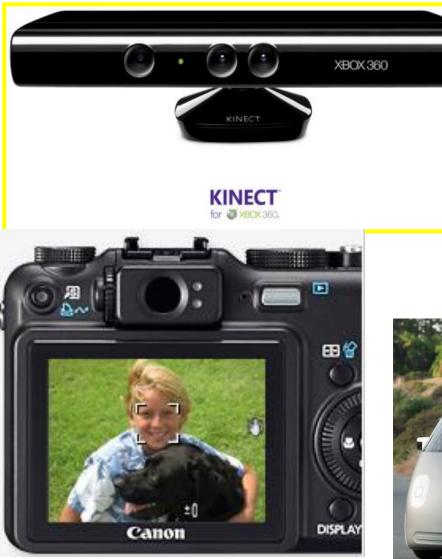
Learning to see

Antonio Torralba

Computer Science and Artificial Intelligence Laboratory (CSAIL) Department of Electrical Engineering and Computer Science

Exciting times for computer vision



A bit of history...

The early optimism (1960-1970)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

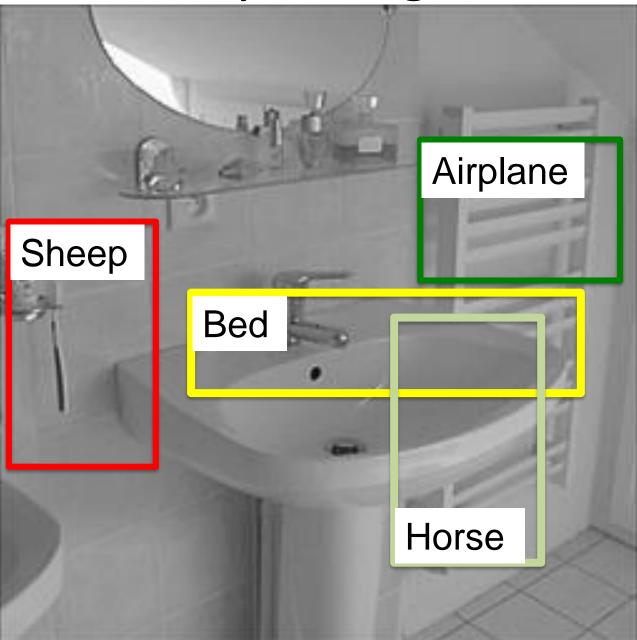
PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".



The vision crisis (1970-2000)

But 15 years ago...

• The representation and matching of pictorial structures Fischler, Elschlager (1973).

• Face recognition using eigenfaces M. Turk and A. Pentland (1991).

• Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

• Graded Learning for Object Detection - Fleuret, Geman (1999)

• Robust Real-time Object Detection - Viola, Jones (2001)

• Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)

•....

- The representation and matching of pictorial structures Fischler, Elschlager (1973).
- Face recognition using eigenfaces M. Turk and A. Pentland (1991).
- Human Face Detection in Visual Scenes Rowley, Baluja, Kanade (1995)
- Graded Learning for Object Detection Fleuret, Geman (1999)
- Robust Real-time Object Detection Viola, Jones (2001)
- Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)
- •....

- The representation and matching of pictorial structures Fischler, Elschlager (1973).
- Face recognition using eigenfaces M. Turk and A. Pentland (1991).

d St

SE

•....

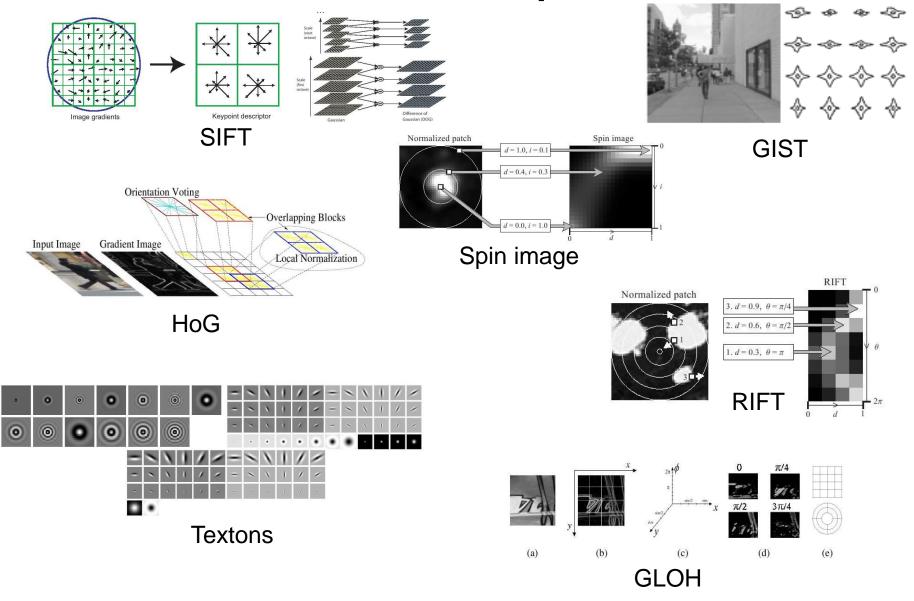
- Human Face Detection in Visual Scenes Rowley, Bauj Kanade (1995)
- Graded Learning for Object Detection Fleuret, Geman (1999)
- Robust Real-time Object Detection Viola, Jones (2001)
- Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre, Mukherjee, Poggio (2001)

