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Exciting times for computer vision

KINECT

canon




A bit of history...



The early optimism (1960-1970)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. Ho. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers

effectively in the construction of a significant part of a visual system.

The particular task was chosen part{y because it can be segmented into

sub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition!l.




50 years ago...



50 years ago




50 years ago

L)




25 years ago...



25 years ago...




25 years ago...




The vision crisis (1970-2000)















But 15 years ago...

Ccanon



« The representation and matching of pictorial structures
Fischler, Elschlager (1973).

« Face recognition using eigenfaces M. Turk and A.
Pentland (1991).

» Human Face Detection in Visual Scenes - Rowley, Baluja,
Kanade (1995)

« Graded Learning for Object Detection - Fleuret, Geman
(1999)

* Robust Real-time Object Detection - Viola, Jones (2001)
« Feature Reduction and Hierarchy of Classifiers for Fast
Object Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)
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« The representation and matching of pictorial structures
Fischler, Elschlager (1973).

« Face recognition using eigenfaces M. Turk and A.
Pentland (1991).

» Human Face Detection in Visual Scenes - Rowley, Baluja,
Kanade (1995)

« Graded Learning for Object Detection - Fleuret, Geman
(1999)

* Robust Real-time Object Detection - Viola, Jones (2001)
« Feature Reduction and Hierarchy of Classifiers for Fast
Obiject Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)



King St, Hammersmth, £ngland, Unitec Kingdom
Addres is Bpptonmate
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« The representation and matching of pictorial structures
Fischler, Elschlager (1973).

« Face recognition using eigenfaces M. Turk and A.
Pentland (1991). -

« Human Face Detection in Visual Scenes - Rowley, Ba
Kanade (1995)

» Graded Learning for Object Detection - Fleuret, Gem;
(1999) -~
* Robust Real-time Object Detection - Viola, Jones (200

» Feature Reduction and Hierarchy of Classifiers for Fast -
Obiject Detection in Video Images - Heisele, Serre, r =
Mukherjee, Poggio (2001) E
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Advances In computer vision
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Image gradients Keypoint descriptor

SIFT

Spin image

Orientation Voting

Overlapping Blocks

InputImage  Gradient Image
Local Normafization
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A short story of image
databases
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The time of big data

sk Cydra[“
Images

webShfS lmage Search gle
Pfé?earch Y
flickr

altavista



http://av.rds.yahoo.com/_ylt=A9ibyK4d.QpFu5UA7EFuCqMX;_ylu=X3oDMTBvcjFrYm5wBHBndANhdl9pbWdfaG9tZQRzZWMDbG9nbw--/SIG=11d79a3nr/EXP=1158433437/**http:/www.altavista.com/
http://www.picsearch.com/

In 2010, a new student gets into computer vision...



In 2010, a new student gets into computer vision...

Pick one dataset

NYU Depth Dataset

sl T

SUN dat_abase;

80 million
images

IMAGENET




Pick one dataset

In 2010, a new student gets into computer vision...

Pick one model

NYU Depth Dataset

sl T

SUN dat_abasq

80 million
images

IMAGENET
Caltech 101

Votmg models

Bag of words models

Violo and Jones, ICCV 2001

Csurka, Dance, Fan, Willamowski, and Bray Heisele, Poggio, et. al., NIPS 01
2004 Schneiderman, Kanade 2004

Sivic, Russell, Freeman, Zisserman, Vidal-Naquet, Ullman 2003
ICCV 2005

Constellation models

Fischier and Elschiager, 1973
Burl, Leung, and Peronc, 1995
Weber, Welling, and Perona, 2000
Fergus, Peronao, & Zisserman, CVPR 2003

Shape matching
Deformable models

&

Rigid template models

Berg, Berg, Malik, 2005
Cootes, Edwards, Taylor, 2001

Sirovich end Kirby 1987
Turk, Pentlond, 1991
Dolal & Triggs, 2006










Who's to blame?

a———

 The features
* The student




Features for object detection

) Local contrast normalization




What does a detector sees?

Can we visualize
this output?

Carl Aditya
Vondrick Khosla




What does a detector sees?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”, ICCV 2013



Car

Can you tell WhICh ones are not the obJect?

