in all tasks —
indeed, supplying the predicted depth/normals to scale 2 is
able to recover much of the performance obtained by the
RGB-only scales 1+2 model.

8. Discussion
Together, depth, surface normals and semantic labels

provide a rich account of a scene. We have proposed a sim-
ple and fast multiscale architecture using convolutional net-
works that gives excellent performance on all three modali-
ties. The models beat existing methods on the vast majority
of benchmarks we explored. This is impressive given that
many of these methods are specific to a single modality and
often slower and more complex algorithms than ours. As
such, our model provides a convenient new baseline for the
three tasks. To this end, code and trained models can be
found at http://anonymous.edu.
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Scene Parsing

• Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013



Segmentation

• Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012
• Turaga et al. “Maximin learning of image segmentation” NIPS 2009



Denoising with ConvNets

• Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012

Original Noised Denoised



Deblurring with Convnets

• Blind deconvolution
– Learning to Deblur, Schuler et al., arXiv

1406.7444, 2014

Blurry image with Result of [Zho+13] Deblurring result w. Deblurring result w.
ground truth kernel PSNR 23.17 noise agnostic training noise specific training

PSNR 23.29 PSNR 23.41

Figure 10: Comparison of deblurring results for NNs that have been trained with di�erent
amounts of noise added to the sample images during training. The network that
has been trained with the same amount of noise as the input blurry image (5%
noise) performs best. We also show the results of a recently proposed deblurring
method tailored for increased levels of noise [Zho+13].

applies a combination of bilateral and shock filtering to restore latent edges that are used for
subsequent kernel estimation.

In this context, learning the latent image prediction step o�ers a great advantage: by training our
network with a particular class of images, it is able to focus on those features that are informative
for the particular type of image. In other words, the network learns content-specific nonlinear
filters, which yield improved performance.

To demonstrate this, we used the same training procedure as described above, however, we re-
duced the training set to images from a specific image category within the ImageNet dataset. In
particular, we used the image category valley2 containing a total of 1395 pictures. In a second
experiment, we trained a network on the image category blackboard3 with a total of 1376 pic-
tures. Figure 8 shows typical example images from these two classes. Fig. 9 compares deblurring
results of the state-of-the-art algorithm described in [XZJ13] with our approach trained on images
sampled from the entire ImageNet dataset, and trained on the aforementioned image categories
only. Note that the particular images shown in Fig. 9 were not used for training. We see that con-
tent specific training outperforms both content agnostic training and the generic state-of-the-art
method.

5.2. Noise specific training

Typically, image noise impedes kernel estimation. To counter noise in blurry images, current
state-of-the-art deblurring algorithms apply a denoising step during latent image prediction such

2ImageNet 2011 Fall Release > Geological formation, formation > Natural depression, depression > Valley, vale
(http://www.image-net.org/synset?wnid=n09468604)

3ImageNet 2011 Fall Release > Artifact, artifact > Sheet, flat solid > Blackboard, chalkboard (http://www.
image-net.org/synset?wnid=n02846511)
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Inpainting with Convnets
• Image Denoising and Inpainting with Deep Neural 

Networks, Xie et al. NIPS 2012.
• Mask-specific inpainting with deep neural networks, 

Köhler et al., Pattern Recognition 2014

8 R. Köhler, C. Schuler, B. Schölkopf, S. Harmeling

input, PSNR 13.65 [24], PSNR 34.26 [26], PSNR 35.03 [20], PSNR 35.86 ours, PSNR 36.37

Fig. 6: Comparison on an image from [26].

corrupted image [20] PSNR 32.13 ours, PSNR 34.22

Fig. 7: Inpainting an image without knowledge of the exact mask of each image.
Only the font and font-size of the masks is known for training the neural net.

Fig. 8. While the sky is inpainted in an appropriate way (since it is smooth), the
bridge pylons and the grass on the left part of the image are inpainted in a blurry
way. Similarly, in the two right images of Fig. 8 we see that across the grass the
inpainted regions appear blurry. This is similar to the phenomenon also present
with di↵usion-based inpainting methods. This is probably due to the fact that
the nonlinear filter learned by the MLP can only propagate a few pixels into the
mask, but fails to fill-in larger regions. It seems that the neural net used in this
approach is only able to learn to continue image information along isophotes.

4 Towards understanding the trained neural network

A common criticism of methods based on neural networks is that they work like
a black box, i.e. even though they are able to reach state-of-the-art performance
it remains unclear how the task is solved. To gain insight into how the trained
neural network achieves its performance, we study the feature generators for
MLPs trained with di↵erent distortion types and look how the input feature
depend on the shape of the masks.

Original Schmid CVPR’10 Köhler et al. 
‘14



Removing Local Corruption



Removing Local Corruption
• Restoring An Image Taken Through a Window Covered with 

Dirt or Rain, Eigen et al., ICCV 2013.



Convnet + Structured Learning

• Gradient-based learning
applied to document
recognition, Yann LeCun, 
Leon Bottou, Yoshua Bengio
and Patrick Haffner, Proc. 
IEEE, Nov 1998.
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Convnet + Structured Learning

• Learning Deep Structured Models, Liang-
Chieh Chen, Alexander G. Schwing, Alan L. 
Yuille, Raquel Urtasun, arXiv 1407.2538, 2014

• Joint Training of a Convolutional Network 
and a Graphical Model for Human Pose 
Estimation,  J. Tompson, A. Jain, Y. LeCun, 
C. Bregler, NIPS 2014

• Lots more recently……
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BODY TRACKING

• Joint Training of a Convolutional Network and a 
Graphical Model for Human Pose Estimation

J. Tompson, A. Jain, Y. LeCun, C. Bregler, NIPS 2014
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BODY TRACKING: PART DETECTOR
Simplified multi-resolution efficient model:
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BODY TRACKING: SPATIAL MODEL
Start with MRF formulation

“Convolutional priors”
Sum-product belief propagation
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3

BODY TRACKING: SPATIAL MODEL
Implement it as a network (no longer MRF)!
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