King St, Hammersmth, England, United Kingdom Address is approximate

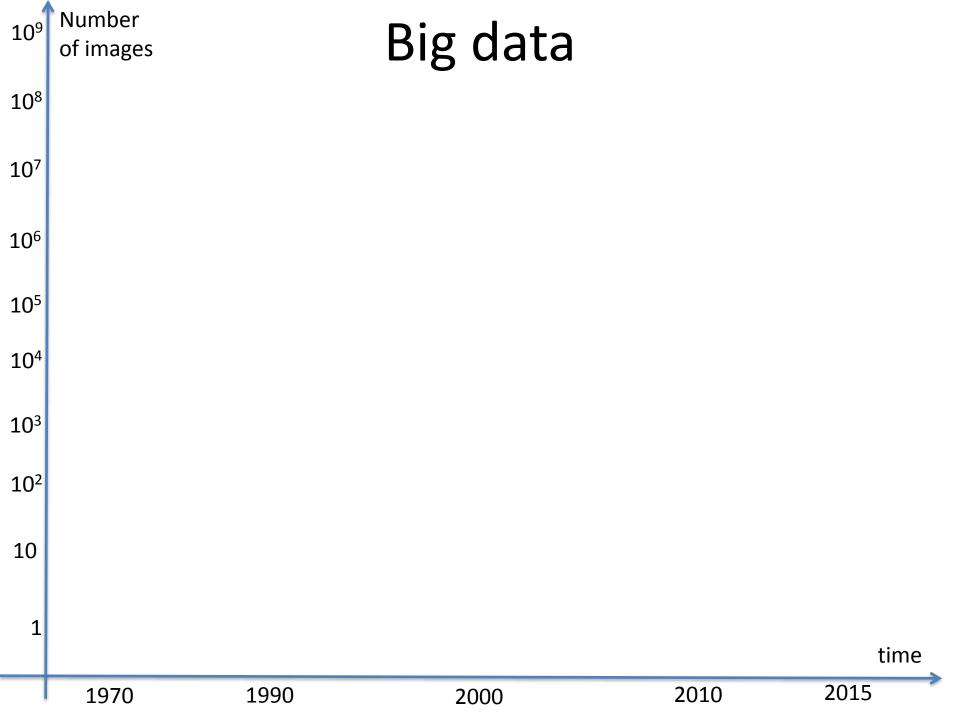
KFC

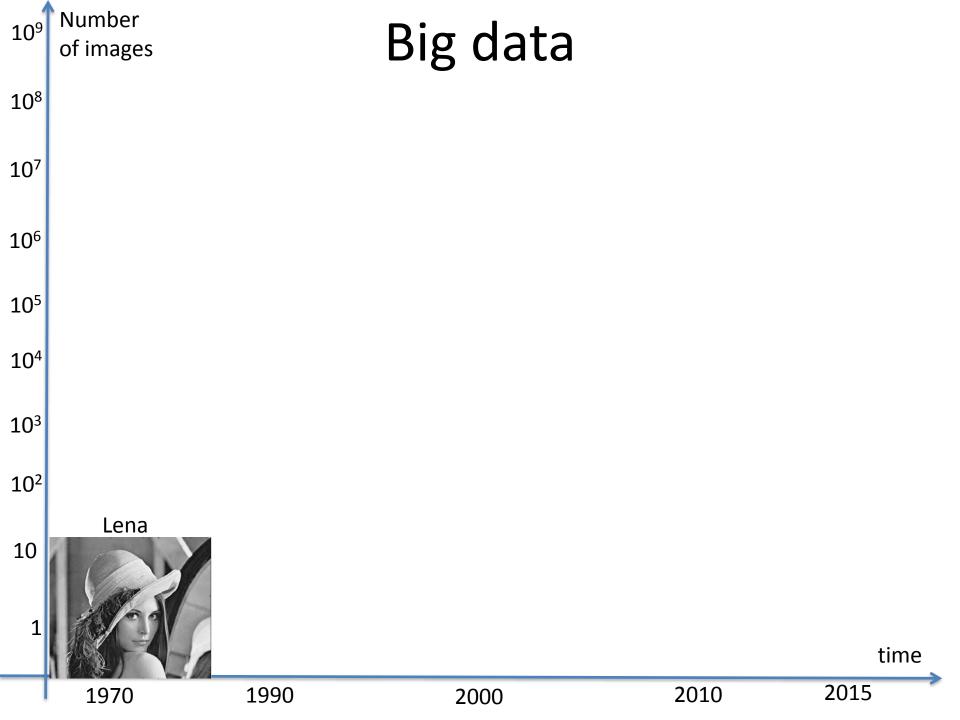
And in Property and

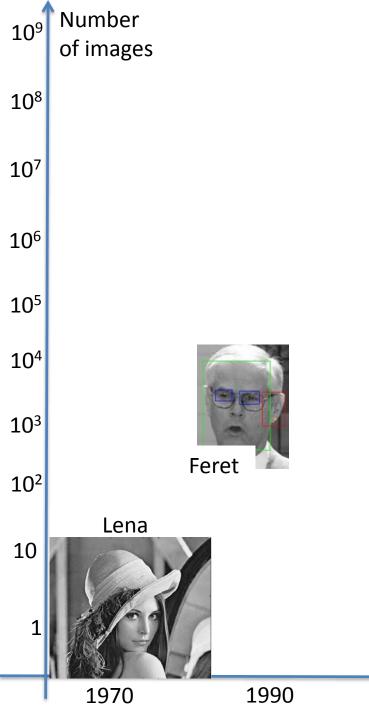
Advances in computer vision



A short story of image databases





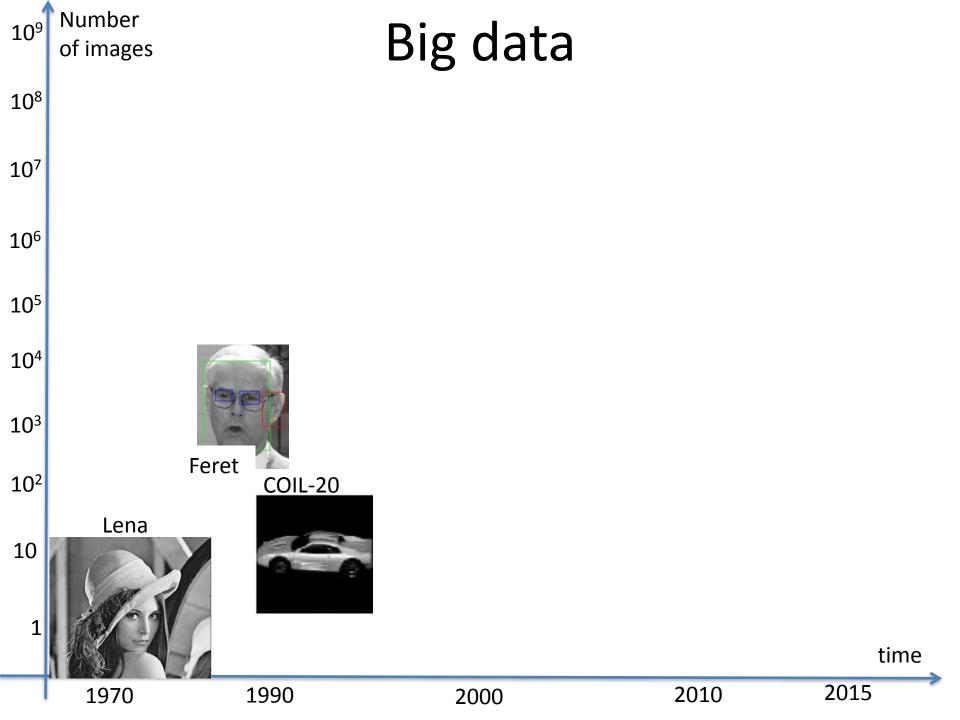


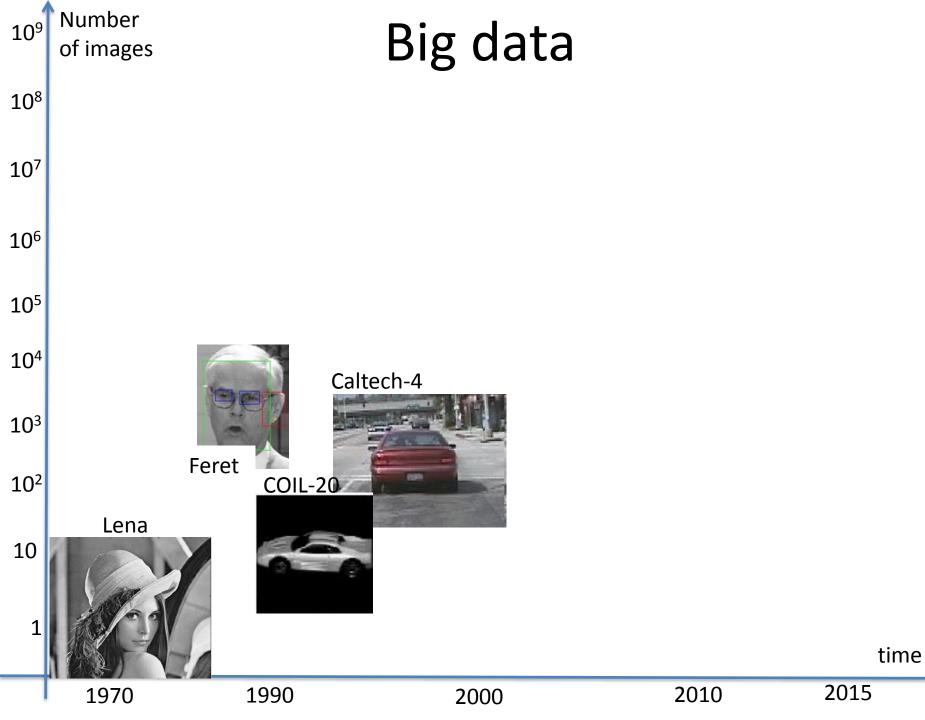
Big data

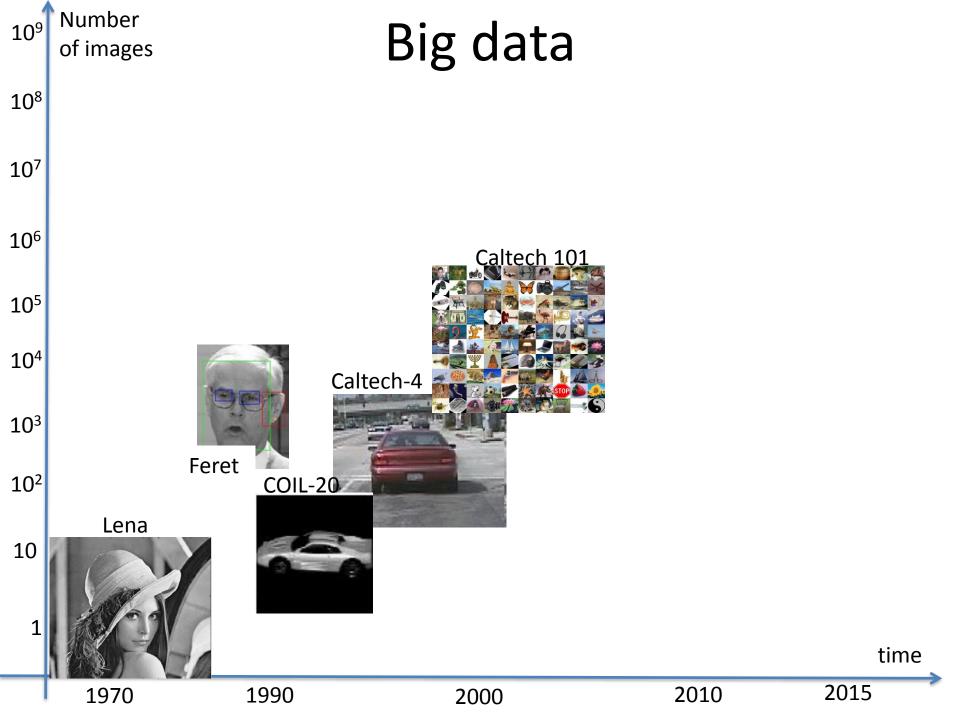
2000

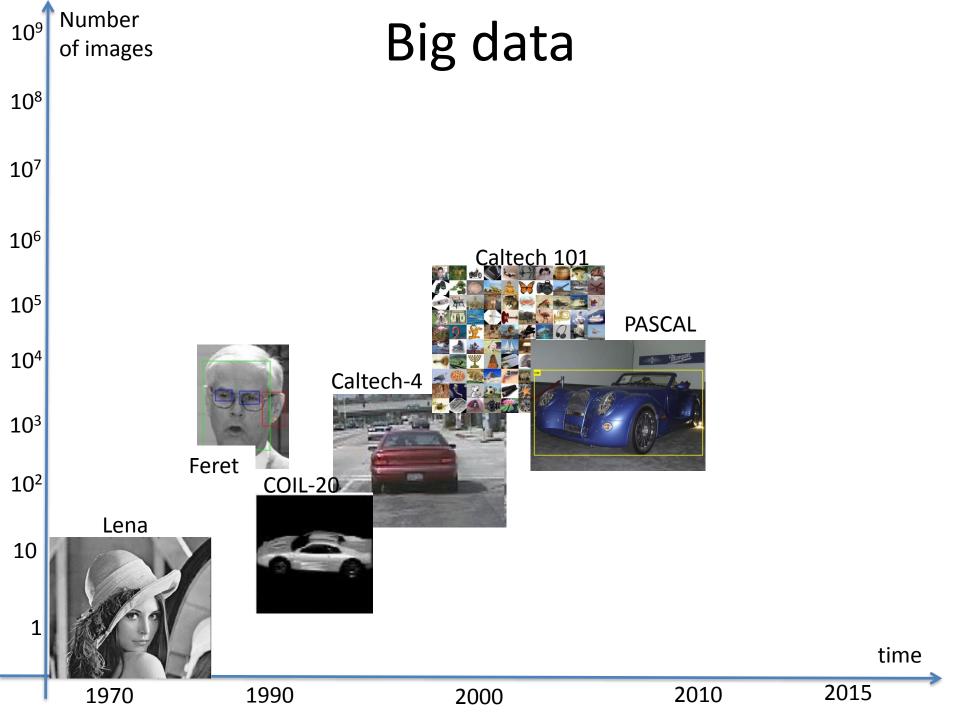
2010

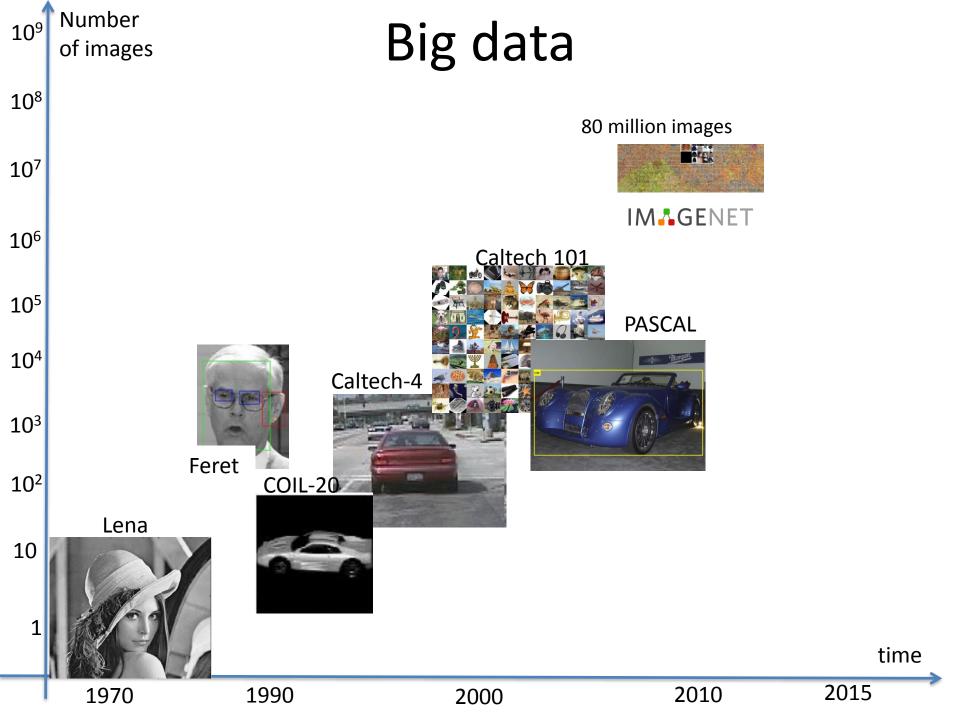
time

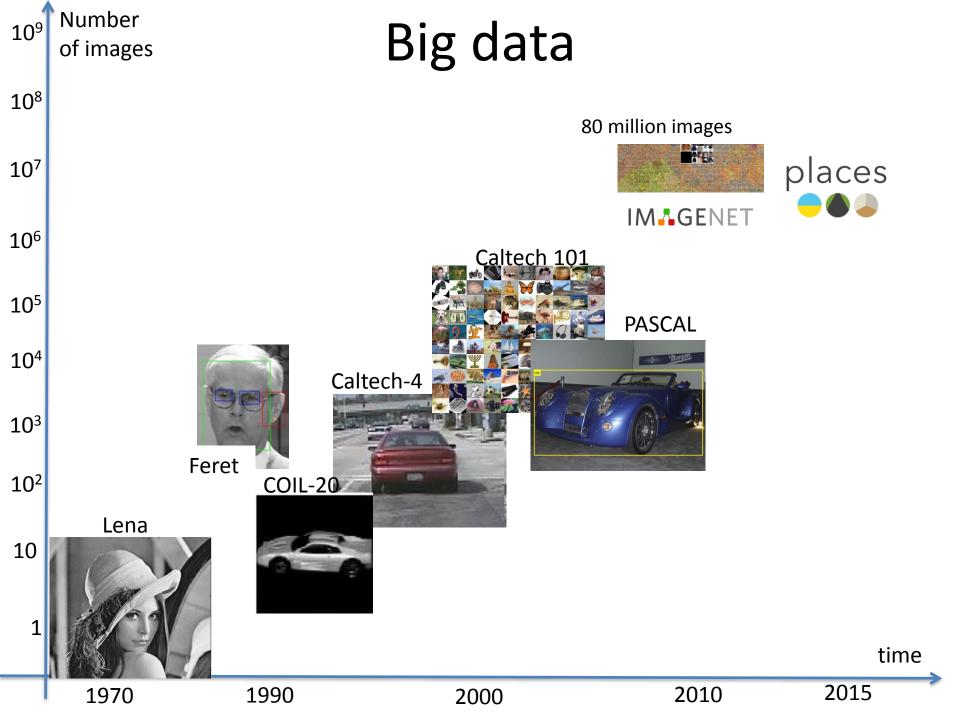


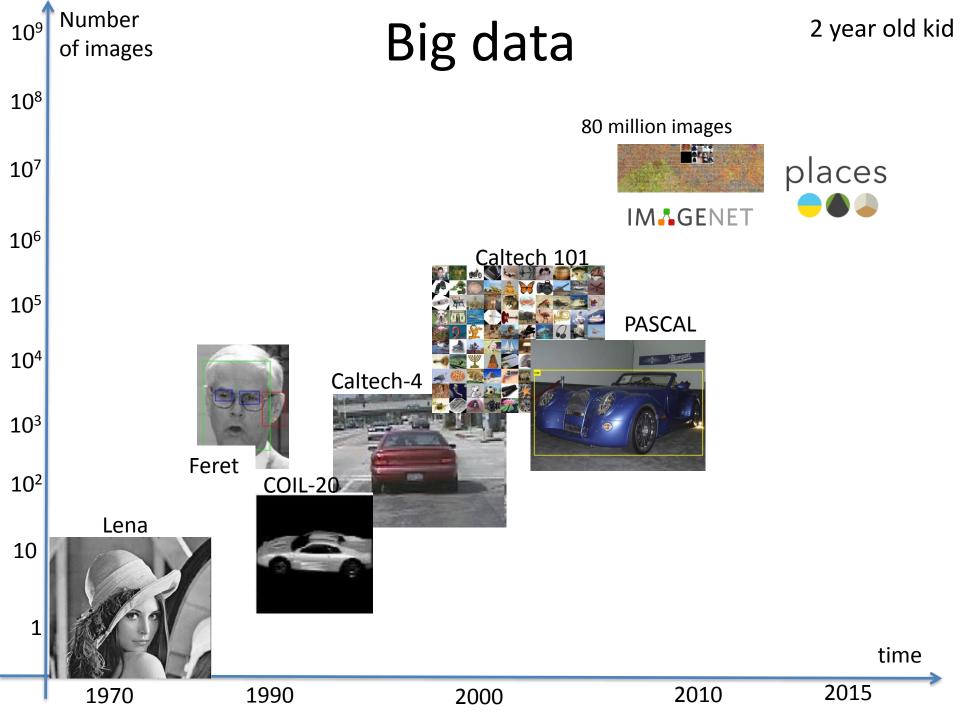










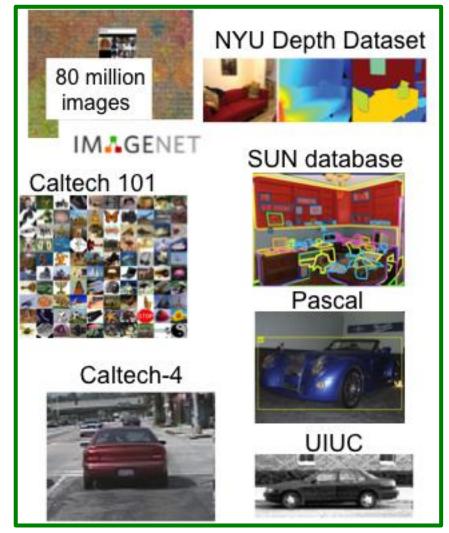


The time of big data

In 2010, a new student gets into computer vision...

In 2010, a new student gets into computer vision...

Pick one dataset

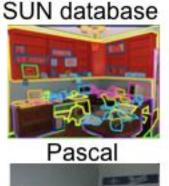


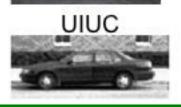
In 2010, a new student gets into computer vision...

Pick one dataset

IM GENET

Caltech-4





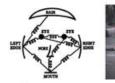
Pick one model

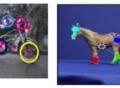
Bag of words models

Csurka, Dance, Fan, Willamowski, and Bray 2004 Sivic, Russell, Freeman, Zisserman, **ICCV 2005**

Viola and Jones, ICCV 2001 Heisele, Poggio, et. al., NIPS 01 Schneiderman, Kanade 2004 Vidal-Naquet, Ullman 2003

Constellation models





Fischler and Elschlager, 1973 Burl, Leung, and Perona, 1995 Weber, Welling, and Perona, 2000 Fergus, Perona, & Zisserman, CVPR 2003

Shape matching Deformable models

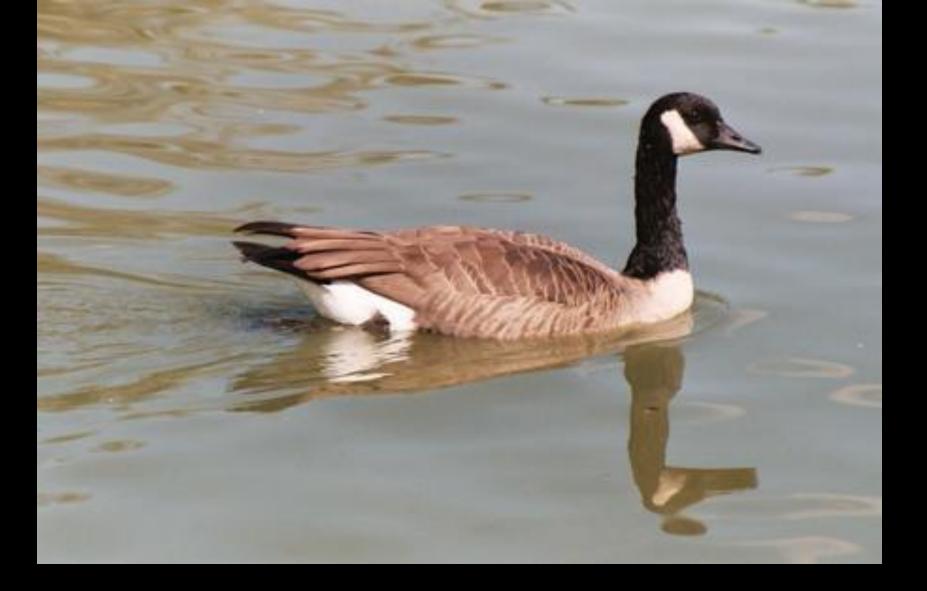
Berg, Berg, Malik, 2005 Cootes, Edwards, Taylor, 2001

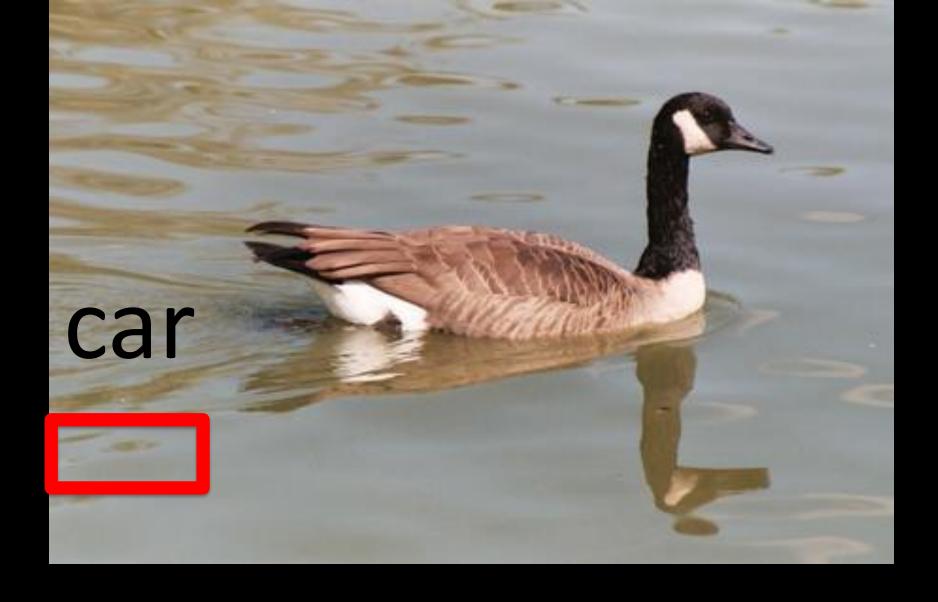
Rigid template models

weighted neg wts

Turk, Pentland, 1991 Dalal & Triggs, 2006

Sirovich and Kirby 1987

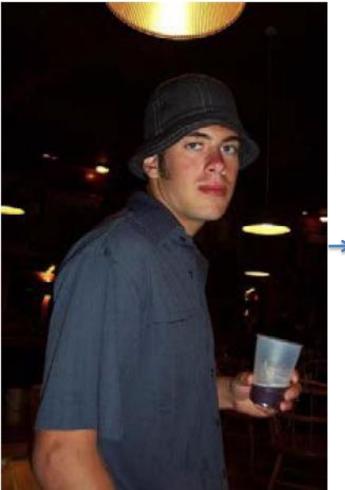


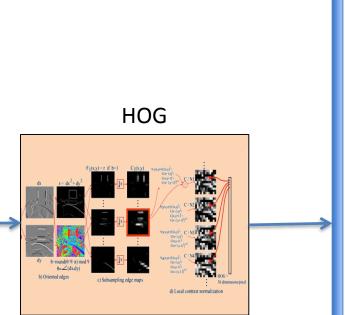


Who's to blame?

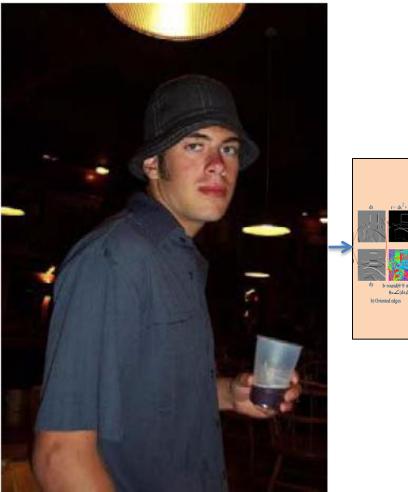
- The data
- The features
- The student

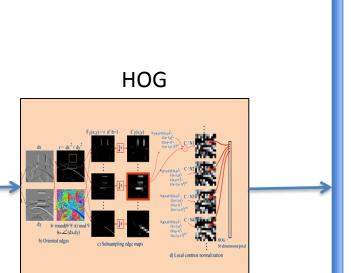
Features for object detection





What does a detector sees?

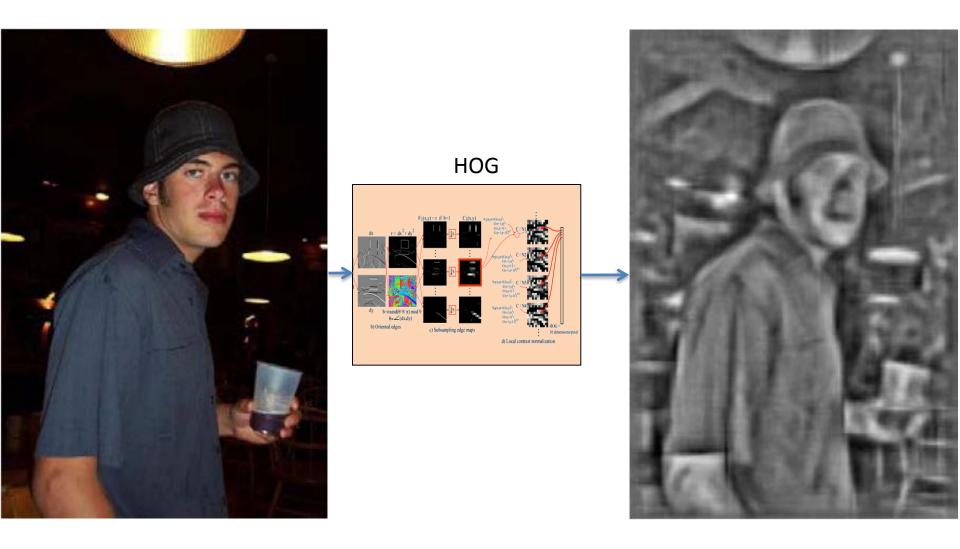




Can we visualize this output?

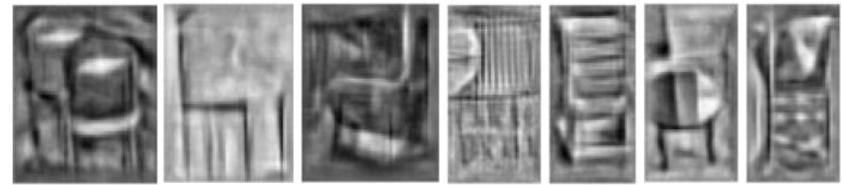
Carl Vondrick Aditya Khosla

What does a detector sees?

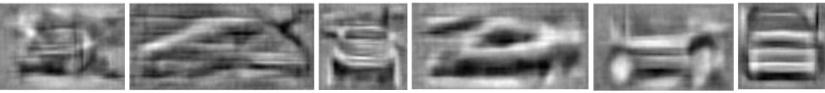


Person





Car



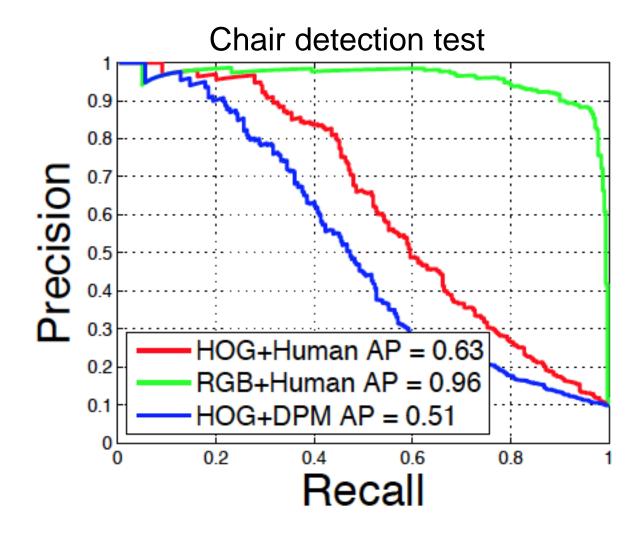
Can you tell which ones are not the object?

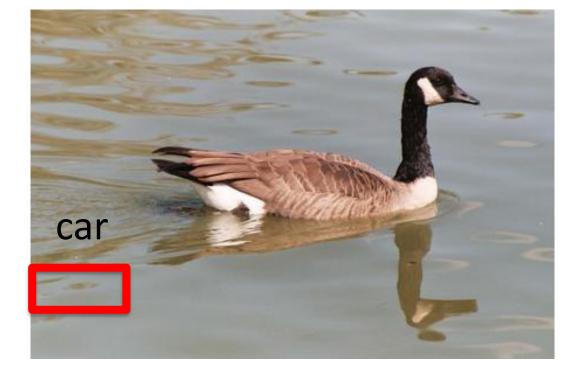
Person

Chair

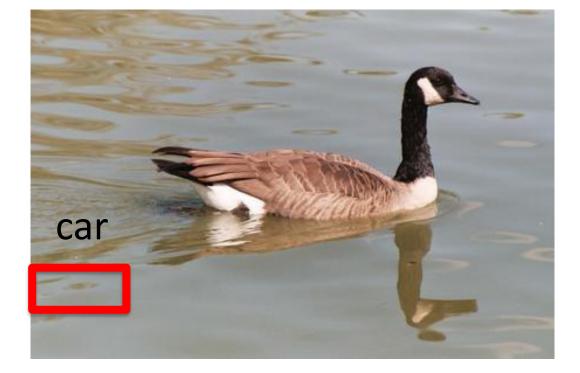
Car

HOG visualization predicts SVM performance



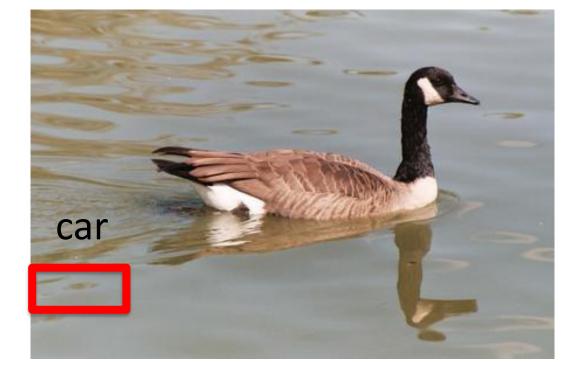


http://mit.edu/vondrick/ihog/



The image patch

http://mit.edu/vondrick/ihog/



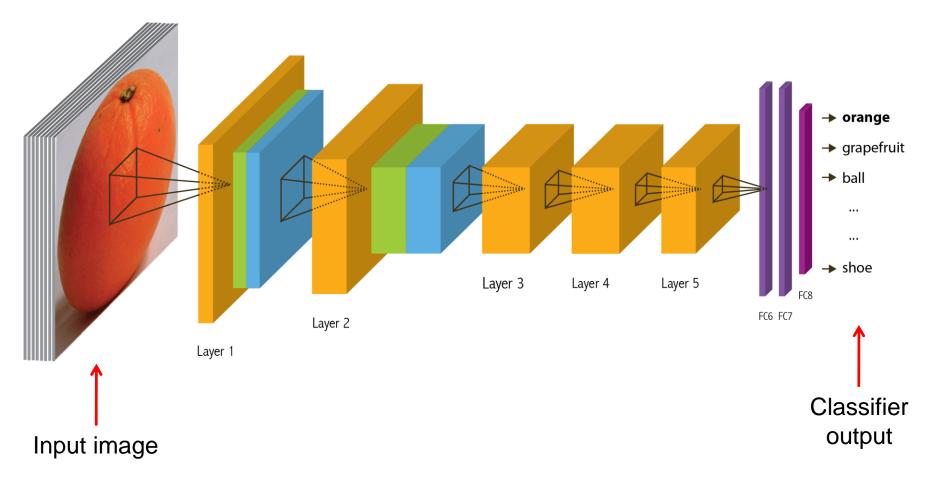
The image patch

What the detector sees

http://mit.edu/vondrick/ihog/

Deep architectures

Geoffrey Hinton, Yann LeCun



Scene recognition demo http://places.csail.mit.edu/demo.html

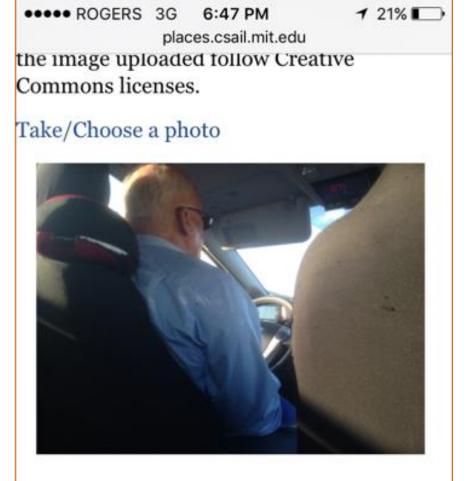
•••• I W	'IND ᅙ	5:38 PM	1	56% 🔳
places.csail.mit.edu C				
Dama				
		Demo		
Upload your image for scene recognition using Places-CNN from MIT.				
Take/Choose a photo				
		•		
<	>	ſ	\prod	

Users report 78% correct results

http://places.csail.mit.edu/demo.html

- Type of environment: outdoor
- Semantic categories:
 - swimming_pool/outdoor:0.74,
 - sandbar:0.11,

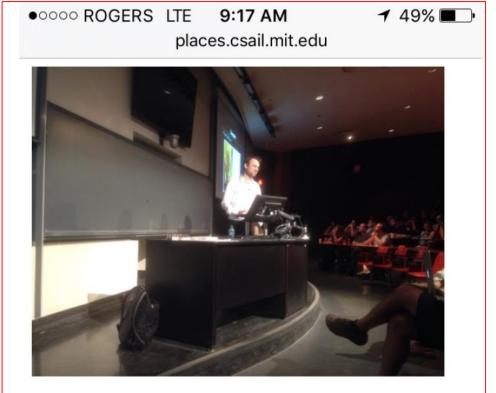
- Type of environment: indoor
- Semantic categories: airport_terminal:0.70,
- SUN scene attributes: enclosedarea, electricindoorlighting, nohorizon, manmade, congregating, cloth, glass, socializing, glossy, waitinginlinequeuing



- Type of environment: indoor
- Semantic categories: cockpit:0.08, parking_lot:0.06, playground:0.05,
- SUN scene attributes: nohorizon, enclosedarea, cloth, man-made, electricindoorlighting, working, stressful, dry, competing, waitinginlinequeuing

http://places.csail.mit.edu/demo.html

- Type of environment: indoor
- Semantic categories: auditorium:0.61, conference_center:0.34,



- Type of environment: indoor
- Semantic categories: bar:0.25, auditorium:0.20, restaurant_kitchen:0.07, coffee_shop:0.05,
- SUN scene attributes: enclosedarea, nohorizon, man-made, electricindoorlighting, wood(notpartofatree), working, matte, glass, cloth, conductingbusiness

•••• vodafone ES 3G 10:35 PM

places.csail.mit.edu

Upload your image for scene recognition using **Places-CNN** from MIT.