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Person

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



HOG visualization predicts SVM performance

Chair detection test

08t A N ROSSSSROOON SO &
X7 S S, ¥ I S S

Precision

0.3

|[—HOG+Human AP = 0.63[ ™
| RGB+Human AP =096 "

01 —HOG+DPM AP =051 |7

0 DTE 04 06
Recall

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



http://mit.edu/vondrick/ihog/

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



The image patch

http://mit.edu/vondrick/ihog/

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



The image patch What the detector sees

http://mit.edu/vondrick/ihog/

Vondrick, Khosla, Malisiewicz, Torralba. “Inverting and Visualizing Features for Object Detection.”



Deep architectures

Geoffrey Hinton, Yann LeCun

—-» orange
- grapefruit

—+ ball

- shoe

Layer 3 Layer 4 Layer 5

Layer 2 FC6 FC7

T Classmer

Input image output



Scene recognition demo
http://places.csall.mit.edu/demo.html

00000 | WIND = 5:38 PM 7 56% W )

places.csail.mit.edu ¢

“ Users report 78% correct results

Upload your image for scene recognition
using Places-CNN from MIT.

Take/Choose a photo

ﬂ—l D:] @ Zhou, Lapedriza, Xiao, Oliva & Torralba (NIPS 2014)



http://places.csail.mit.edu/demo.html

places.csail.mit.edu

Take/Choose a photo

Predictions:
= Type of environment: outdoor
* Semantic categories:

swimming_pool/outdoor:0.74,
sandbar:0.11,




eeec0 ROGERS LTE 6:24 PM 7 45% W
places.csail.mit.edu

Predictions:

* Type of environment: indoor

* Semantic categories:
airport_terminal:0.70,

= SUN scene attributes: enclosedarea,
electricindoorlighting, nohorizon, man-
made, congregating, cloth, glass,
socializing, glossy,
waitinginlinequeuing




eeeee ROGERS 3G 6:47PM 7 21% 0
places.csail.mit.edu
the 1mage uploaaea 1ollow Creative

Commons licenses.

Take/Choose a photo

Predictions:

* Type of environment: indoor

= Semantic categories: cockpit:0.08,
parking_lot:0.06, playground:0.05,

= SUN scene attributes: nohorizon,
enclosedarea, cloth, man-made,
electricindoorlighting, working,
stressful, dry, competing,
waitinginlinequeuing




http://places.csail.mit.edu/demo.html|

Predictions:

* Type of environment: indoor

* Semantic categories:
auditorium:0.61,
conference_center:0.34,




00000 ROGERS LTE 9:17 AM 9 49% W )
places.csail.mit.edu

redictions:

» Type of environment: indoor

» Semantic categories: bar:0.25,
auditorium:o0.20,
restaurant_kitchen:0.07,
coffee_shop:0.05,

= SUN scene attributes: enclosedarea,
nohorizon, man-made,
electricindoorlighting,
wood(notpartofatree), working, matte,
glass, cloth, conductingbusiness




eeee0 vodafone ES 3G 10:35 PM 7 48% W
places.csail.mit.edu

Upload your image for scene recognition
using Places-CNN from MIT.

Take/Choose a photo

Predictions:

e type: indoor
e semantic categories:
hotel_room:0.50, bedroom:0.47,



eeee0 vodafone ES 3G 10:35 PM 7 48% W eec00 vodafone ES 3G 10:31 PM 7 49% [ >4
places.csail.mit.edu

places.csail.mit.edu

Upload your image for scene recognition
using Places-CNN from MIT.

Take/Choose a photo

Predictions:

e type: indoor
e semantic categories:
hotel_room:0.35, bedroom:0.15,
e type: indoor living_room:0.09, dorm_room:0.06,
e semantic categories: basement:Q.OS
hotel_room:0.50, bedroom:0.47,

Predictions:



Why Is Worklng so well?




Visualizing the internal representation

Deconvolution

Backpropagation
bell pepper lemon husky
Simonyan et al. Visualizing image classification models and saliency maps. ICLRW, 2014.
Strong
activations

Girshick, et al, Rich feature hierarchies for accurate object detection and semantic
segmentation. CVPR 2014.



Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science,
New York University, USA
{zeiler,fergus}@cs.nyu.edu

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014.



Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7



Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

—> Generator —




Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio?
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
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Département d’informatique et de recherche opérationnelle

Université de Montréal
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

Random

vector | Generator Discriminator

1 i

Multilayer perceptron Multilayer perceptron

Real or
generated?



Generated Images

Trained with CIFAR-10



UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL

GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research

Boston, MA

{alec, luke}@indico.io

Soumith Chintala
Facebook AI Research
New York, NY
soumith@fb.com

Introduced a form of ConvNet more stable under adversarial training than
previous attempts.
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Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks

Anh Nguyen Alexey Dosovitskiy
anguyen8@uwyo.edu dosovits@cs.uni-freiburg.de
Jason Yosinski Thomas Brox
jason@geometricintelligence.com brox@cs.uni-freiburg.de
Jeff Clune

jeffclune@uwyo.edu



Two components

Generator

Network to visualize

I conv4 convb fc6

conv3

‘l ||::§Car
Classification

fc7 layer

conv2
convl



Two components

Generator

Stride 2 16
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Two components

Classificati
fc6  fc7

conv4 convs layer

conv3

Generator Unit to visualize



Two components

Table lamp
> —> B
6 fc7 Classificati

conv4 convs layer

conv3

Unit to visualize




Synthesizing Images Preferred by CNN

ImageNet-Alexnet-final units (class units)

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks.". arXiv:1605.09304.



Object detection vs. Scene recognition



Object detection vs. Scene recognition




Object detection vs. Scene recognition




Object detection vs. Scene recognition




Object detection vs. Scene recognition

Bedroom



IMJ&GE

 An ontology of images based on WordNet

* I[mageNet currently has
— 13,000+ categories of visual concepts
— 10 million human-cleaned images (~700im/categ)
— 1/3+ is released online @ www.image-net.org

shepherd dog, sheep dog

animal
collie German shepherd

~10°+ nodes
~10%+ images

S i
< 8~ f'.,’“'::
S e v o
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2 - Rl
» - =2
=Y

I»‘I E

Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009



p|aCeS e.

places.csail.mit.edu

ZhOU Lapedriz KS|a Xiao O|iva Zhou, Lapedriza, Xiao, Oliva & Torralba (NIPS 2014)
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places.csail.mit.edu

1. We take all scene words
from a dictionary

«. WordNet

Dictionary

-

ZhOU Laedriz Xiao O”V& Zhou, Lapedriza, Xiao, Oliva & Torralba (NIPS 2014)



p|aCeS e.

places.csail.mit.edu

1. We take all scene words 2. We download images
from a dictionary and clean the categories
. WordNet
5 cht:onary 8 [ e
e z‘::;.:'vimmm.. altavista:
flickr

ZhOU Lapedriz KS|a Xiao O|iva Zhou, Lapedriza, Xiao, Oliva & Torralba (NIPS 2014)


http://av.rds.yahoo.com/_ylt=A9ibyK4d.QpFu5UA7EFuCqMX;_ylu=X3oDMTBvcjFrYm5wBHBndANhdl9pbWdfaG9tZQRzZWMDbG9nbw--/SIG=11d79a3nr/EXP=1158433437/**http:/www.altavista.com/

Two large databases, two tasks
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ImageNet CNN and Places CNN



ImageNet CNN and Places CNN

ImageNet CNN for Object Classification

- orange
- grapefruit

............................ - ball
i g

- % s =3



ImageNet CNN and Places CNN

II Same architecture: AlexNet

Places CNN for Scene Classification

- Places



Possible internal representations

IMJAGENET Bl PLACES

[Deng et al. CVPR 2009]




Learning to Recognize Objects

IMAGENET

brablin




Learning to Recognize Objects

IMAGENET

bramblin
A

- Object parts
- Textures
- Attributes




Learning to Recognize Scenes

bedroom




Learning to Recognize Scenes

Possible internal representations:

- Scene parts

- Objects

- Scene attributes
- ODbject parts

- Textures




Places and objects

- orange
- grapefruit

—» ball

- shoe

Layer 3 Layer 4 Layer 5

Fe8
FC6 FC7

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)



Places and objects

- orange
- grapefruit

—» ball

- shoe

Layer 3

Layer 4 Layer 5

FC8
FC6 FC7

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)



Places and objects

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)