Take/Choose a photo

- type: indoor
- semantic categories: hotel_room:0.50, bedroom:0.47,

•••• vodafone ES 3G 10:35 PM

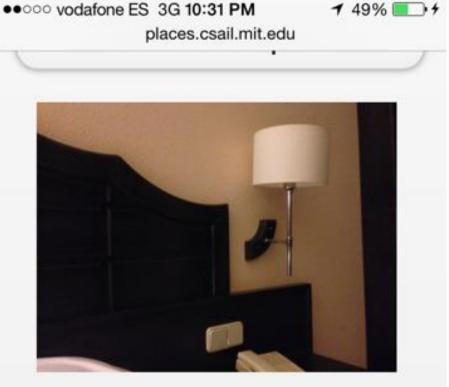
places.csail.mit.edu

Upload your image for scene recognition using **Places-CNN** from MIT.

Take/Choose a photo

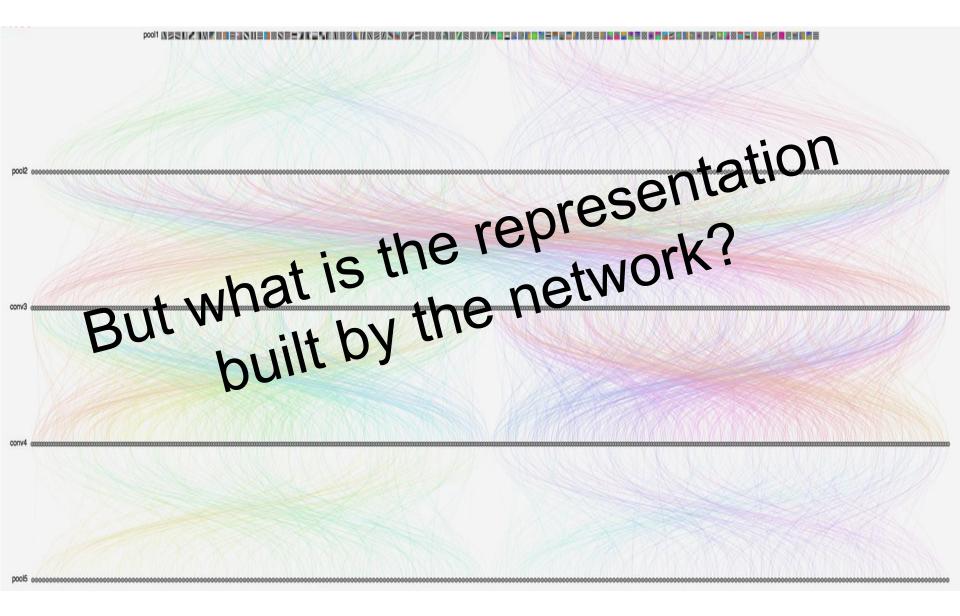
Predictions:

- type: indoor
- semantic categories: hotel_room:0.50, bedroom:0.47,



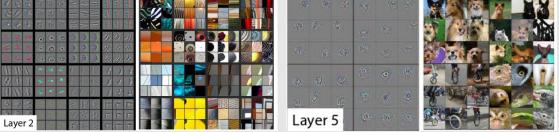
- type: indoor
- semantic categories: hotel_room:0.35, bedroom:0.15, living_room:0.09, dorm_room:0.06, basement:0.05

Why is working so well?

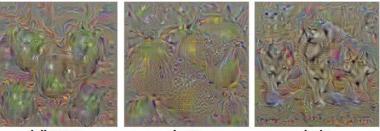


Visualizing the internal representation

Deconvolution



Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014.



Backpropagation

bell pepper lemon husky Simonyan et al. Visualizing image classification models and saliency maps. ICLRW, 2014.

Strong activations

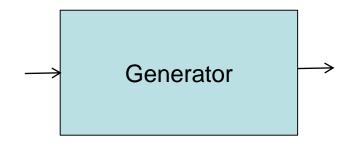
Girshick, et al, Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014.

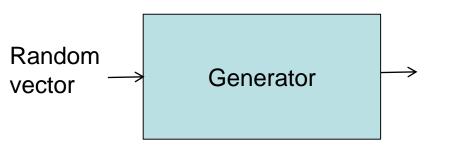
Visualizing and Understanding Convolutional Networks

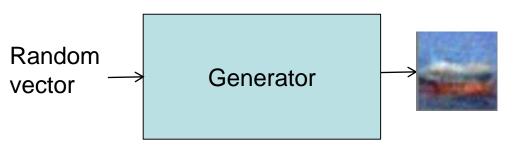
Matthew D. Zeiler and Rob Fergus

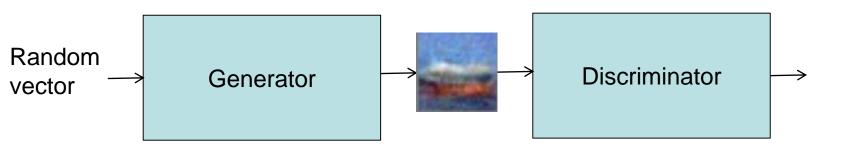
Dept. of Computer Science, New York University, USA {zeiler,fergus}@cs.nyu.edu

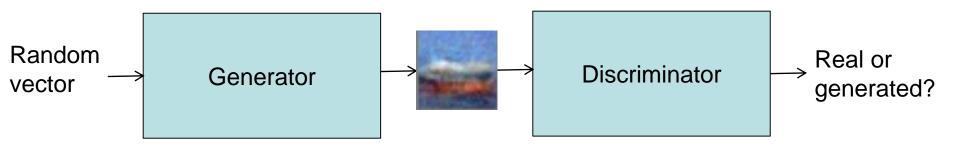
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014.

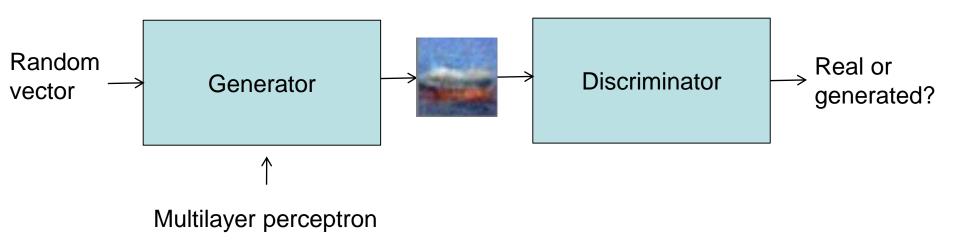


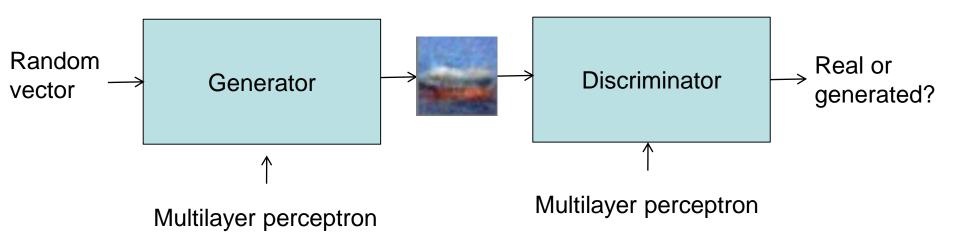




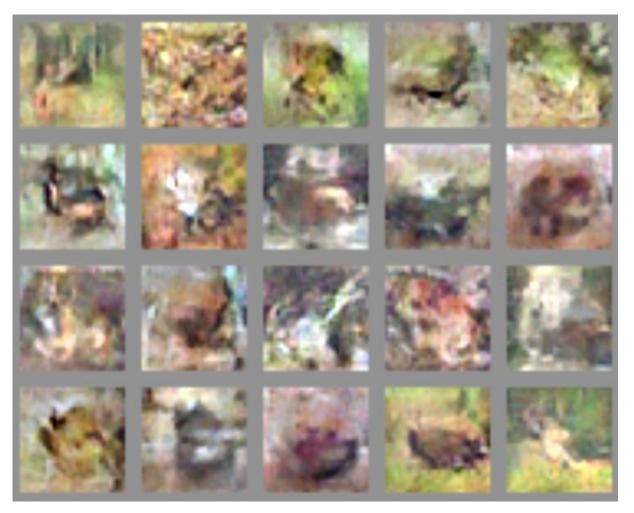








Generated images



Trained with CIFAR-10

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

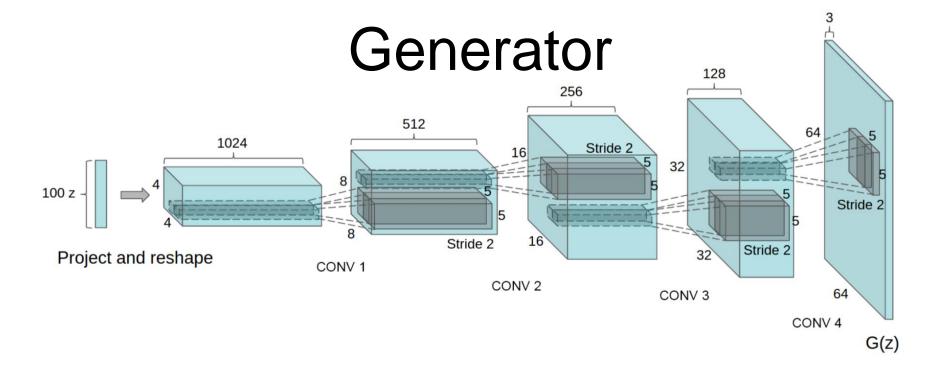
Alec Radford & Luke Metz

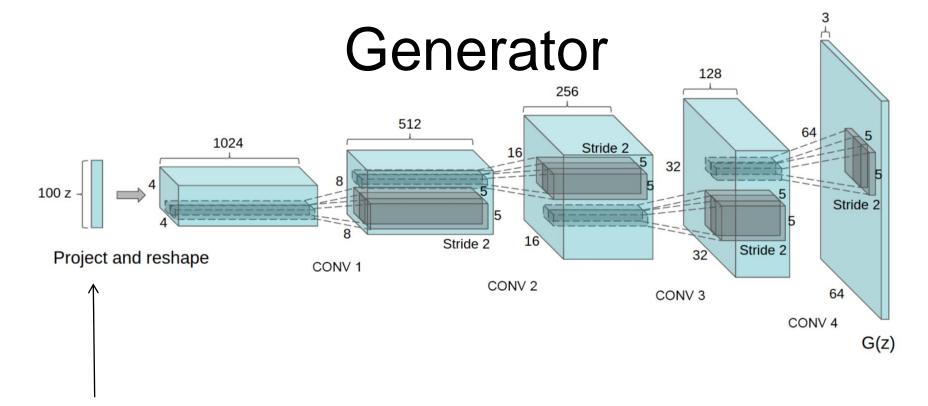
indico Research
Boston, MA
{alec, luke}@indico.io

Soumith Chintala

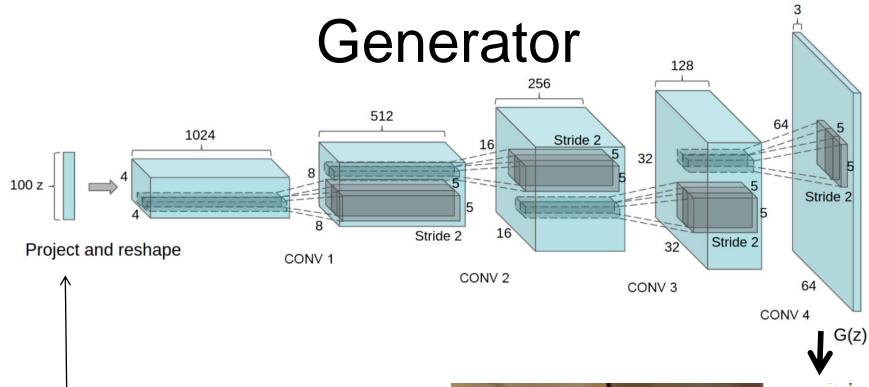
Facebook AI Research New York, NY soumith@fb.com

Introduced a form of ConvNet more stable under adversarial training than previous attempts.

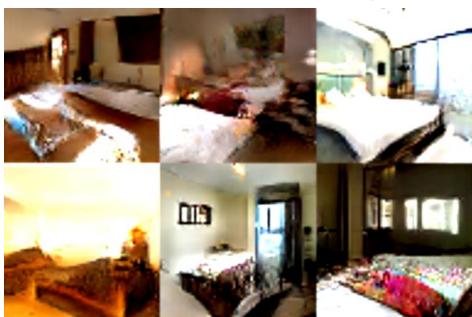




Random uniform vector (100 numbers)



Random uniform vector (100 numbers)



Synthesizing the preferred inputs for neurons in neural networks via deep generator networks

Anh Nguyen anguyen8@uwyo.edu Alexey Dosovitskiy dosovits@cs.uni-freiburg.de

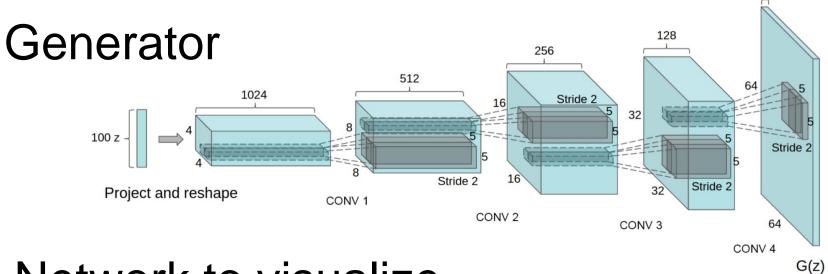
Jason Yosinski jason@geometricintelligence.com **Thomas Brox**

brox@cs.uni-freiburg.de

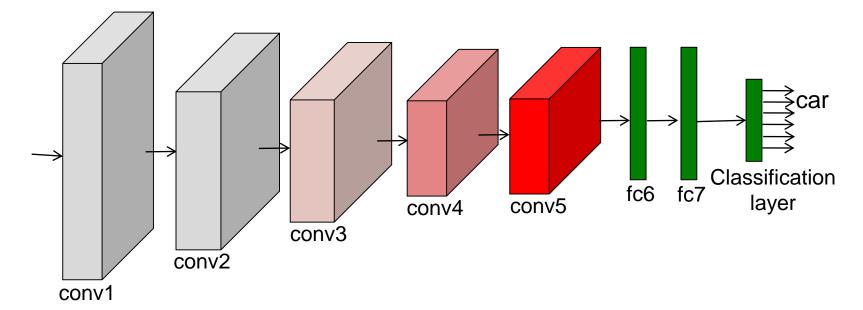
Jeff Clune jeffclune@uwyo.edu

Two components

3

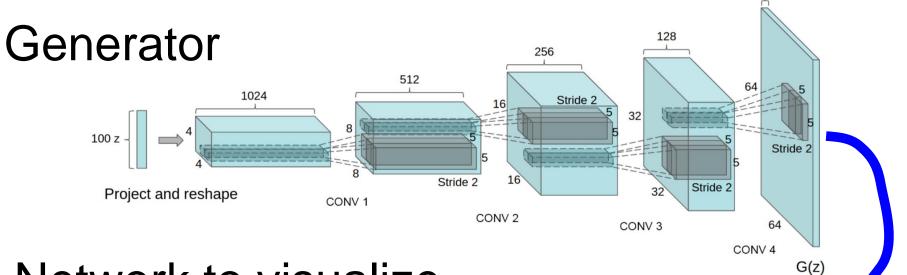


Network to visualize

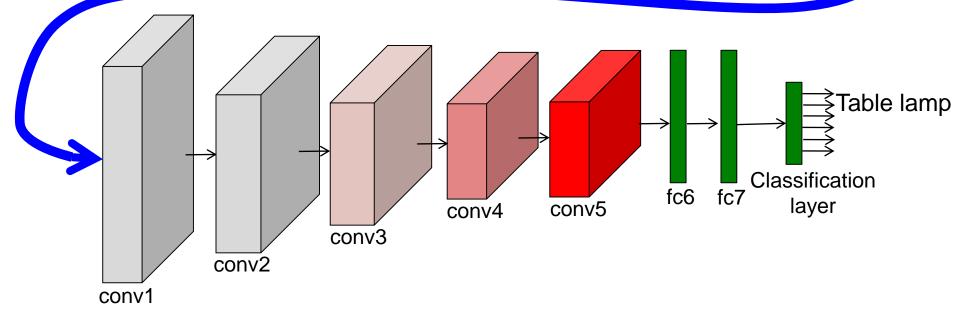


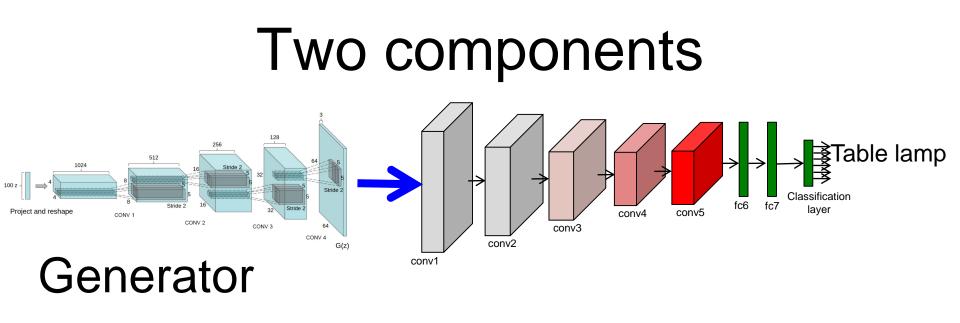
Two components

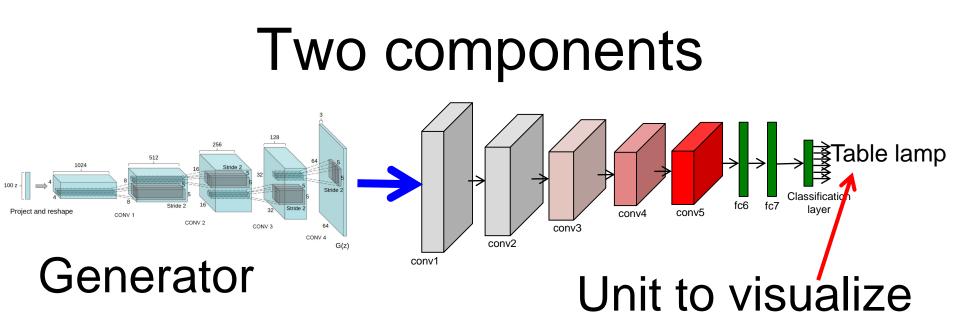
3

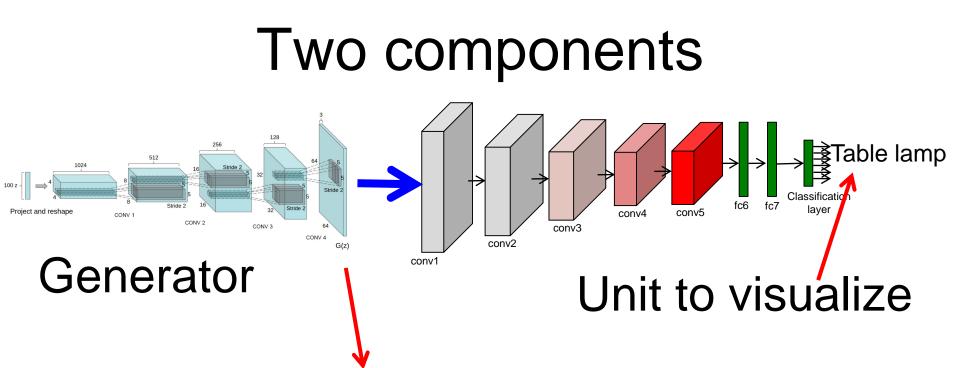


Network to visualize









Synthesizing Images Preferred by CNN

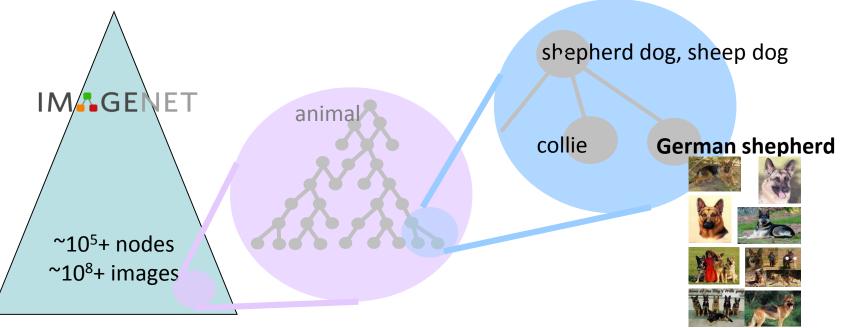
ImageNet-Alexnet-final units (class units)

Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. (2016). "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks.". arXiv:1605.09304.

Bedroom

IM GENET

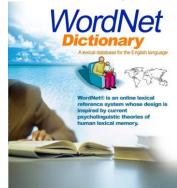
- An ontology of images based on WordNet
- ImageNet currently has
 - 13,000+ categories of visual concepts
 - 10 million human-cleaned images (~700im/categ)
 - 1/3+ is released online @ www.image-net.org



Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009

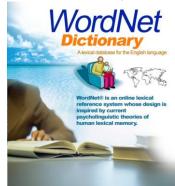
Zhou, Lapedriza, Xiao, Oliva & Torralba (NIPS 2014)

1. We take all scene words from a dictionary



places.csail.mit.edu

1. We take all scene words from a dictionary



2. We download images and clean the categories

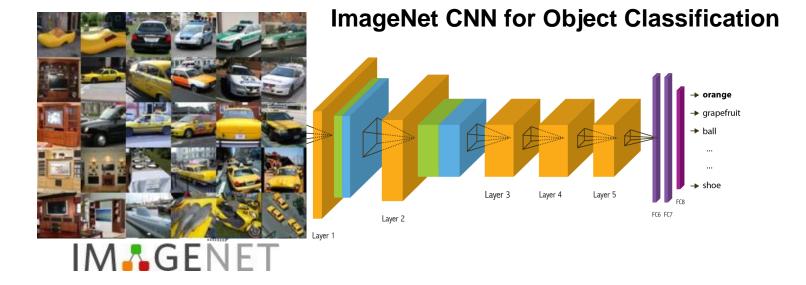
Two large databases, two tasks

bedroom

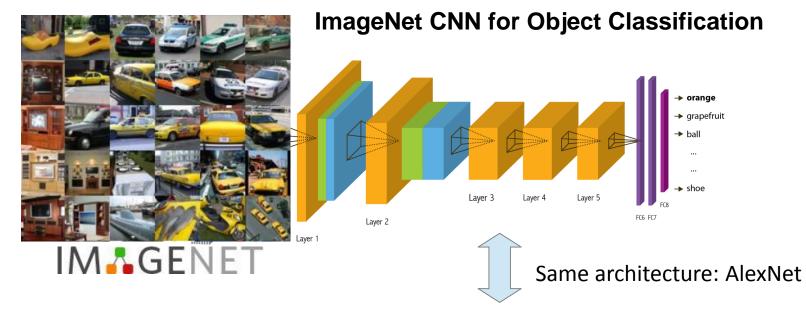
mountain

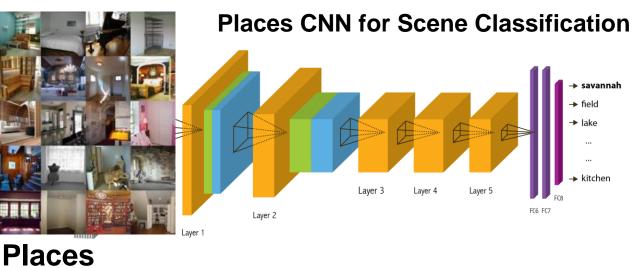
ImageNet CNN and Places CNN

ImageNet CNN and Places CNN



ImageNet CNN and Places CNN





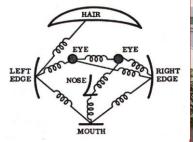
Possible internal representations

Learning to Recognize Objects

Learning to Recognize Objects

Possible internal representations:

- Object parts
- Textures
- Attributes



Learning to Recognize Scenes

bedroom

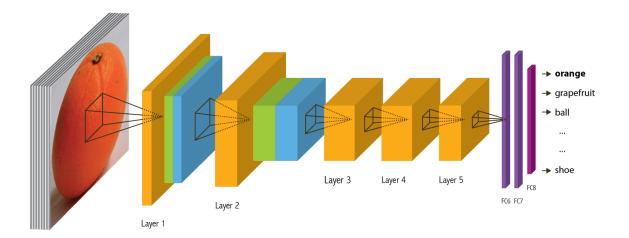
mountain

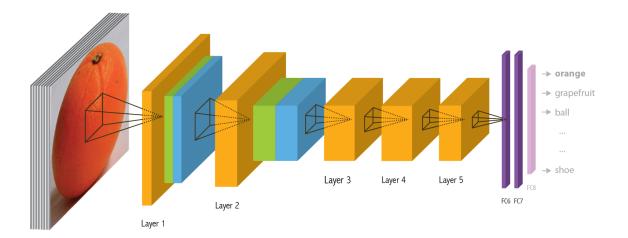
Learning to Recognize Scenes

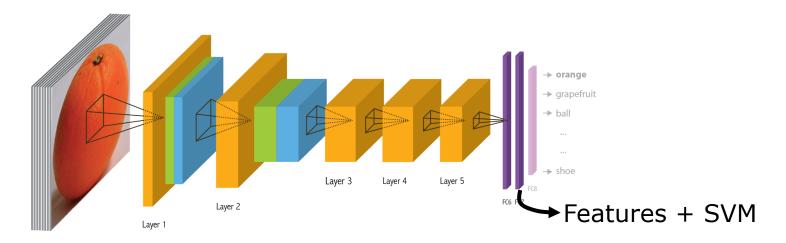
bedroom

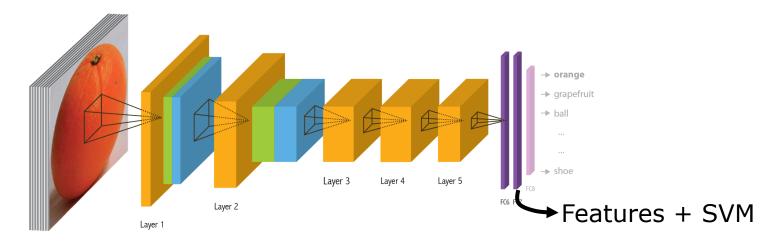
Possible internal representations:

- Scene parts
- Objects
- Scene attributes
- Object parts
- Textures



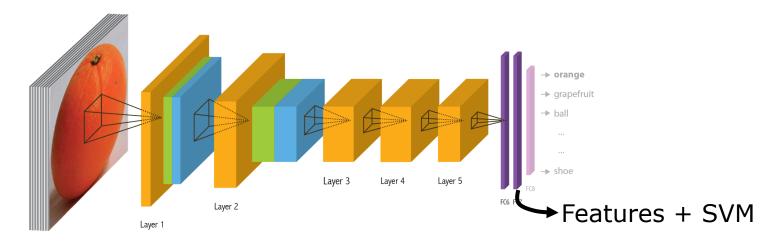






Scene datasets

	SUN397	MIT Indoor67	Scene15	SUN Attribute
Places-CNN feature	54.32±0.14	68.24	90.19±0.34	91.29
ImageNet-CNN feature	42.61 ± 0.16	56.79	84.23 ± 0.37	89.85



Scene datasets

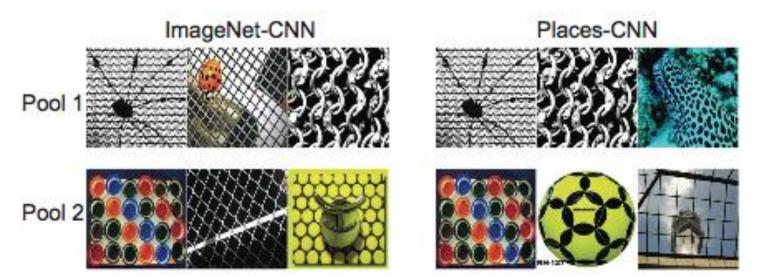
	SUN397	MIT Indoor67	Scene15	SUN Attribute
Places-CNN feature	54.32±0.14	68.24	90.19±0.34	91.29
ImageNet-CNN feature	42.61 ± 0.16	56.79	84.23 ± 0.37	89.85
Object datasets				
	Caltech101	Caltech256	Action40	Event8
Places-CNN feature	65.18 ± 0.88	45.59 ± 0.31	42.86 ± 0.25	94.12 ± 0.99
ImageNet-CNN feature	$87.22 {\pm} 0.92$	67.23±0.27	$54.92{\pm}0.33$	$94.42{\pm}0.76$

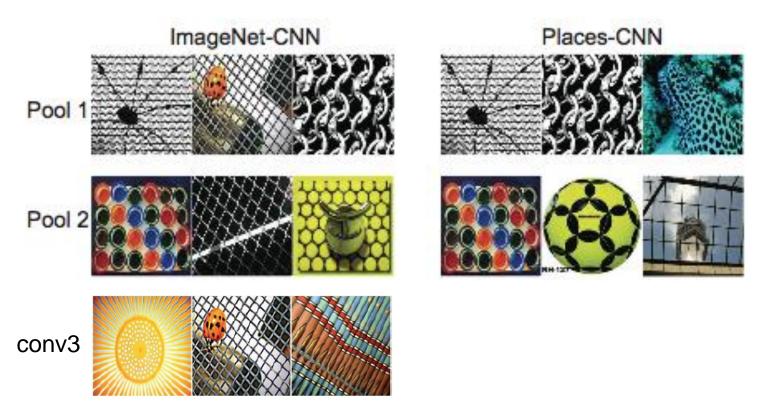
ImageNet-CNN

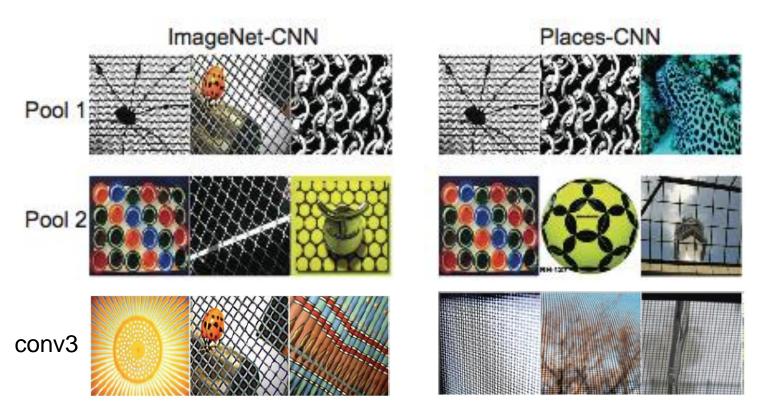
ImageNet-CNN

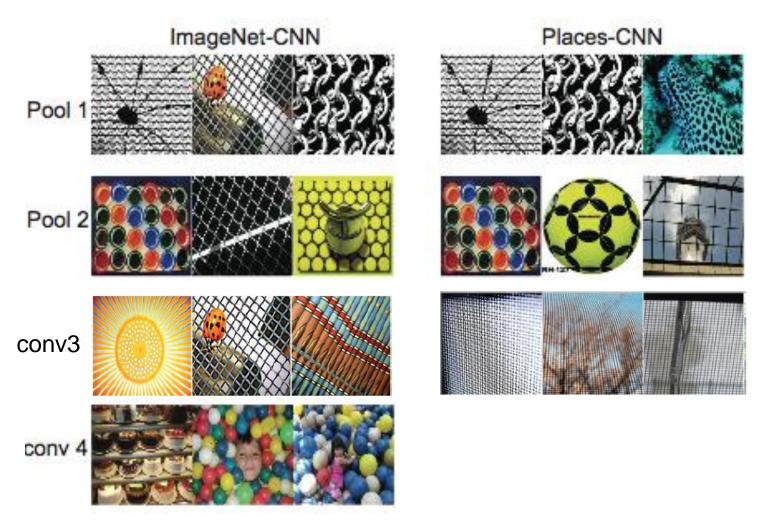
Places-CNN

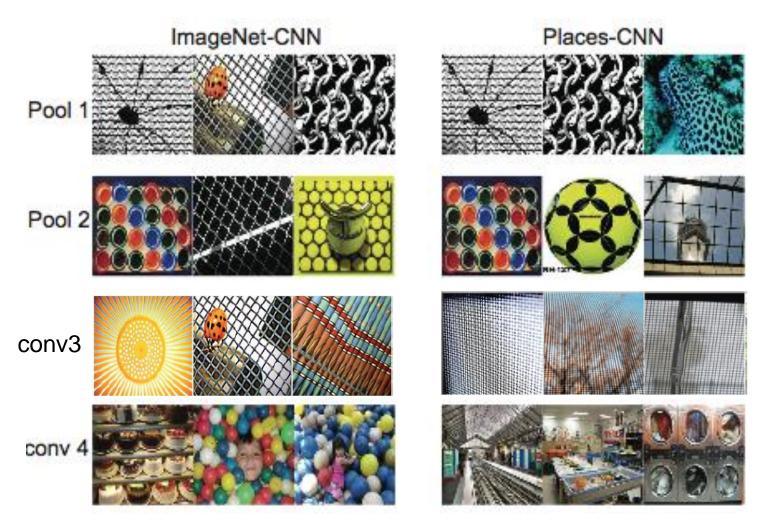
Places-CNN

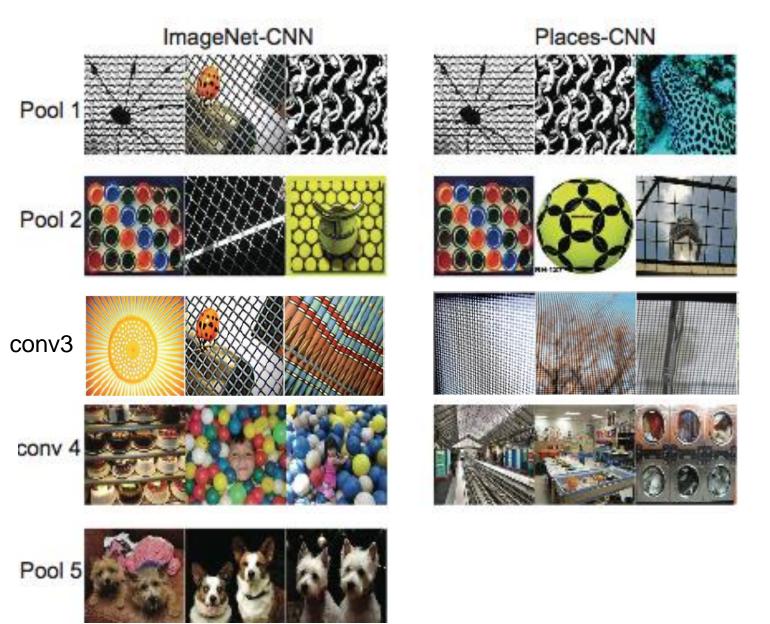


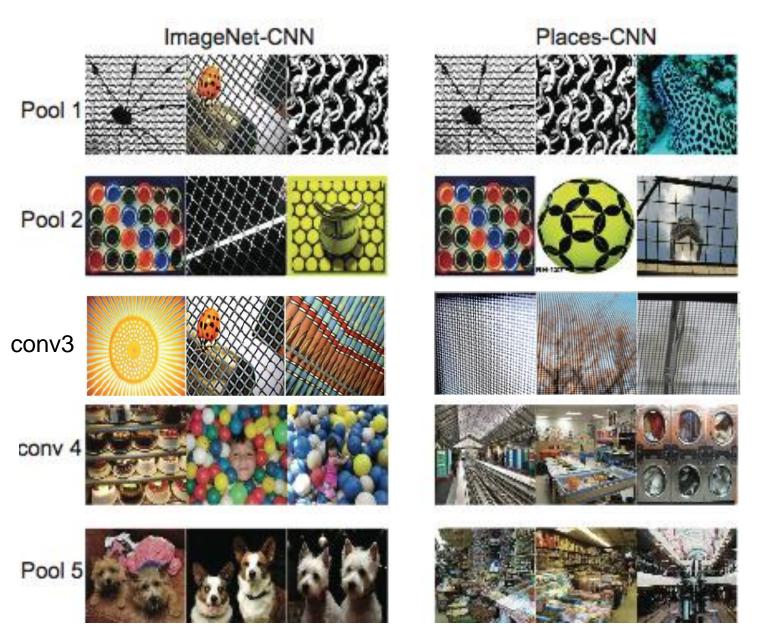


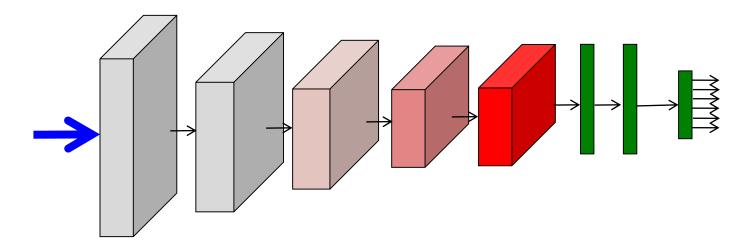


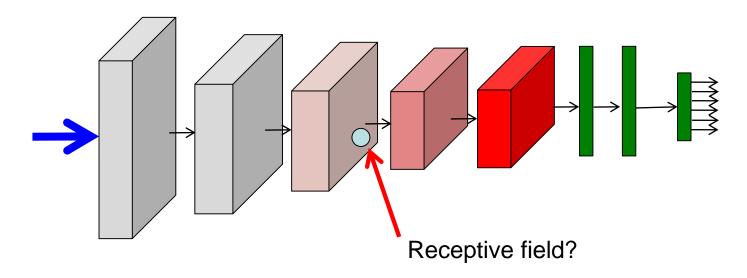


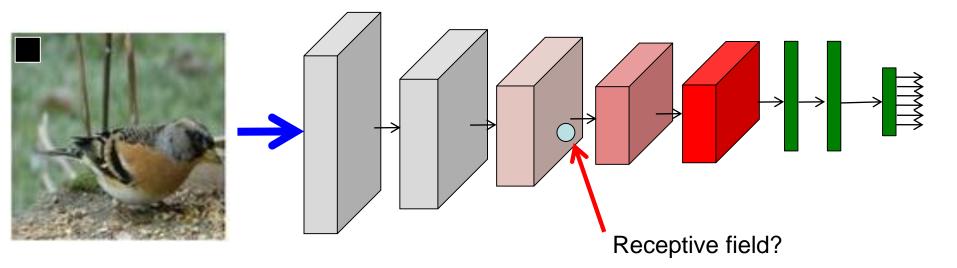


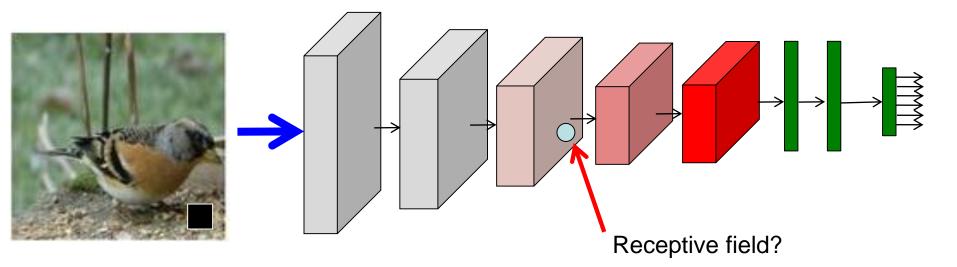


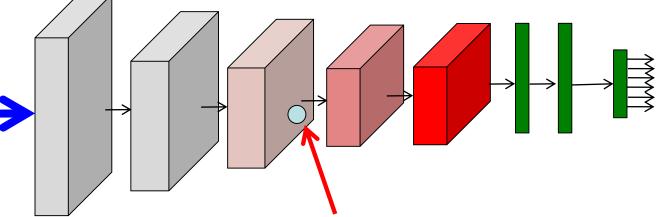




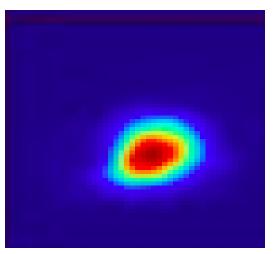






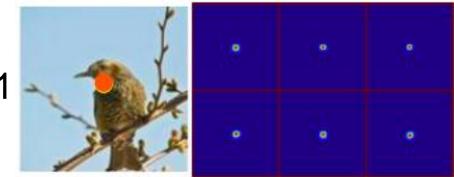


Receptive field?



Theoretical size

Actual size

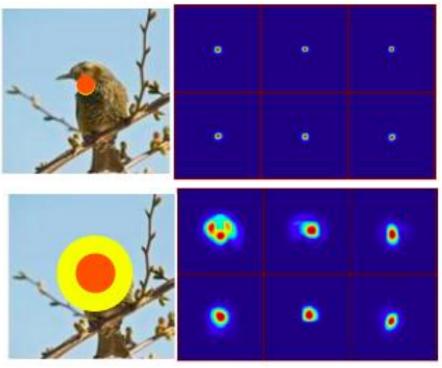


Layer 1

Theoretical size

Actual size

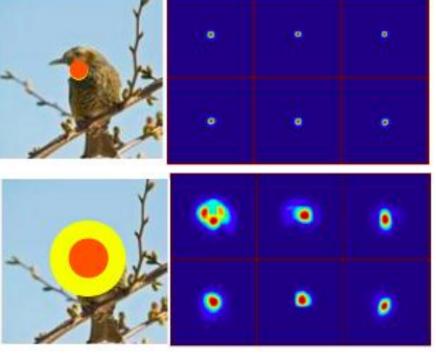
Layer 1



Theoretical size

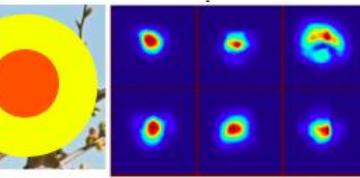
Actual size

Layer 1



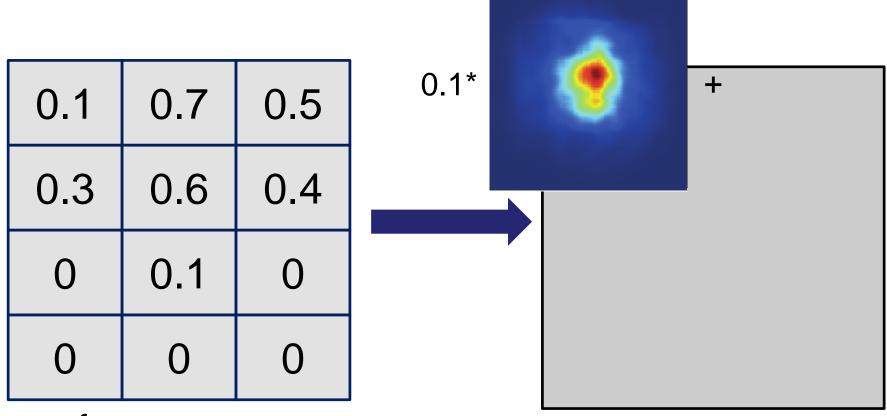
Layer 3

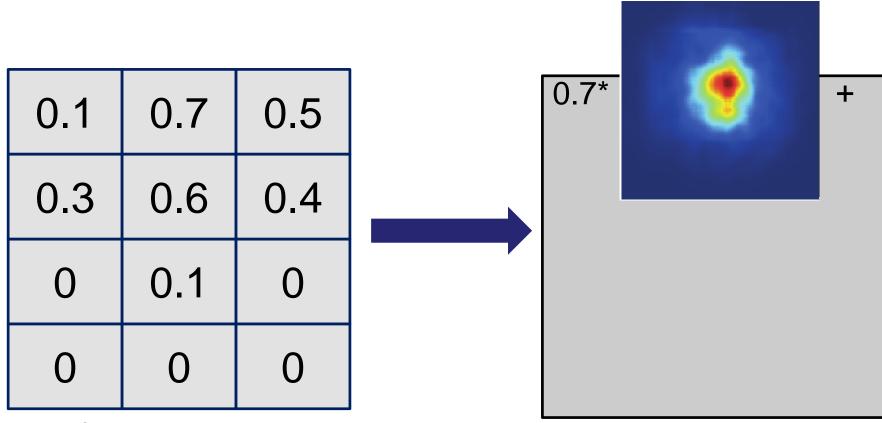
Layer 5

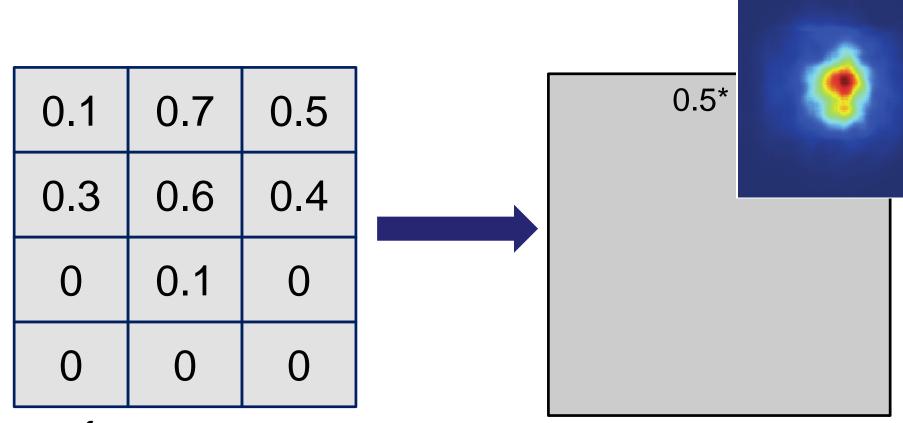


Theoretical size
Actual size

0.1	0.7	0.5
0.3	0.6	0.4
0	0.1	0
0	0	0







0.1	0.7	0.5	201
0.3	0.6	0.4	18
0	0.1	0	
0	0	0	

Crowdsourcing units

Task 1

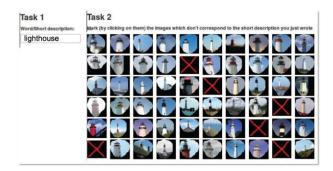
Word/Short description:

Task 2

lighthouse

Mark (by clicking on them) the images which don't correspond to the short description you just wrote

Crowdsourcing units



Task 3

Which category does your short description mostly belong to?