Places and objects

y

Scene datasets

SUN397 MIT Indoor67 Scenels SUN Attribute
Places-CNN feature 54.32+0.14 68.24 90.19+0.34 91.29
ImageNet-CNN feature 42.6110.16 56.79 84.23+0.37 89.85

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)



Places and objects

]

Scene datasets

SUN397 MIT Indoor67 Scenel5 SUN Attribute
Places-CNN feature 54.3210.14 68.24 90.19+0.34 91.29
ImageNet-CNN feature 42.6110.16 56.79 84.23+0.37 89.85
Object datasets
Caltech101 Caltech256 Action40 Event8
Places-CNN feature 65.184+0.88 45.59+0.31 42.86+0.25 04.124+0.99
ImageNet-CNN feature 87.2240.92 67.231+0.27 54.92+0.33 94.42+-0.76

Zhou, Lapedriza, Xiao, Torralba & Oliva (NIPS 2014)



Preferred images



Preferred images




Preferred images

lmageNet-CNN Places-CNN




Preferred images




Preferred images

ImageNet-CNN




Preferred images

ImageNet-CNN
Pool 153 ...,. I 7
AT d D

conv3



Preferred images

ImageNet-CN




Preferred images

ImageNet-CN




Preferred images




Preferred images

ImageNet-CNN

conv3



Preferred images

ImageNet-CNN

conv3



Estimating the receptive field

—

A




Estimating the receptive field

—

O

LA

Receptive field?



Estimating the receptive field

H

Receptive field?



Estimating the receptive field

H

Receptive field?



Estimating the receptive field

L4 ial

Receptive field?




Estimating the receptive field

Theoretical size

Actual size



Estimating the receptive field

Theoretical size



Estimating the receptive field

Theoretical size



Estimating the receptive field

Theoretical size




Generating segmentations
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Generating segmentations
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Generating segmentations
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Generating segmentations
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Generating segmentations
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Task 1

Word/Short description:

lighthouse

Crowdsourcing units

ask 2
rk (by clicking on them) the Images which don't correspond to the short description you ]ust wrote
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Crowdsourcing units

ask 1
/ord/Short description:
lighthouse
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Task 3

Which category does your short description mostly belong to?
_'Scene (kitchen, corridor, street, beach, ...)

_Reglon or surface (road, grass, wall, floor, sky, ...)
iWObject (bed, car, bullding, tree, ...)

Object part (leg, head, wheel, roof, ...)

Texture or material (striped, rugged, wooden, plastic, ...)

O Simple elements or colors (vertical line, curved line, color blue, ...)



Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

g (¥ e | W S8
= = w

" e s A SES D e

Sk [T @ e P T

20 [ | ¢ S MR [TClgRls =

r = =3 | =




Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: n: 84%
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Annotating the Semantics of Units

Pool5, unit 77; Label: Iegs Type: object part; Precision: 96%
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Annotating the Semantics of Units

Pool5, unit 112; Label: pool table; Type: object Precision: 70%
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Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

e D s ek
LU il ‘
il T edad g
‘ L IR | 1l e




Distribution of semantic types at each layer

1 - Simple elements and colors

Ex: vertical line, curved line, color blue, ....




Distribution of semantic types at each layer

1 - Simple elements and colors

Ex: vertical line, curved line, color blue, ....
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Distribution of semantic types at each layer
2 - Texture or materials

Ex: stripes, wooden, plastic, ...

—@— places
- imagenet

Percent units (perf > 75%)




Distribution of semantic types at each layer
2 - Texture or materials

Ex: stripes, wooden, plastic, ... 10
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Distribution of semantic types at each layer
3 - Regions and surfaces

Ex: Road, grass, wall, floor, sky, ....
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Distribution of semantic types at each layer
3 - Regions and surfaces

Ex: Road, grass, wall, floor, sky, ....
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Distribution of semantic types at each layer

4 - Object parts

Ex: leg, head, wheel, roof, ....

-—@— places
- imagenet

Percent units (perf > 75%)




Distribution of semantic types at each layer

4 - Object parts

Ex: leg, head, wheel, roof, ....
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Distribution of semantic types at each layer
5 - Objects

Ex: bed, car, building, tree, ....

-—@— places
- imagenet

Percent units (perf > 75%)




Distribution of semantic types at each layer
5 - Objects

Ex: bed, car, building, tree, ....