Scene (kitchen, corridor, street, beach, ...)

Region or surface (road, grass, wall, floor, sky, ...)

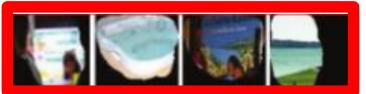
Object (bed, car, building, tree, ...)

Object part (leg, head, wheel, roof, ...)

Texture or material (striped, rugged, wooden, plastic, ...)

Simple elements or colors (vertical line, curved line, color blue,)

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%



Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

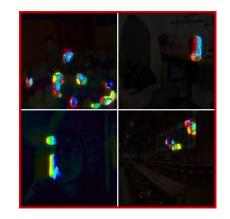
Pool5, unit 77; Label: legs; Type: object part; Precision: 96%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

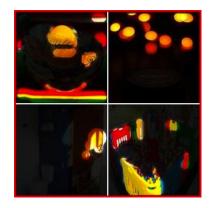
1 - Simple elements and colors

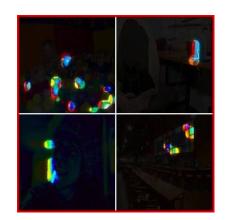
Ex: vertical line, curved line, color blue,

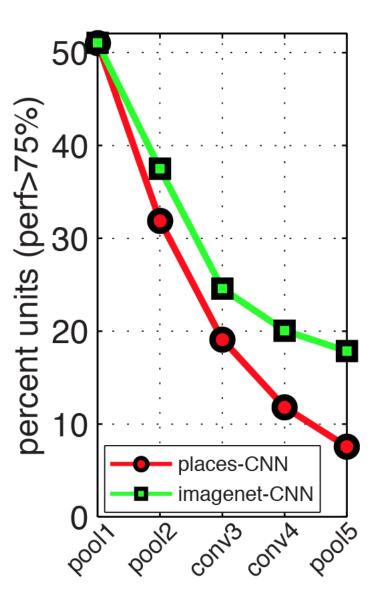


1 - Simple elements and colors

Ex: vertical line, curved line, color blue,







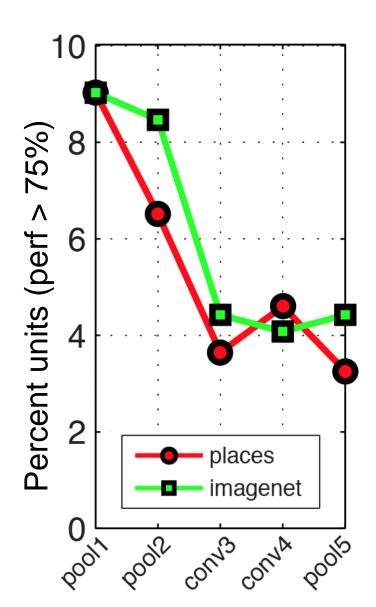
2 - Texture or materials

Ex: stripes, wooden, plastic, ...

Percent units (perf > 75%)

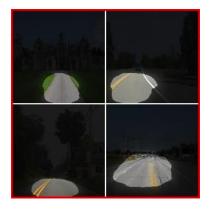
2 - Texture or materials

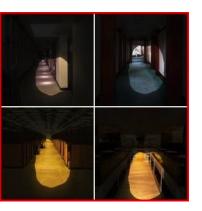
Ex: stripes, wooden, plastic, ...



3 - Regions and surfaces

Ex: Road, grass, wall, floor, sky,

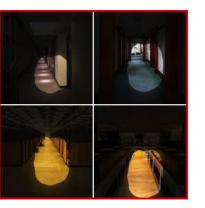


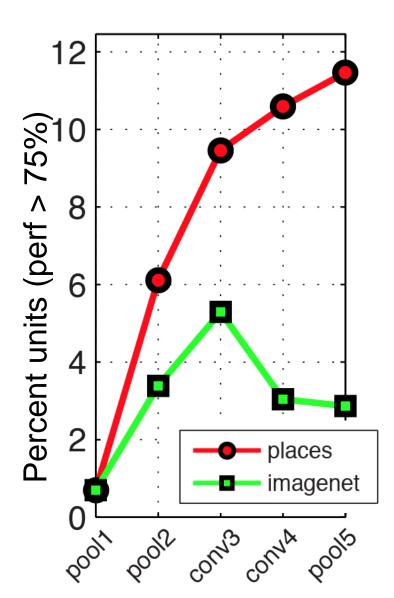


Percent units (perf > 75%)

3 - Regions and surfaces

Ex: Road, grass, wall, floor, sky,





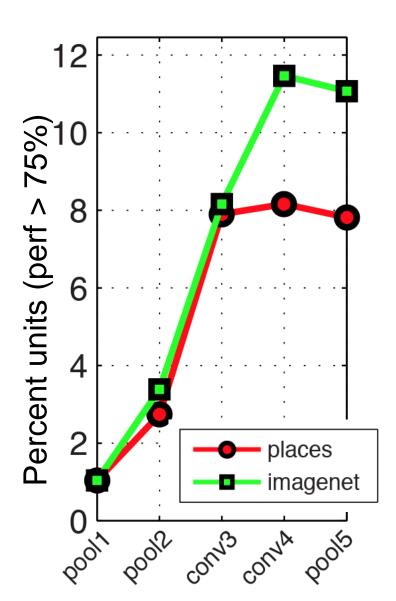
4 - Object parts

Ex: leg, head, wheel, roof,

Percent units (perf > 75%)

4 - Object parts

Ex: leg, head, wheel, roof,



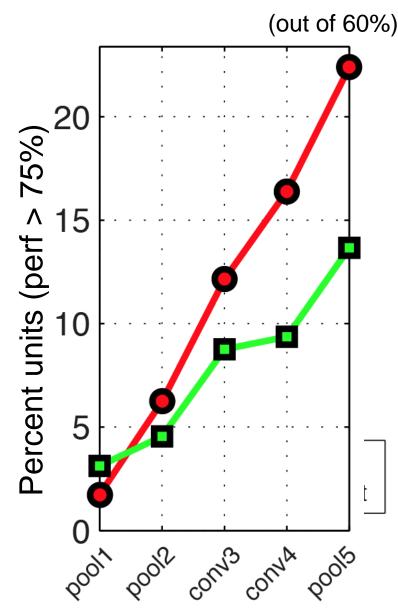
5 - Objects

Ex: bed, car, building, tree,

Percent units (perf > 75%)

5 - Objects

Ex: bed, car, building, tree,

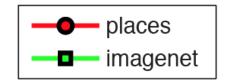


Distribution of semantic types at each layer

6 - Scenes

Ex: kitchen, corridor, street, beach,

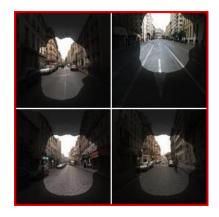
Percent units (perf > 75%)

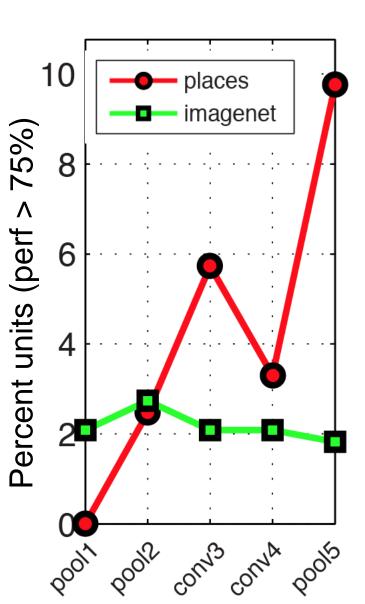


Distribution of semantic types at each layer

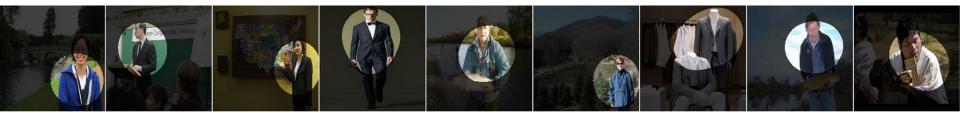
6 - Scenes

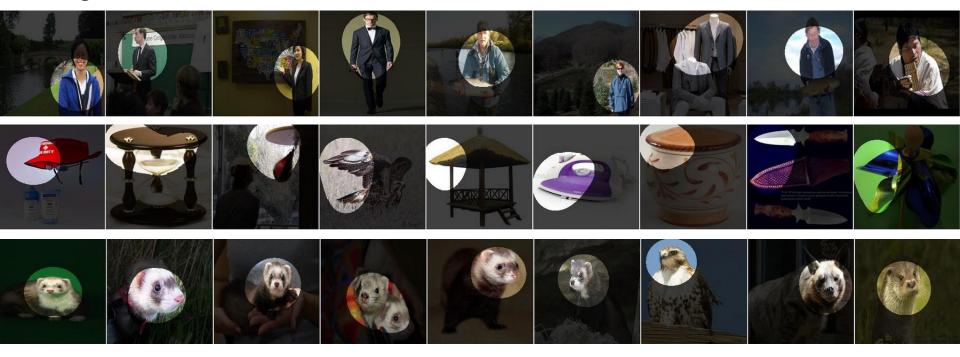
Ex: kitchen, corridor, street, beach,

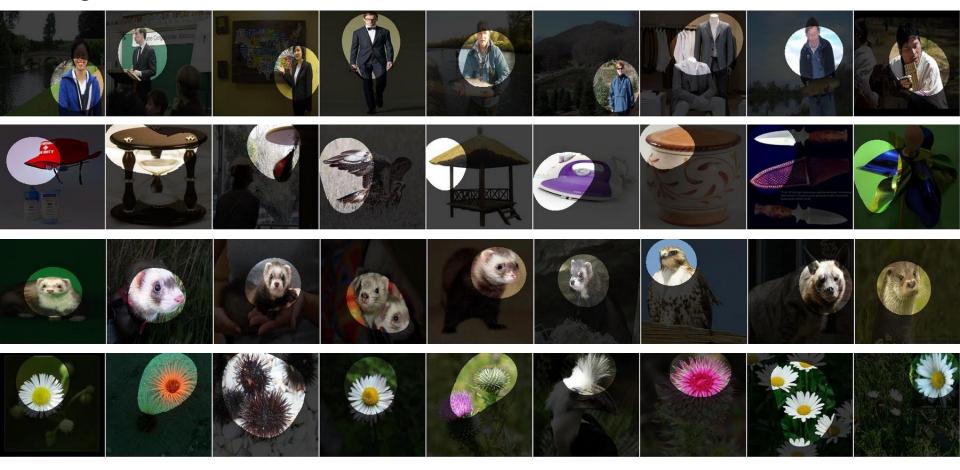


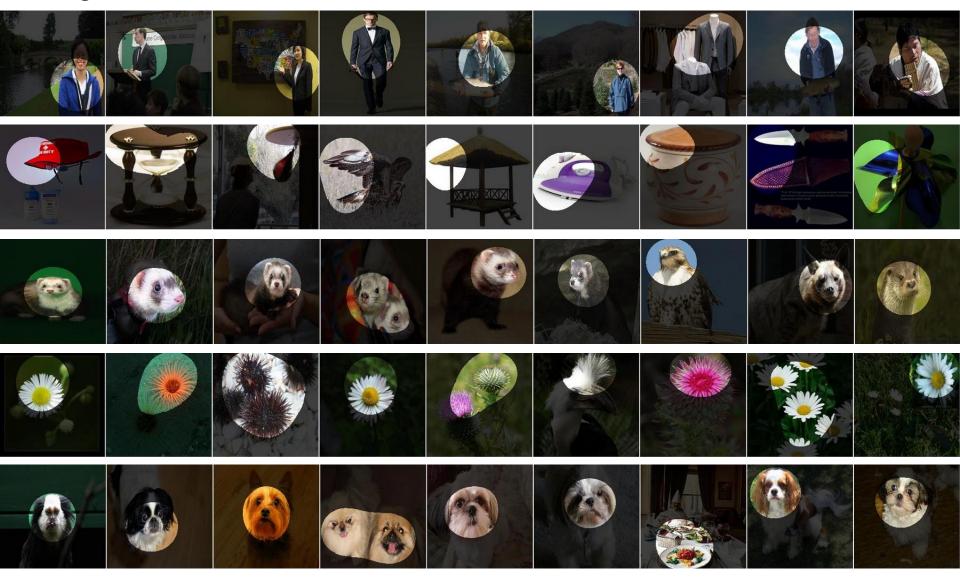


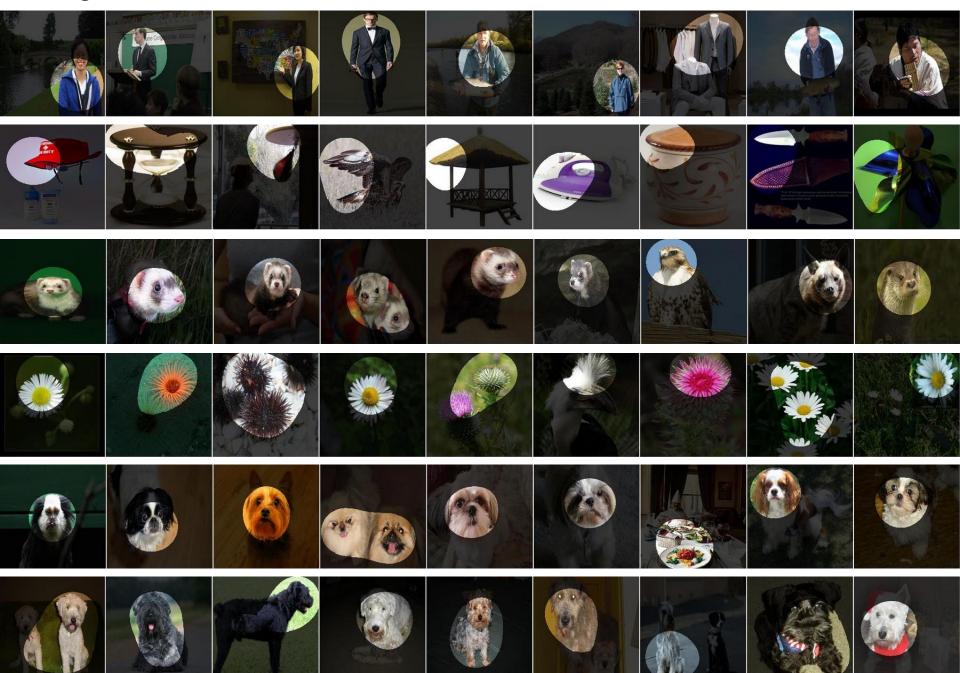
What objects are found?

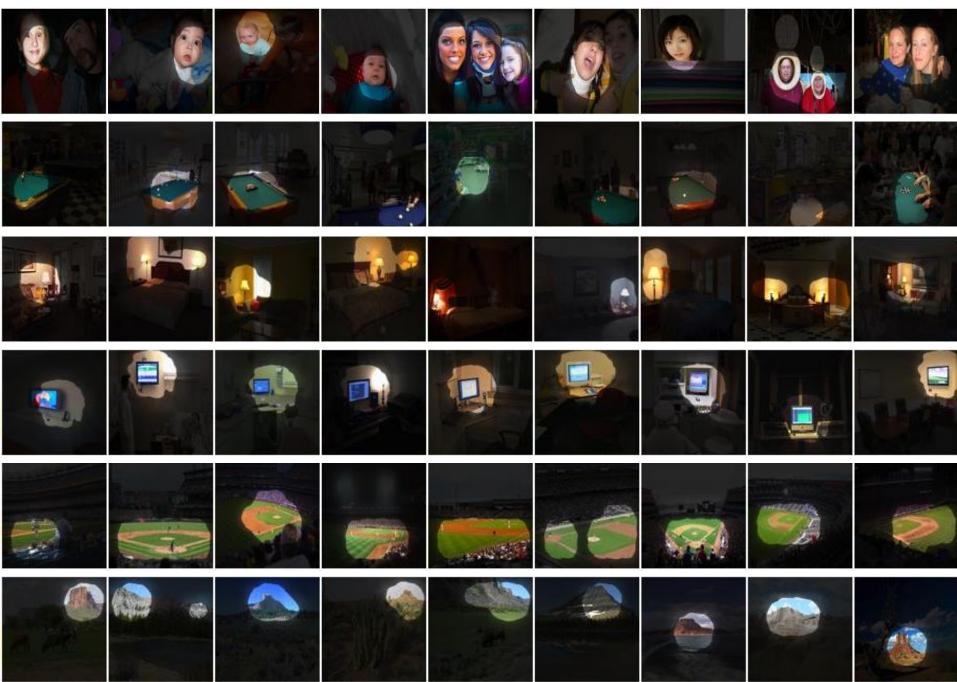


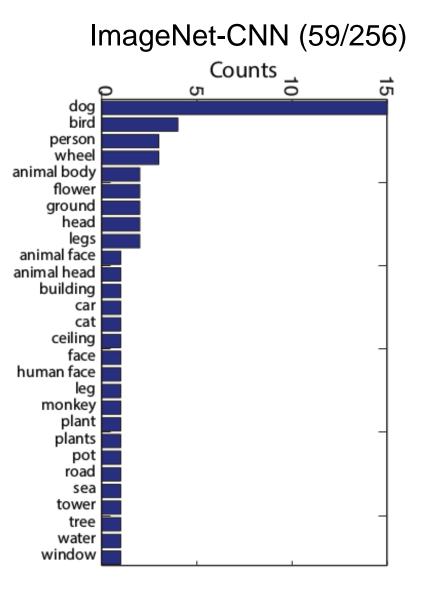


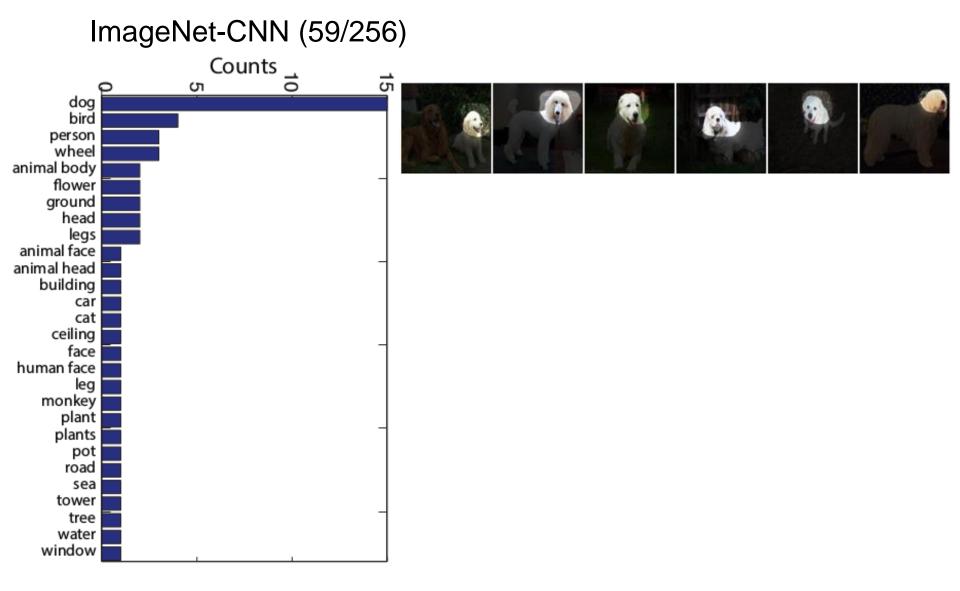


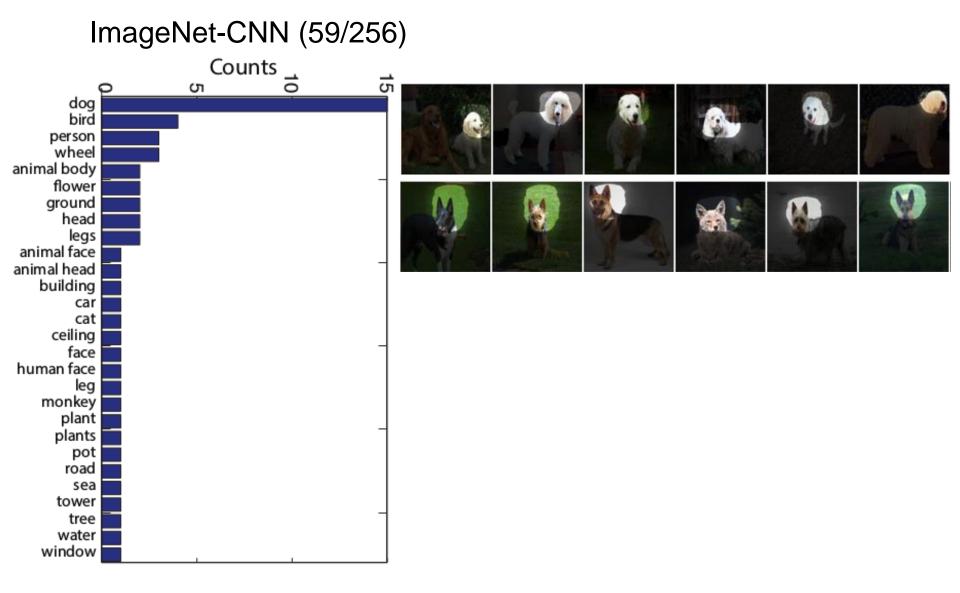


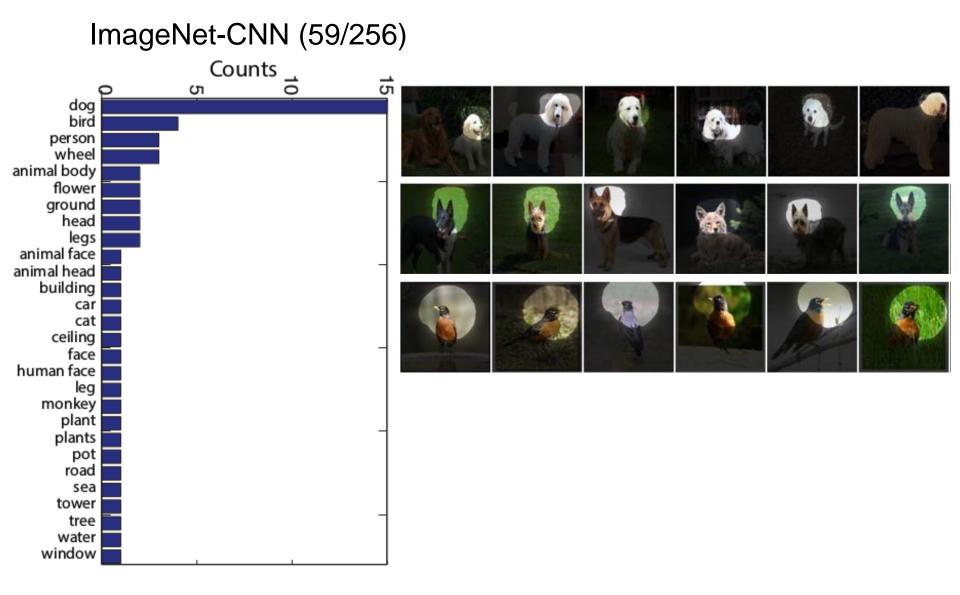


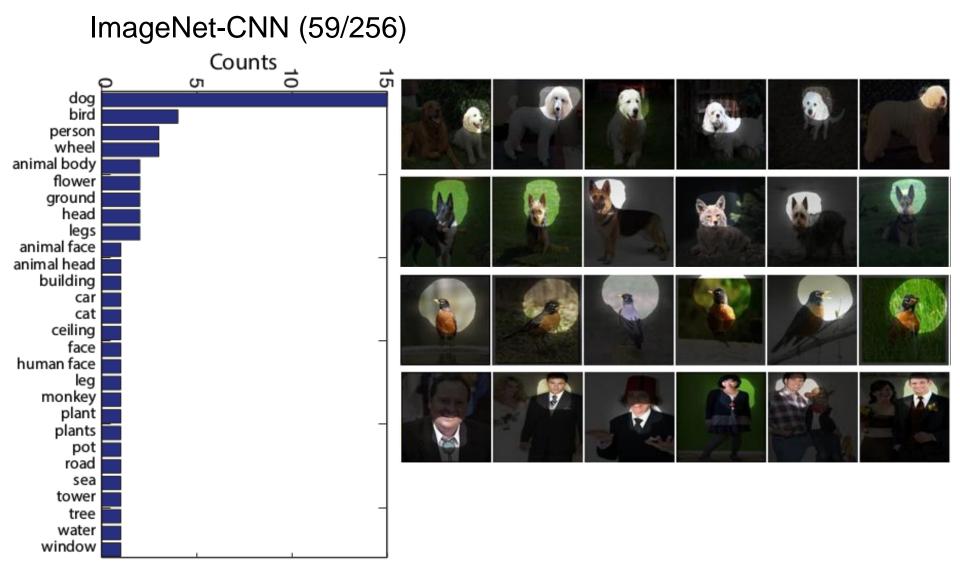


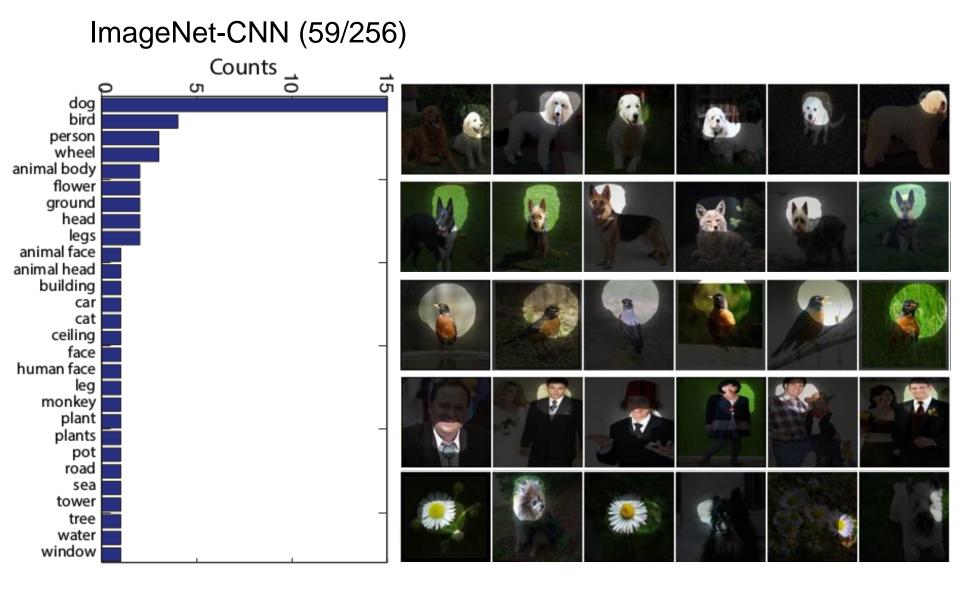


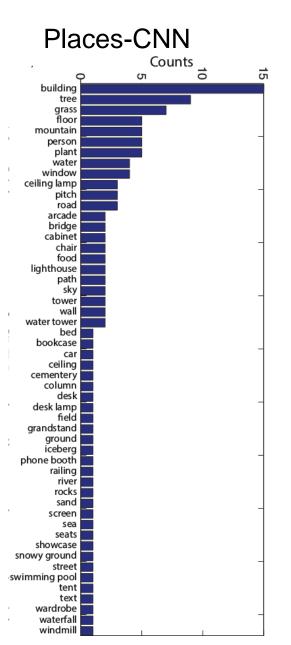


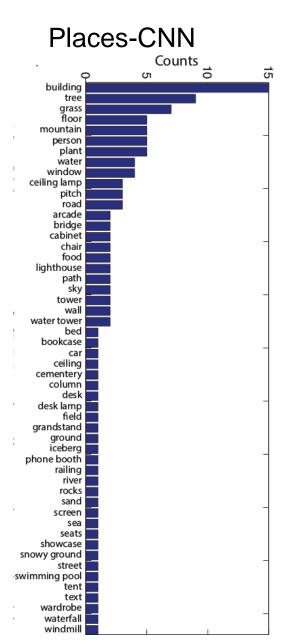


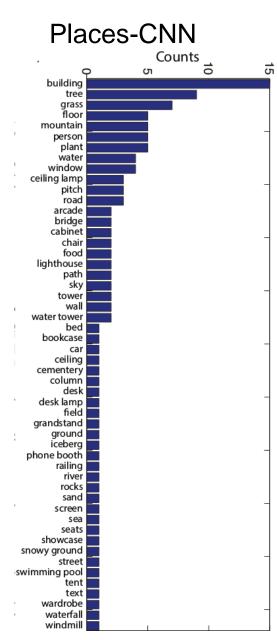


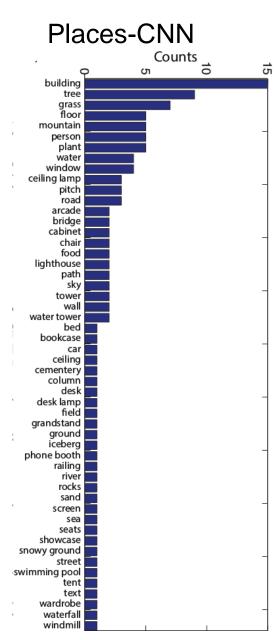


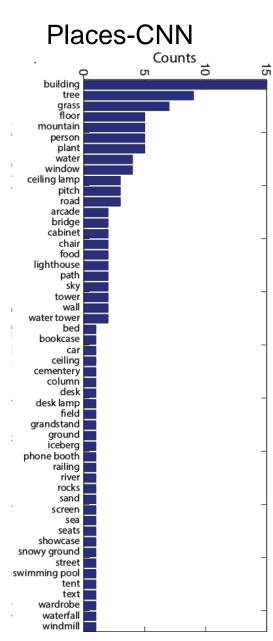


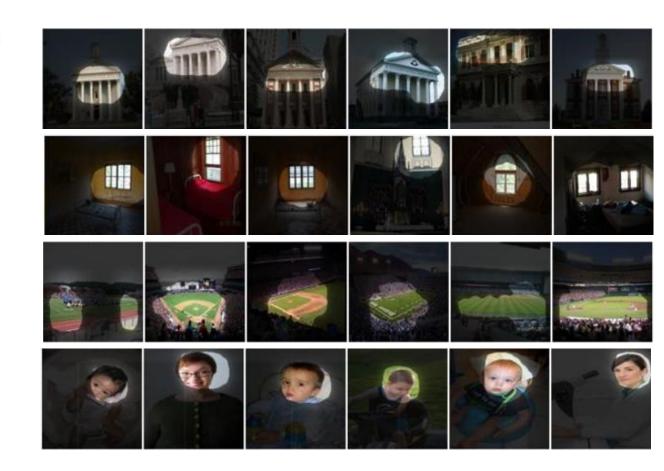


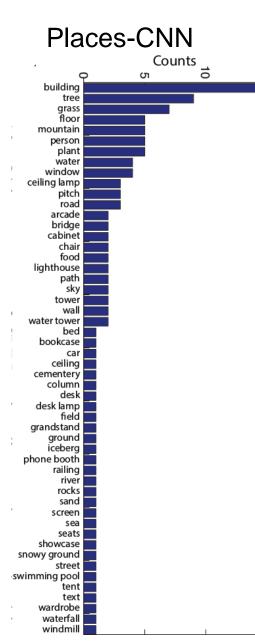


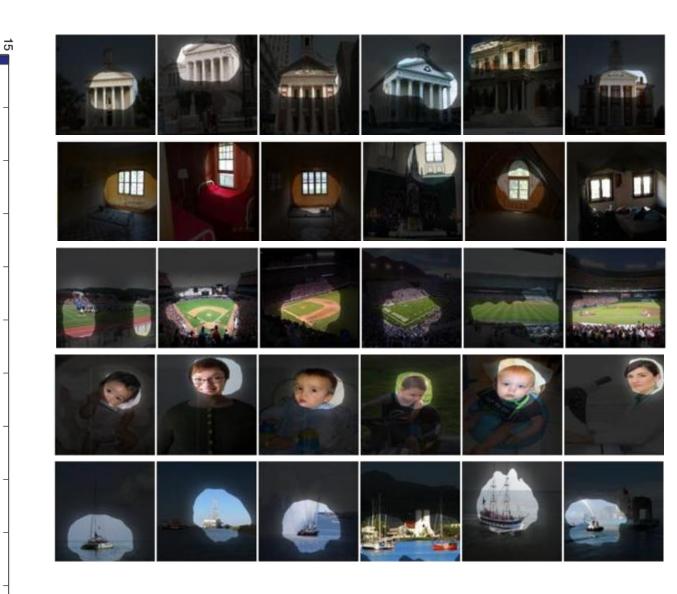












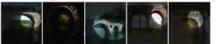
Object detectors emerge inside the CNN

Buildings

56) building

120) arcade

8) bridge



123) building

119) building

9) lighthouse

Scenes

145) cementery

127) street

218) pitch

Indoor objects

182) food

106) screen

53) staircase

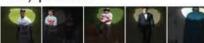
People

3) person

49) person

138) person

100) person



Furniture

18) billard table

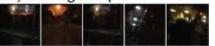
116) bed

38) cabinet

85) chair

Lighting

55) ceiling lamp

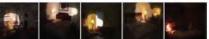


174) ceiling lamp

1.2.2.3

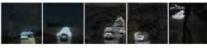
223) ceiling lamp

13) desk lamp



Outdoor objects

87) car



61) road

96) swimming pool

28) water tower

6) windmill

Nature

195) grass

89) iceberg

140) mountain



159) sand

107) wardrobe

unitID 106

unitID 107

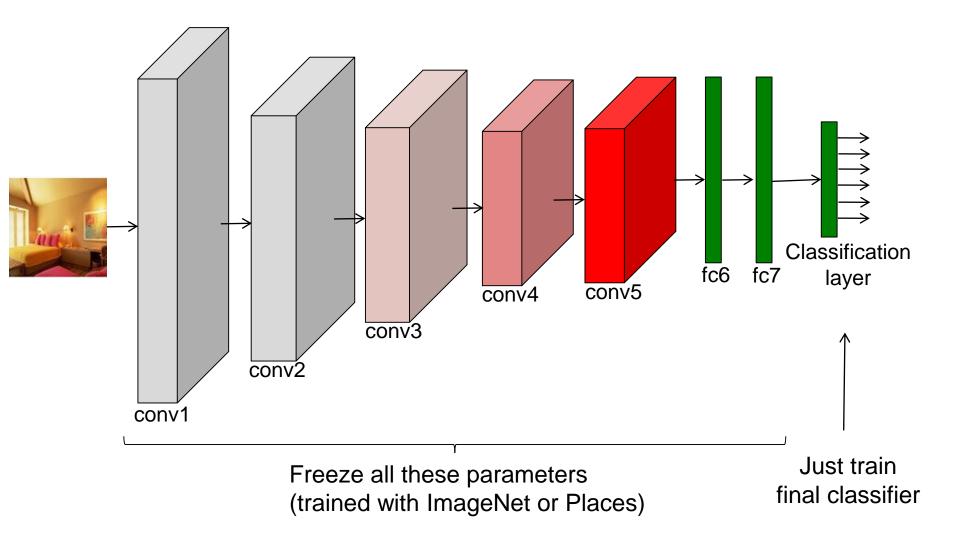
unitID 108

unitID 109

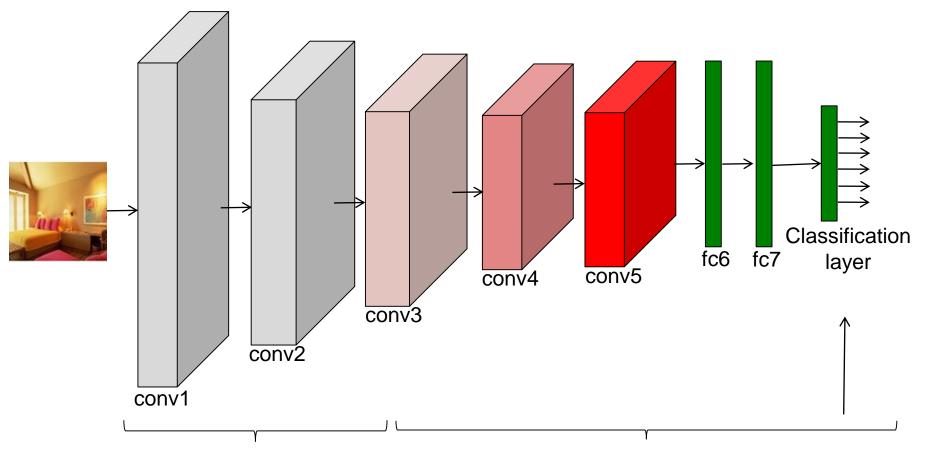
Nguyen et al, 2016



Strategies for training for new tasks



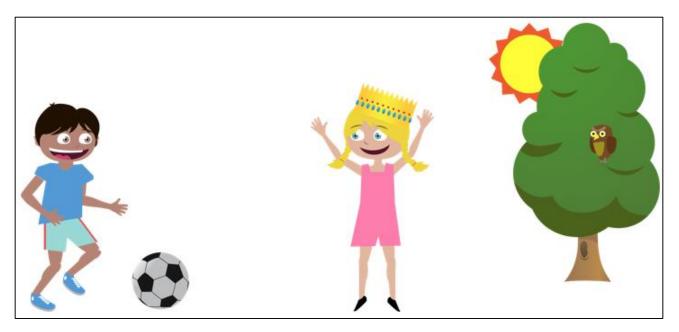
Strategies for training for new tasks



Freeze all these parameters (trained with ImageNet or Places)

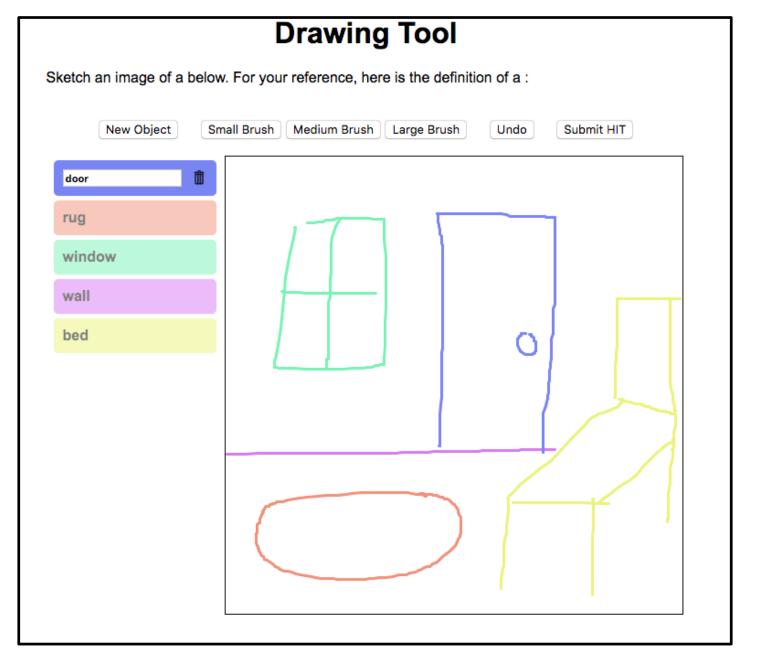
Train upper layers to get a better representation

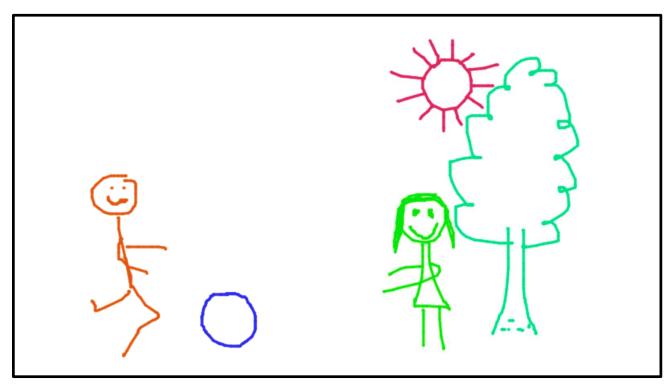
But what if you keep the task but change the input modality?



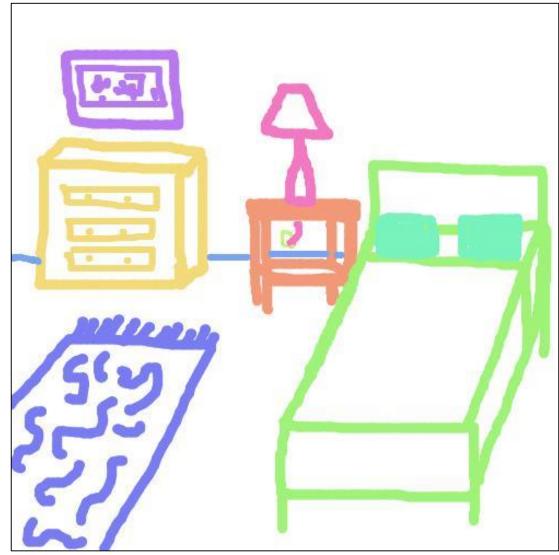
From Devi's webpage: "Abstract images provide several advantages. They allow for the direct study of how to infer high-level semantic information, since they remove the reliance on noisy low-level object, attribute and relation detectors, or the tedious hand-labeling of images."