(out of 60%)

N
o

—
)

—i
o

Percent units (perf > 75%)




Distribution of semantic types at each layer
6 - Scenes

Ex: kitchen, corridor, street, beach, ....
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Distribution of semantic types at each layer
6 - Scenes

Ex: kitchen, corridor, street, beach, ....
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What objects are found?
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Histogram of Emerged Objects in Pool5

ImageNet-CNN (59/256)
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ImageNet-CNN (59/256)

Counts _
=

—

T

5]

person
wheel
animal body
flower

ground

head @ (" &
legs ‘
animal face
animal head N
building

car
cat

ceiling

face
human face
leg
monkey
plant
plants

pot

road

sea

tower

tree

water
window

Includes: Objects, nameable parts, and regions



Histogram of Emerged Objects in Pool5

ImageNet-CNN (59/256)

Counts _

-t
o o o - '
bird - 6 ’ & ’
person .
wheel
animal body
flower | @ ("

ground
head

legs

animal face
animal head
building
car

cat

ceiling

face
human face
leg
monkey
plant
plants

pot

road

sea

tower

tree

water
window

L Rbadbidy

Includes: Objects, nameable parts, and regions



Histogram of Emerged Objects in Pool5

ImageNet-CNN (59/256)
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Histogram of Emerged Objects in Pool5
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Histogram of Emerged Objects in Pool5

Places-CNN
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Histogram of Emerged Objects in Pool5
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Object detectors emerge inside the CNN

Buildings
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| unitID 106

unitID 107

unitID 109

Nguyen et al, 2016
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Strategies for training for new tasks
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Freeze all these parameters ~Just train
(trained with ImageNet or Places) final classifier




Strategies for training for new tasks

M_é

convl
\ )\

conv3

conv2

—
__9 %
—
Classification
fc6 fc7 layer

conv4 convb

N\

!

Freeze all these parameters
(trained with ImageNet or Places)

I

Train upper layers to get
a better representation



But what if you keep the task but
change the input modality?

;;;;
["

7 N\

From Devi's webpage: “Abstract images provide several advantages. They
allow for the direct study of how to infer high-level semantic information, since
they remove the reliance on noisy low-level object, attribute and relation

detectors, or the tedious hand-labeling of images.”

Bringing Semantics Into Focus Using Visual Abstraction (CVPR), 2013. Zitnick and Parikh.
Learning the Visual Interpretation of Sentences (ICCV), 2013. Zitnick, Parikh, and Vanderwende
Adopting Abstract Images for Semantic Scene Understanding (PAMI), 2015. Zitnick, Vedantam and Parikh



Drawing Tool

Sketch an image of a below. For your reference, here is the definition of a .

New Object Small Brush  Medium Brush  Large Brush Undo Submit HIT
rug \
window

wall

bed O

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016









From crowdsourcing

Line drawings
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or descriptions

There is a bed with a striped bedspread. Beside
this is a nightstand with a drawer. There is also a
tall dresser and a chair with a blue cushion. On
the dresser is a jewelry box and a clock.




Descriptions

(Auditorium)

I'm looking forward to seeing this
speaker and hearing his story today. |
want to get in before all the seats are
filled, because he is quite popular with
the students and faculty. | don't want to
sit way In the back where the sound
may not carry as well to.




Descriptions

(Classroom)

This room is where students attend and
are taught by a teacher on a variety of
subjects. Each student seats in a desk
which allows him to place books, and
write on notebooks or sheets of paper.
The teacher presides this room, and
usually writes on a blackboard which
occupies most of the front wall.




We collected a dataset formed by examples of 205 scene types in five different
modalities:

Line drawings: 6,644 training — 2,050 validation examples

-

=

Descriptions: 4,307 training — 2,050 validation examples

There is a bed with a striped bedspread. Beside |l am inside a room surrounded by my favorite There are brightly colored wooden tables with

this is a nightstand with a drawer. There is also a|things. This room is filled with pillows and a little chairs. There is a rug in one corner with

tall dresser and a chair with a blue cushion. On |comfortable bed. There are stuffed animals ABC blocks on it. There is a bookcase with

the dresser is a jewelry box and a clock everywhere. | have posters on the walls. My picture books, a larger teacher's desk and a
’ jewelry box is on the dresser. chalkboard.