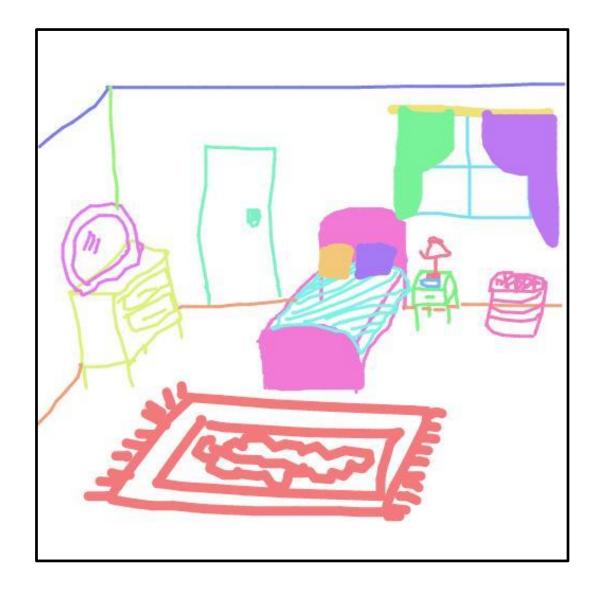
Bringing Semantics Into Focus Using Visual Abstraction (CVPR), 2013. Zitnick and Parikh. Learning the Visual Interpretation of Sentences (ICCV), 2013. Zitnick, Parikh, and Vanderwende Adopting Abstract Images for Semantic Scene Understanding (PAMI), 2015. Zitnick, Vedantam and Parikh

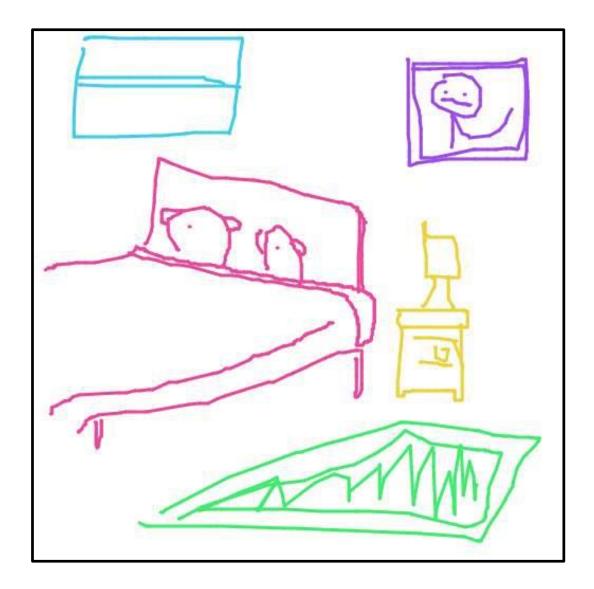


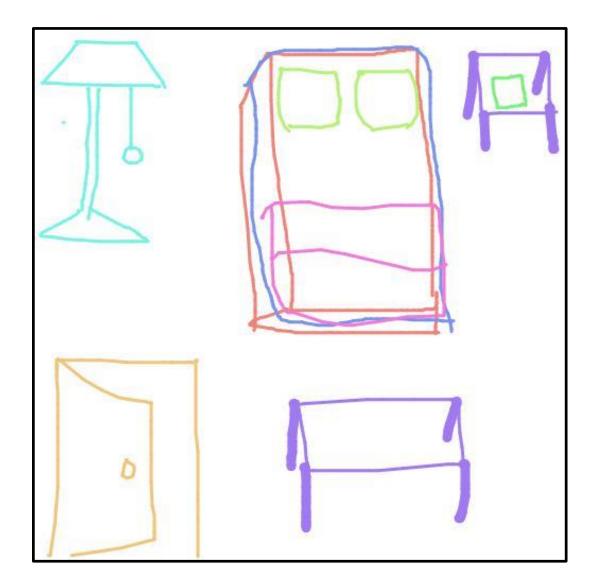


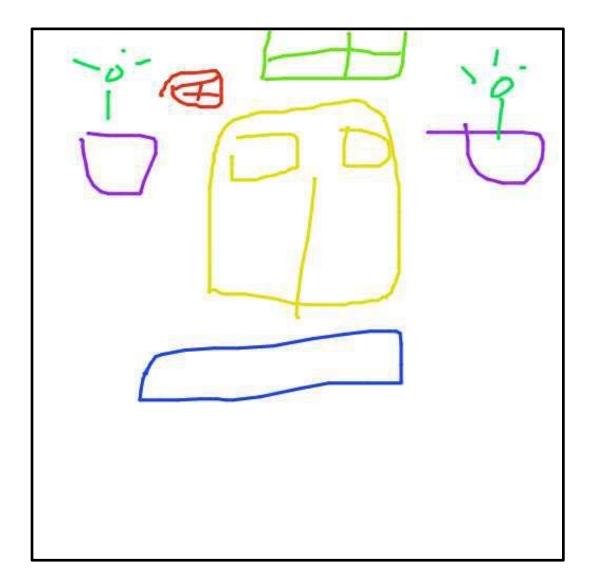
From crowdsourcing



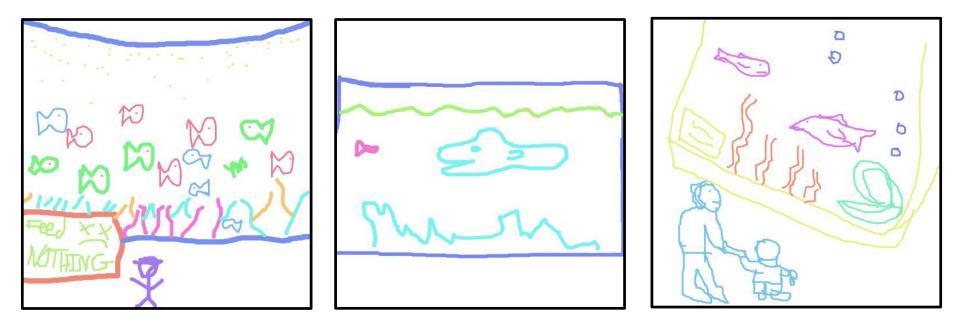




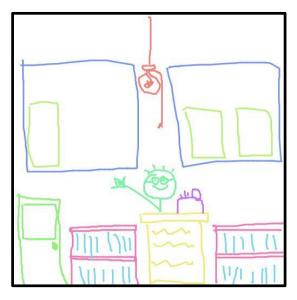




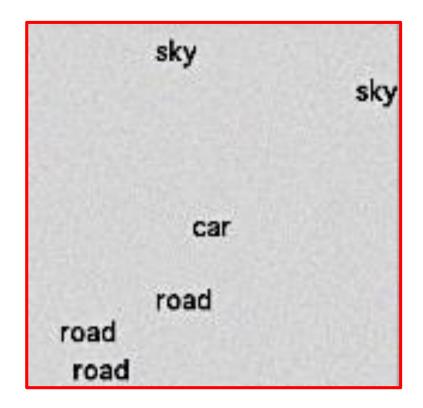
Aquarium



Library



Localized words



Localized words



ceiling wall	wali		boat boat sky	wali wali	sky sky car road road road	iky	ceiling wall	ceiling wall person
						sky		
		boat	building building	railing			wali wali text wali wali text	
	floor wall		water water	wall wall			floor	

or descriptions

There is a bed with a striped bedspread. Beside this is a nightstand with a drawer. There is also a tall dresser and a chair with a blue cushion. On the dresser is a jewelry box and a clock.

Descriptions

(Auditorium)

I'm looking forward to seeing this speaker and hearing his story today. I want to get in before all the seats are filled, because he is quite popular with the students and faculty. I don't want to sit way in the back where the sound may not carry as well to.

Descriptions

(Classroom)

This room is where students attend and are taught by a teacher on a variety of subjects. Each student seats in a desk which allows him to place books, and write on notebooks or sheets of paper. The teacher presides this room, and usually writes on a blackboard which occupies most of the front wall.

We collected a dataset formed by examples of 205 scene types in five different modalities:

Line drawings: 6,644 training -2,050 validation examples

Descriptions: 4,307 training -2,050 validation examples

There is a bed with a striped bedspread. Beside |I am inside a room surrounded by my favorite this is a nightstand with a drawer. There is also a tall dresser and a chair with a blue cushion. On the dresser is a jewelry box and a clock.

things. This room is filled with pillows and a comfortable bed. There are stuffed animals everywhere. I have posters on the walls. My jewelry box is on the dresser.

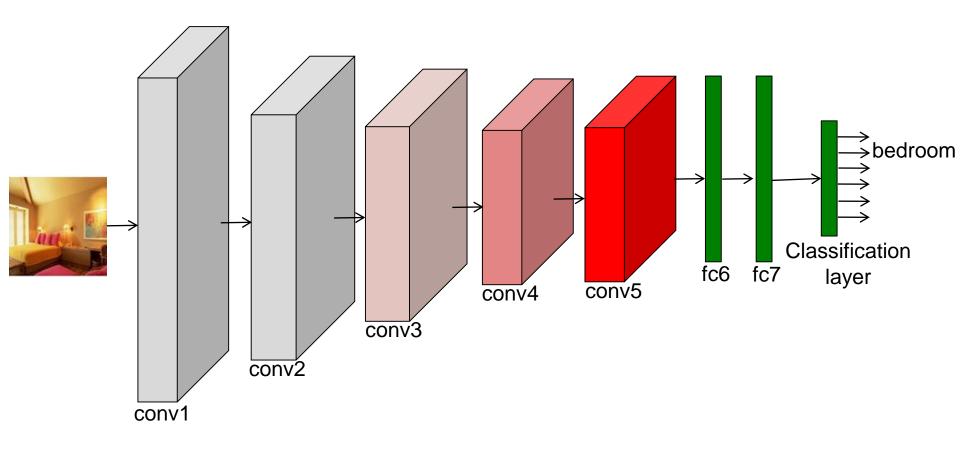
There are brightly colored wooden tables with little chairs. There is a rug in one corner with ABC blocks on it. There is a bookcase with picture books, a larger teacher's desk and a chalkboard.

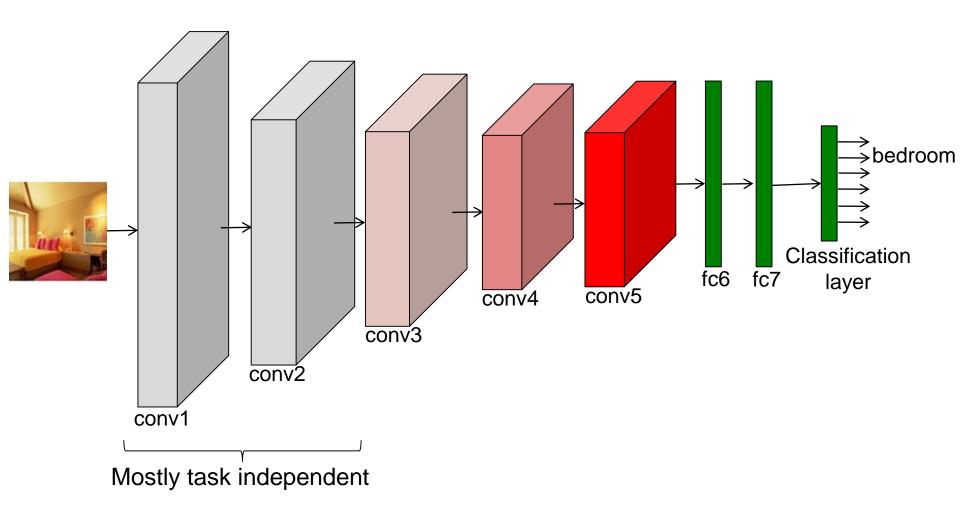
Clipart: 11,372 training – 1,954 validation examples

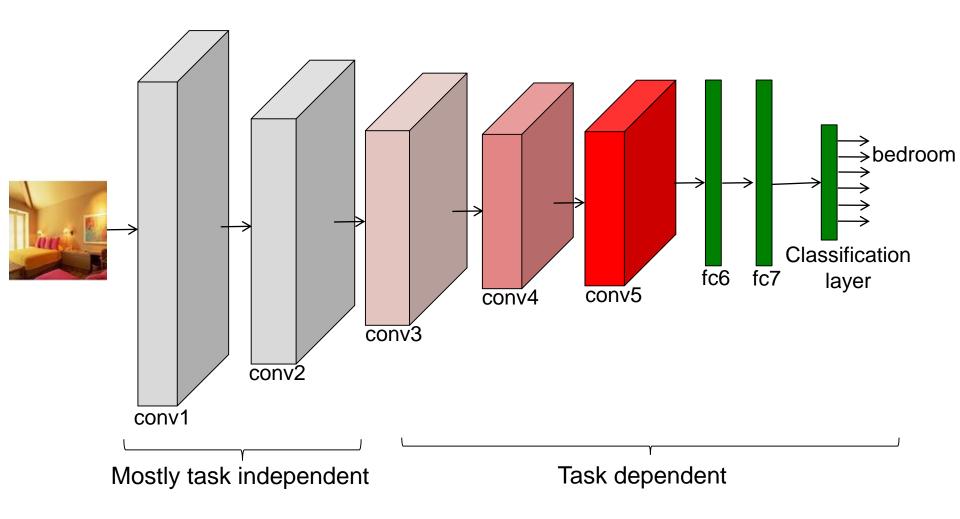
Spatial Text: 456,300 training – 2,050 validation examples

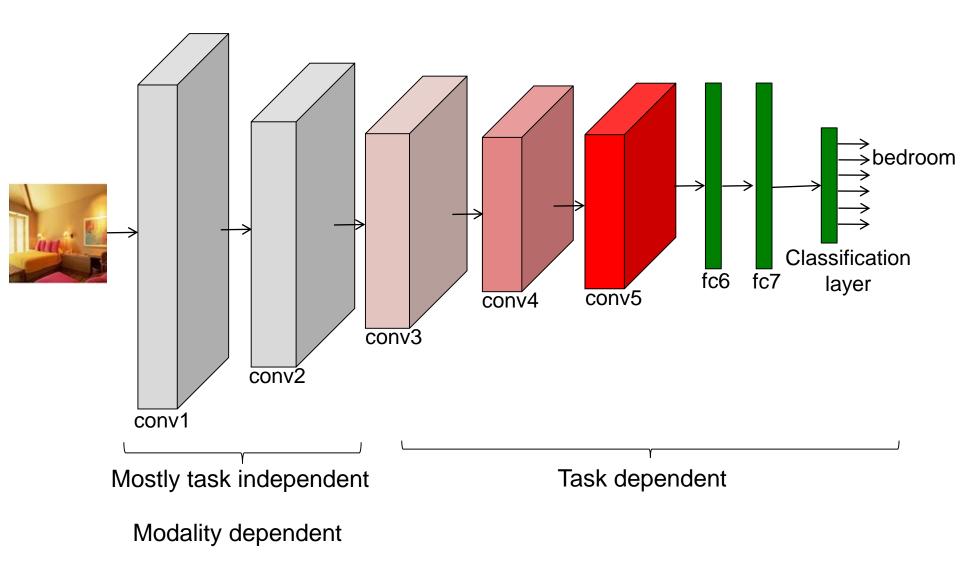
ceiling wall wall	boat boat	wall wall	sky sky	y sky	ceiling wall	ceiling wall
wall wall	sky					
	building building		car		wali wali text wali wali text	person
floor wall	boat water water	wali wali	road road road		floor	

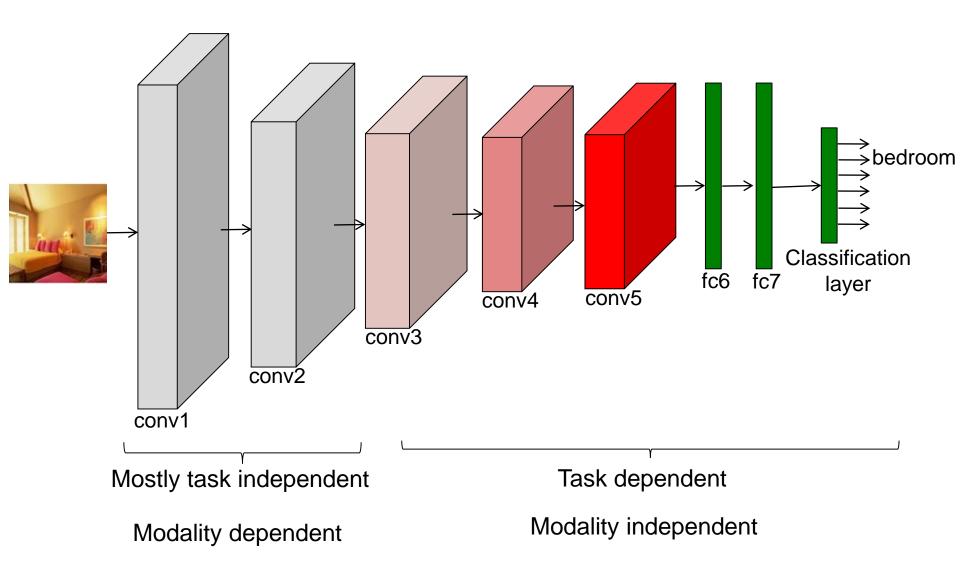
Natural images (Places dataset): ~ 2M training -20,500 validation examples