Clipart: 11,372 training — 1,954 validation examples

Butte e

Spatial Text: 456,300 training — 2,050 validation examples

ceiling sky ‘ ceiling

wall wall e vost 2 k 7
: v
sky wall e 1 ¥ wall : ks o
o 3 wa
building building s [ car. w::la“ text el il
Hiach wall podt water wall  wal road o
0 ) floor

Natural images (Places dataset): ~ 2M training — 20,500 validation examples

- AT ik, BTN 1S 1D ¥ =
= places o @ o BRI BSEE 0TS

| sl n‘rﬂ'a o
THE SCENE RECOGNITION DATABASE  beniiiln mist . 54108
J T,
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Classification

fc6 fc7 layer

convb

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Freeze parameters
trained with natural
Images

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016



Classification
fc6 fc7 layer

convs

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Freeze parameters
trained with natural
images

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Freeze parameters
trained with natural
images

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016



Classification
fc6 fc7 layer

convs

Y
Freeze parameters
trained with natural
images

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016



The room is
predominately filled
with a large bed

and some dressers.

There is also a
desk with a
compute chair and
a laptop. On the far
wall is a door to the
closet.

Classification

fc6 fc7 |
convs ayer

Y
Freeze parameters
trained with natural
images

Learning Aligned Cross-Modal Representations from Weakly Aligned Data. LlI.
Castrejon*, Y. Aytar*, C. Vondrick, H. Pirsiavash and A. Torralba. CVPR 2016
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Unit 115
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Units in pool5 become multimodal
Real : Clip art

Unit 31
(Fountain)

Sketches Spatlal text

Descriptions

we, water, fishes, you,
drink, formed, greek,
would, ball, have




NAT

LDR

SPT

Generating across modalities

Input

Inversion Input
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A. Dosovitskiy and T. Brox. Inverting convolutional networks with convolutional networks. arXiv, 2015



Cross-modal learning

Description (eg, Wikipedia article)

Snares penguin

From Wikipedia, the free encyclopedia

The Snares penguin (Eudyptes robustus), also known as the Snares crested penguin and the Snares Islands penguin, is a penguin from New Zealand.
The species breeds on The Snares, a group of islands off the southern coast of the South Island. This is a medium-small, yellow-crested penguin, at a size
of 50—70 cm (19.5-27.5 in) and a weight of 2.5—4 kg (5.5-8.8 Ib). It has dark blue-black upperparts and white underparts. It has a bright yellow eyebrow-
stripe which extends over the eye to form a drooping, bushy crest. It has bare pink skin at the base of its large red-brown bill.

» Lots of descriptions/entries in Wikipedia available




Zero-shot Learning

Description (eg, Wikipedia article)
Cardinal (bird)

From Wikipedia, the free encyclopedia

This article is about the bird family. For other uses, see Cardinal.

Cardinals, in the family Cardinalidae, are passerine birds found in North and South America. They are also known as cardinal-grosbeaks and cardinal-

buntings. The South American cardinals in the genus Paroaria are placed in another family, the Thraupidae (previously placed in Emberizidae).

Can we predict an image classifier from a description alone?



Zero-shot Learning

Description (eg, Wikipedia article)
Cardinal (bird)

From Wikipedia, the free encyclopedia

This article is about the bird family. For other uses, see Cardinal.

Cardinals, in the family Cardinalidae, are passerine birds found in North and South America. They are also known as cardinal-grosbeaks and cardinal-
buntings. The South American cardinals in the genus Paroaria are placed in another family, the Thraupidae (previously placed in Emberizidae).

Can we predict an image classifier from a description alone?

Assume:

 In training we have access to wiki articles and labeled images
* For test classes we only have wiki articles

« We want to classify a new image (it can belong to any class)




Zero-shot Learning

« Goal: learn to predict an image classifier from a description
« Linear binary 1-vs-all classifier:

e A

Ye =W, T

« X ... image feature vector
« wW_c ... classifier weight vector for class c



Zero-shot Learning

Goal: learn to predict an image classifier from a description
Linear binary 1-vs-all classifier:

T
Ye =W, T
X ... image feature vector
w_c ... classifier weight vector for class c

We are also givent_c, a vector representing a textual description
about class c
We want:

We = ft(tc)

f c...amapping [RP — ]Rdthat transforms text features to the
visual image feature space



Zero-shot Learning

« f tcan be a neural network

TF-IDF

‘Wikipedia article

i | The Cardinals or Cardinalidae are a family of passerine
birds found in North and South America
The South American cardinals in the

g used to compress X
to a k<<d dim



Red faced Cormorant

The Red-faced Cormorant, Red-faced Shag or Violet Shag,
Phalacrocorax urile, is a species of cormorant that is found in the
far north of the Pacific Ocean and Bering Sea, from the eastern
tip of Hokkaido in Japan, via the Kuril Islands, the southern tip of
the Kamchatka Peninsula and the Aleutian Islands to the Alaska
Peninsula and Gulf of Alaska. The Red-faced Cormmorant is
closely related to the Pelagic Cormorant P. pelagicus, which has a
similar range, and like the Pelagic Cormorant is placed by some

authors (e.g. Johnsgaard) in a genus Leucocarbo. Where it nests
alongside the Pelagic Cormorant, the Red-faced Cormorant
generally breeds the more successfully of the two species, and it
i5 currently increasing in numbers, at least in the easterly parts of
its range. It is however listed as being of conservation
concern{Verify source|date=September 2009}, partly because
relatively little is so far known abowt it.

The adult bird has glossy plumage that is a deep greenish blue in
colour, becoming purplish or bronze on the back and sides. In
breeding condition it has a double crest,
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The Red-faced Cormorant, Red-faced Shag or Violet Shag,
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Red faced Cormorant

The Red-faced Cormorant, Red-faced Shag or Violet Shag,
Phalacrocorax urile, is a species of cormorant that is found in the
far north of the Pacific Ocean and Bering Sea, from the eastern
tip of Hokkaido in Japan, via the Kuril Islands, the southern tip of
the Kamchatka Peninsula and the Aleutian Islands to the Alaska
Peninsula and Gulf of Alaska. The Red-faced Cormmorant is
closely related to the Pelagic Cormorant P. pelagicus, which has a
similar range, and like the Pelagic Cormorant is placed by some
authors (e.g. Johnsgaard) in a genus Leucocarbo. Where it nests
alongside the Pelagic Cormorant, the Red-faced Cormorant
generally breeds the more successfully of the two species, and it
i5 currently increasing in numbers, at least in the easterly parts of
its range. It is however listed as being of conservation
concern{Verify source|date=September 2009}, partly because
relatively little is so far known abowt it.

The adult bird has glossy plumage that is a deep greenish blue in
colour, becoming purplish or bronze on the back and sides. In
breeding condition it has a double crest,

visualization by Zeiler & Fergus, ECCV'14.



Learning to see

It is all about the data...

Strong supervision

Pixel wise labeling



Learning to see

It is all about the data...

Weak supervision

Bedroom

Short captions



Cross modal: text and images
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Man holding a metal bowl at the

tab | e. from Microsoft CoCo



Q: Is everyone of these four holding a wine glasé? No
Q: How many men are there? A: 3
Q: Does the window have blinds? A: yes

From http://visualga.org/index.html


















Visually Indicated Sounds
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Collecting a dataset of physical interactions




Collecting a dataset of physical interactions

The Greatest Hits
dataset

- 977 videos, 35 sec. long

- 46,577 segmented hits and scratches

« Material, action, reaction labels










Can we predict material properties from sound?
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Can we predict material properties from sound?

Mean sound features per category
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_Predicting audio features
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Predicting audio features

Times
" ' F Regression loss
Ground truth

!

Z MEREAD
RNN t=1
where p(r) = log(e + r?)

Frequency o

« 3D CNN in time domain
Pretrain from ImageNet

Long short-term memory
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Real-or-fake study

Frequency that human participants were fooled.

400 online
participants

33.8%

% Fooled
=

19.8%
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Ambient sound

(a) Video frame
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Neuron visualizations of the network trained by sound
31 sky 67 grass

141 ceiling lamp

103 waterfall




Learning about the world by hitting
things with a drumstick and listening

Sound is a ubiquitous training signal
Predicted sounds convey material properties
Objects make characteristic noises