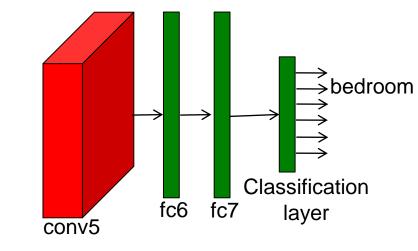


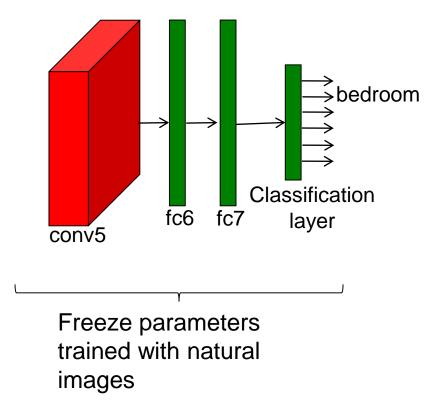


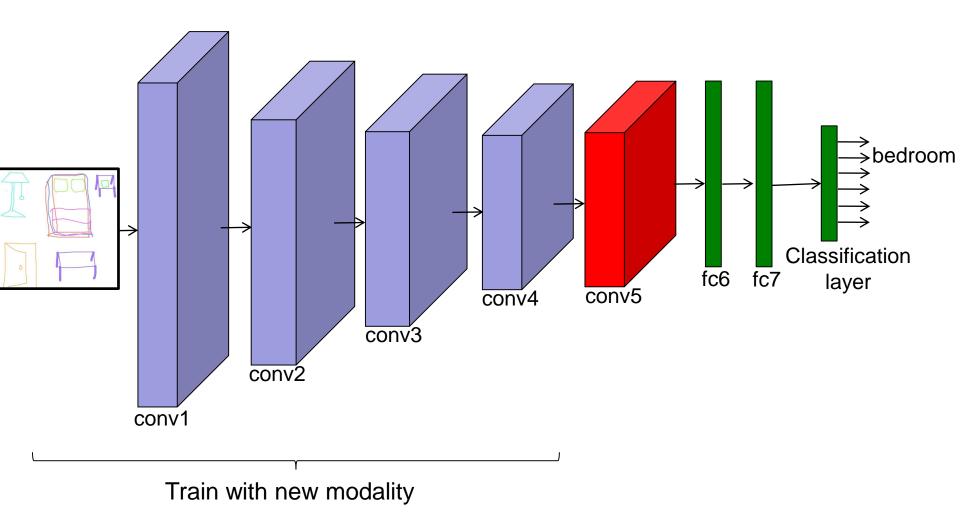


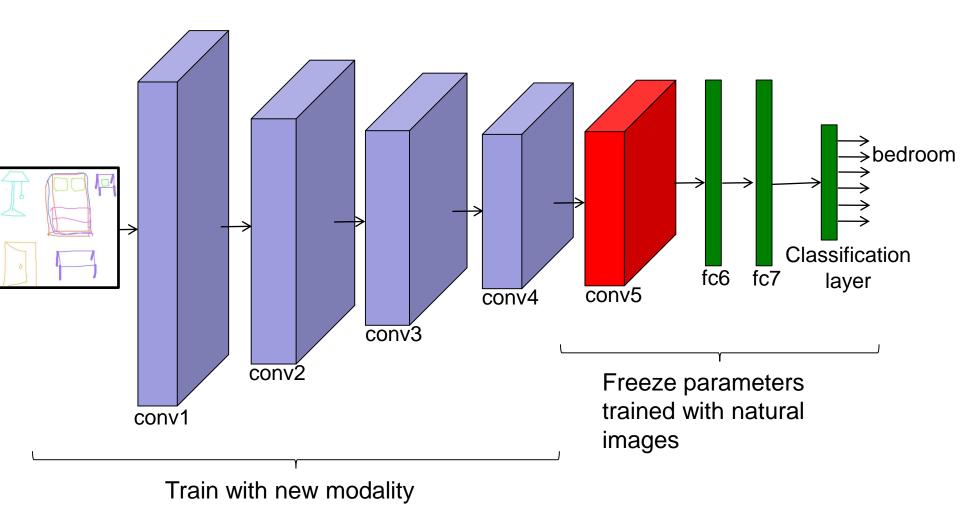


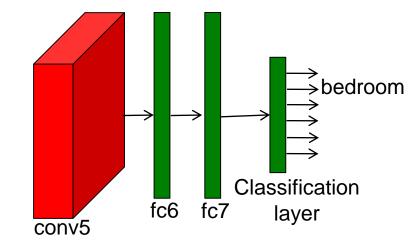


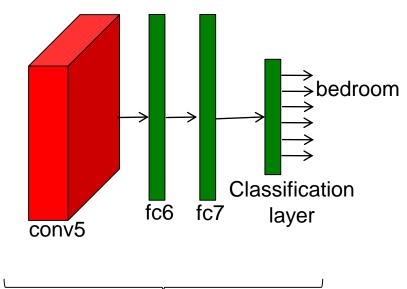




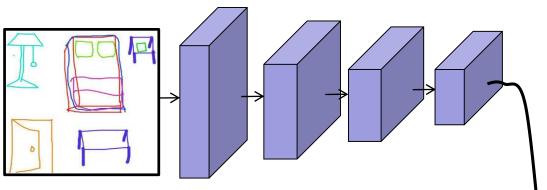


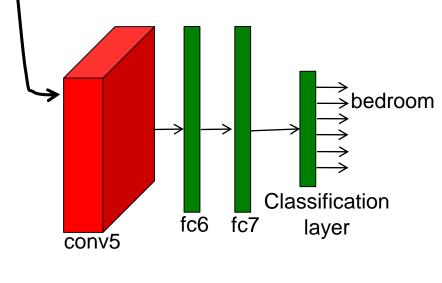




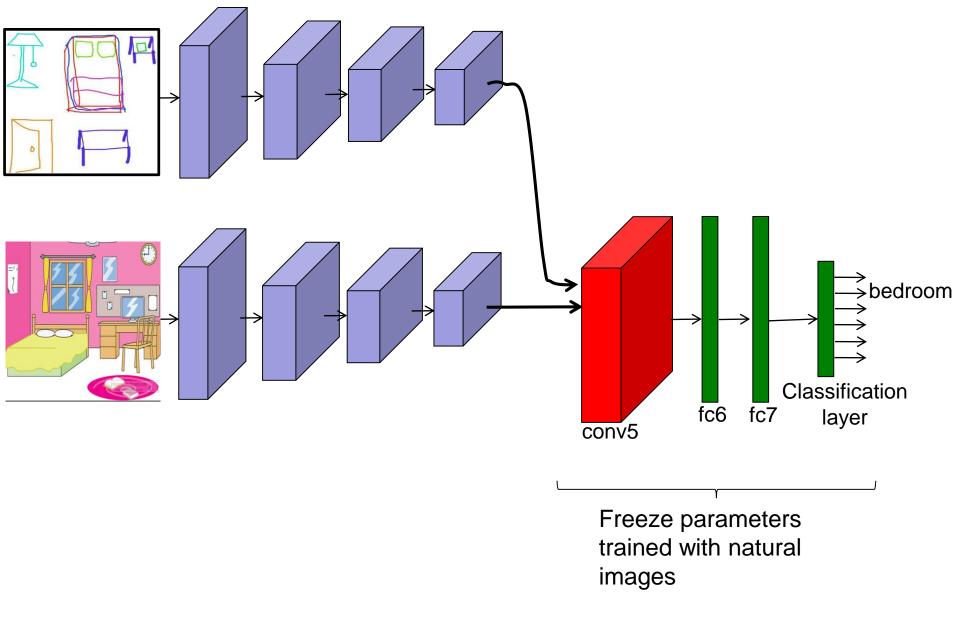


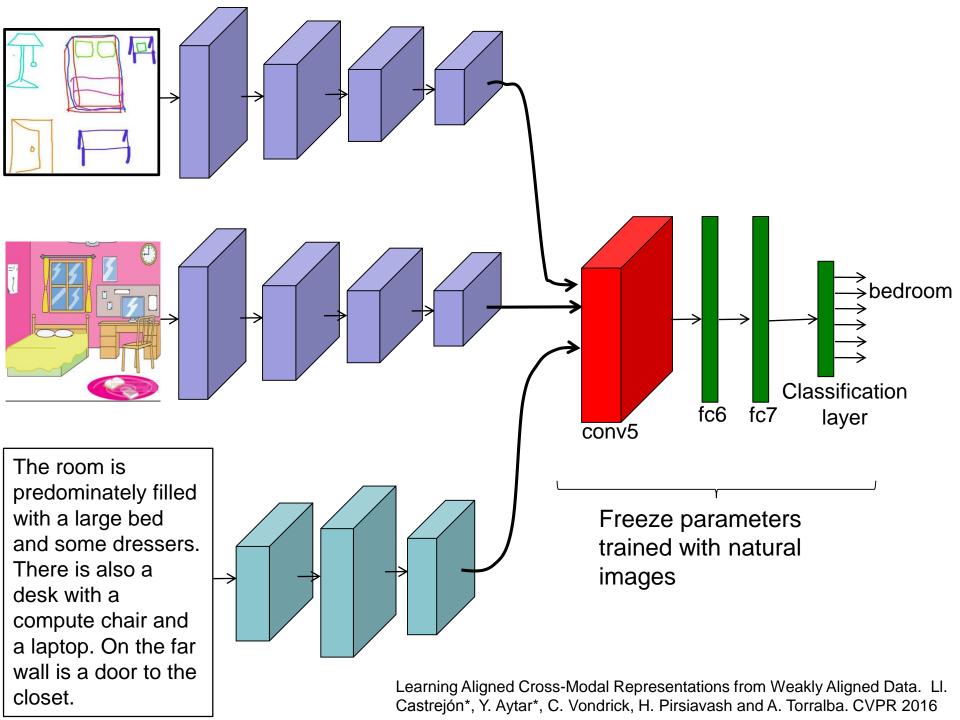
Freeze parameters trained with natural images

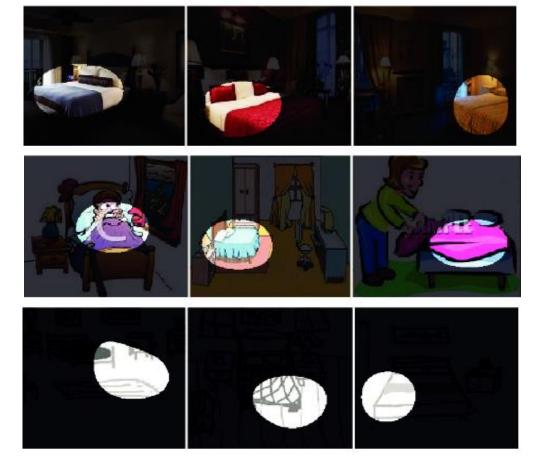




Freeze parameters trained with natural images







Unit 115 (Bed)

ice, terrain, plane, cold, i, nightstand, inside, beds, two, movement

Units in pool5 become multimodal

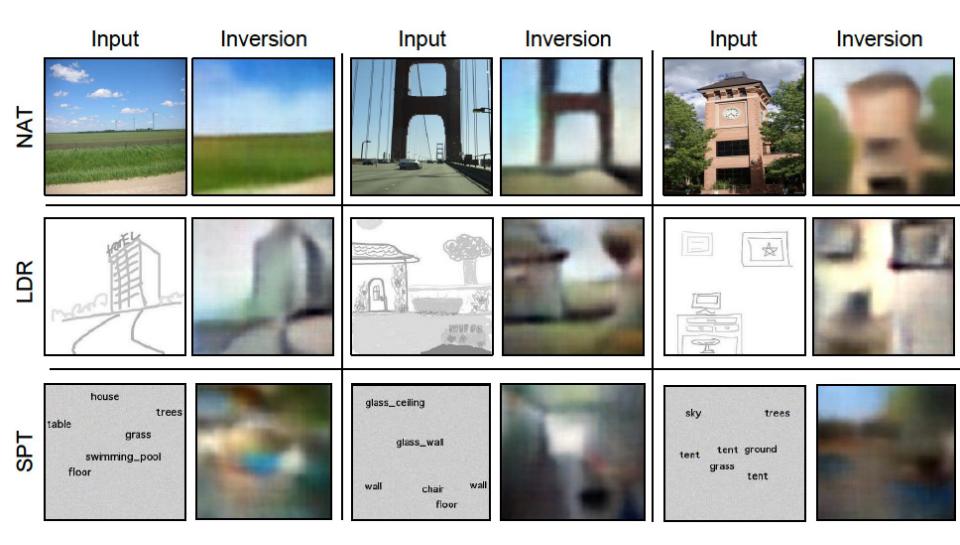
Real

Clip art

Descriptions

we, water, fishes, you, drink, formed, greek, would, ball, have

Generating across modalities



A. Dosovitskiy and T. Brox. Inverting convolutional networks with convolutional networks. arXiv, 2015

Cross-modal learning

Description (eg, Wikipedia article)

Snares penguin

From Wikipedia, the free encyclopedia

The **Snares penguin** (*Eudyptes robustus*), also known as the **Snares crested penguin** and the **Snares Islands penguin**, is a penguin from New Zealand. The species breeds on The Snares, a group of islands off the southern coast of the South Island. This is a medium-small, yellow-crested penguin, at a size of 50–70 cm (19.5–27.5 in) and a weight of 2.5–4 kg (5.5–8.8 lb). It has dark blue-black upperparts and white underparts. It has a bright yellow eyebrow-stripe which extends over the eye to form a drooping, bushy crest. It has bare pink skin at the base of its large red-brown bill.

• Lots of descriptions/entries in Wikipedia available

Images

Description (eg, Wikipedia article)

Cardinal (bird)

From Wikipedia, the free encyclopedia

This article is about the bird family. For other uses, see Cardinal.

Cardinals, in the family **Cardinalidae**, are passerine birds found in North and South America. They are also known as cardinal-grosbeaks and cardinalbuntings. The South American cardinals in the genus *Paroaria* are placed in another family, the Thraupidae (previously placed in Emberizidae).

Can we predict an image classifier from a description alone?

Description (eg, Wikipedia article)

Cardinal (bird)

From Wikipedia, the free encyclopedia

This article is about the bird family. For other uses, see Cardinal.

Cardinals, in the family **Cardinalidae**, are passerine birds found in North and South America. They are also known as cardinal-grosbeaks and cardinalbuntings. The South American cardinals in the genus *Paroaria* are placed in another family, the Thraupidae (previously placed in Emberizidae).

Can we predict an image classifier from a description alone?

Assume:

- In training we have access to wiki articles and labeled images
- For test classes we only have wiki articles
- We want to classify a new image (it can belong to any class)

- Goal: learn to predict an image classifier from a description
- Linear binary 1-vs-all classifier:

$$y_c = w_c^T x$$

- x ... image feature vector
- w_c ... classifier weight vector for class c

- Goal: learn to predict an image classifier from a description
- Linear binary 1-vs-all classifier:

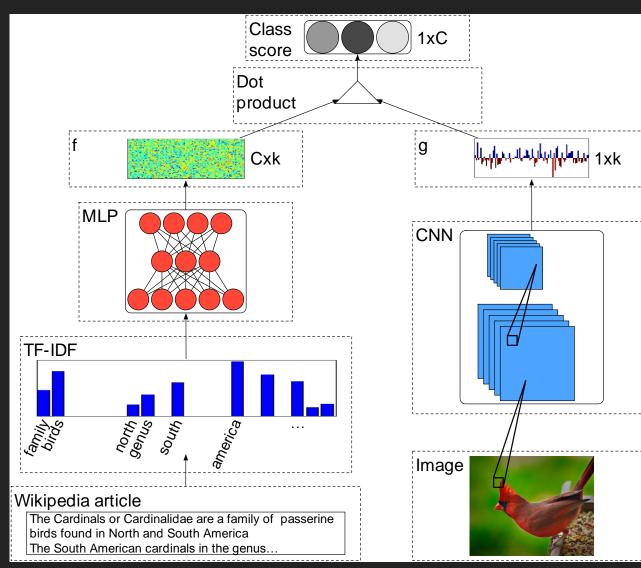
$$y_c = w_c^T x$$

- x ... image feature vector
- w_c ... classifier weight vector for class c
- We are also given t_c, a vector representing a textual description about class c
- We want:

$$w_c = f_t(t_c)$$

• f_c ... a mapping $\mathbb{R}^p \to \mathbb{R}^d$ that transforms text features to the visual image feature space

• f_t can be a neural network



g used to compress x to a k<<d dim

Red faced Cormorant

The Red-faced Cormorant, Red-faced Shag or Violet Shag, Phalacrocorax urile, is a species of cormorant that is found in the far north of the Pacific Ocean and Bering Sea, from the eastern tip of Hokkaidō in Japan, via the Kuril Islands, the southern tip of the Kamchatka Peninsula and the Aleutian Islands to the Alaska Peninsula and Gulf of Alaska. The Red-faced Cormorant is closely related to the Pelagic Cormorant P. pelagicus, which has a similar range, and like the Pelagic Cormorant is placed by some authors (e.g. Johnsgaard) in a genus Leucocarbo. Where it nests alongside the Pelagic Cormorant, the Red-faced Cormorant generally breeds the more successfully of the two species, and it is currently increasing in numbers, at least in the easterly parts of its range. It is however listed as being of conservation concern{Verify source|date=September 2009}, partly because relatively little is so far known about it.

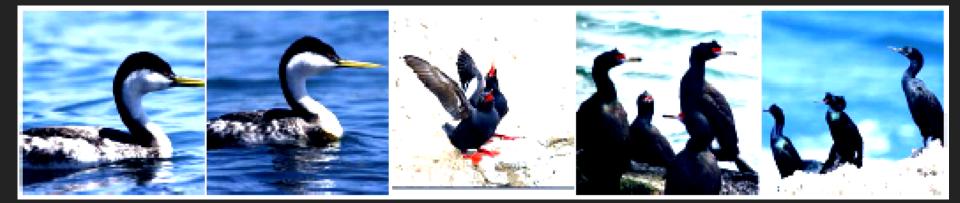
The adult bird has glossy plumage that is a deep greenish blue in colour, becoming purplish or bronze on the back and sides. In breeding condition it has a double crest,

.....

Red faced Cormorant

The Red-faced Cormorant, Red-faced Shag or Violet Shag, Phalacrocorax urile, is a species of cormorant that is found in the far north of the Pacific Ocean and Bering Sea, from the eastern tip of Hokkaidō in Japan, via the Kuril Islands, the southern tip of the Kamchatka Peninsula and the Aleutian Islands to the Alaska Peninsula and Gulf of Alaska. The Red-faced Cormorant is closely related to the Pelagic Cormorant P. pelagicus, which has a similar range, and like the Pelagic Cormorant is placed by some authors (e.g. Johnsgaard) in a genus Leucocarbo. Where it nests alongside the Pelagic Cormorant, the Red-faced Cormorant generally breeds the more successfully of the two species, and it is currently increasing in numbers, at least in the easterly parts of its range. It is however listed as being of conservation concern{Verify source|date=September 2009}, partly because relatively little is so far known about it.

The adult bird has glossy plumage that is a deep greenish blue in colour, becoming purplish or bronze on the back and sides. In breeding condition it has a double crest,

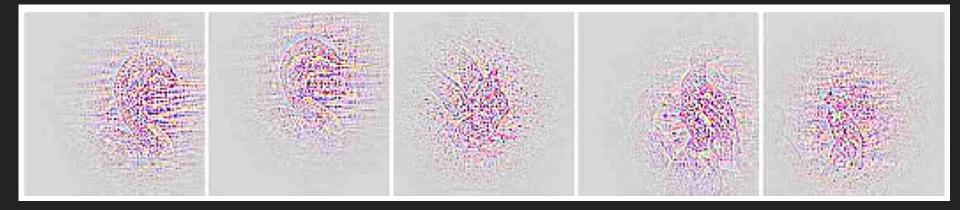


Red faced Cormorant

The Red-faced Cormorant, Red-faced Shag or Violet Shag, Phalacrocorax urile, is a species of cormorant that is found in the far north of the Pacific Ocean and Bering Sea, from the eastern tip of Hokkaidō in Japan, via the Kuril Islands, the southern tip of the Kamchatka Peninsula and the Aleutian Islands to the Alaska Peninsula and Gulf of Alaska. The Red-faced Cormorant is closely related to the Pelagic Cormorant P. pelagicus, which has a similar range, and like the Pelagic Cormorant is placed by some authors (e.g. Johnsgaard) in a genus Leucocarbo. Where it nests alongside the Pelagic Cormorant, the Red-faced Cormorant generally breeds the more successfully of the two species, and it is currently increasing in numbers, at least in the easterly parts of its range. It is however listed as being of conservation concern{Verify source|date=September 2009}, partly because relatively little is so far known about it.

The adult bird has glossy plumage that is a deep greenish blue in colour, becoming purplish or bronze on the back and sides. In breeding condition it has a double crest,





visualization by Zeiler & Fergus, ECCV'14.

Learning to see

Strong supervision

Pixel wise labeling

Learning to see

Weak supervision

Bird

Bedroom

Short captions

Cross modal: text and images

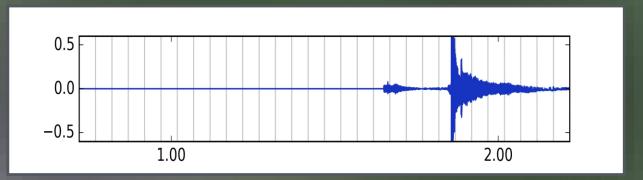
Man holding a metal bowl at the
table.from Microsoft CoCo

Q: Is everyone of these four holding a wine glass? No
Q: How many men are there?
Q: Does the window have blinds?
A: yes

From http://visualqa.org/index.html

Soft

Crink



Soft Hard Rough

Visually Indicated Sounds

Andrew Owens

Antonio Torralba

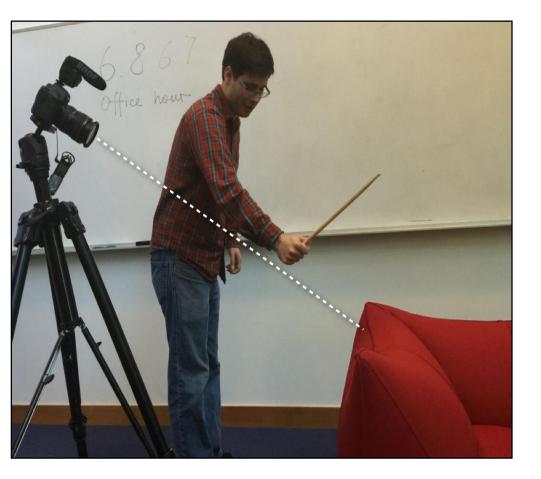
Josh McDermott

brain+cognitive
sciences

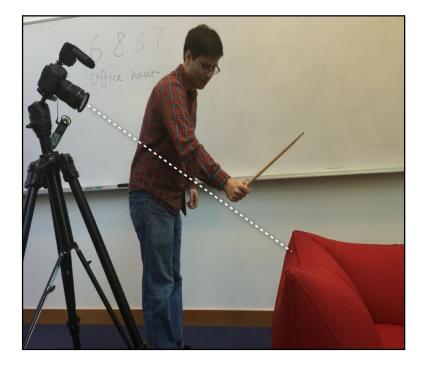
Ted Adelson

Bill Freeman

Collecting a dataset of physical interactions



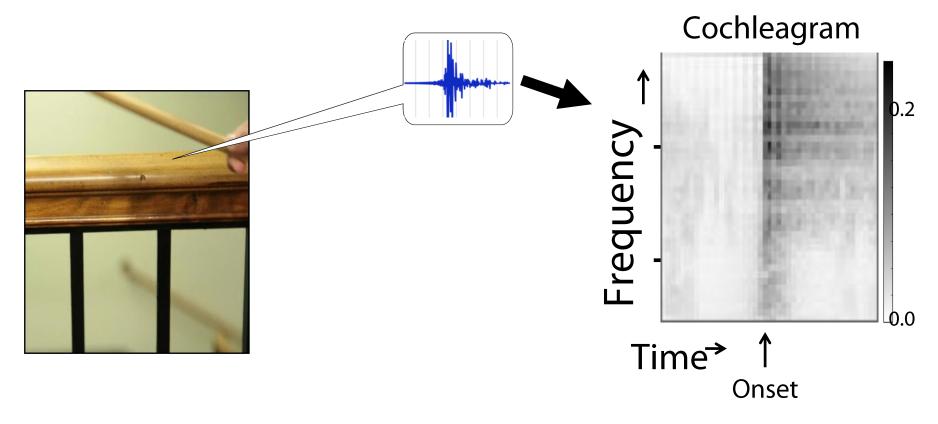
Collecting a dataset of physical interactions



The Greatest Hits dataset

- 977 videos, 35 sec. long
- 46,577 segmented hits and scratches
- Material, action, reaction labels

The Greatest Hits Dataset



- 40 bandpass filters (+ high/low pass)
- 3 samples per frame (90 Hz)

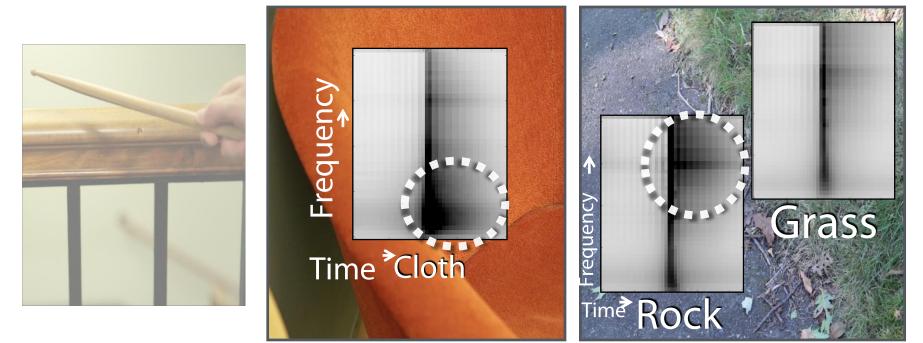


- 40 bandpass filters (+ high/low pass)
- 3 samples per frame (90 Hz)

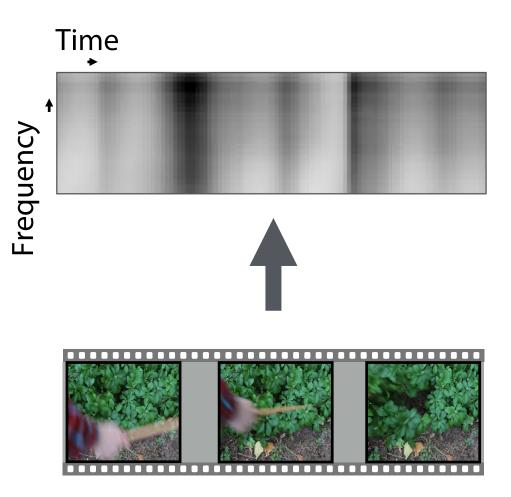
Mean sound features per category



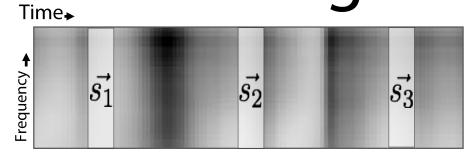
Mean sound features per category

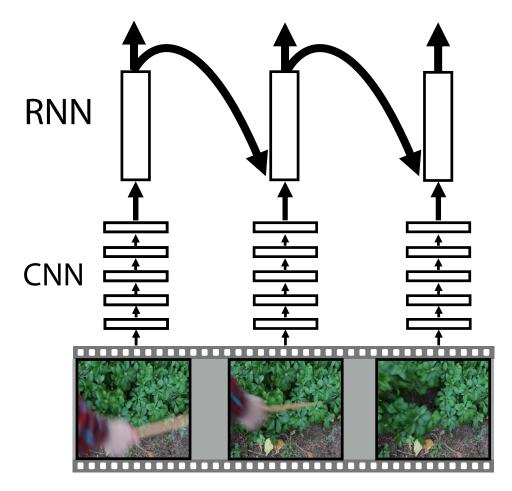


Predicting audio features

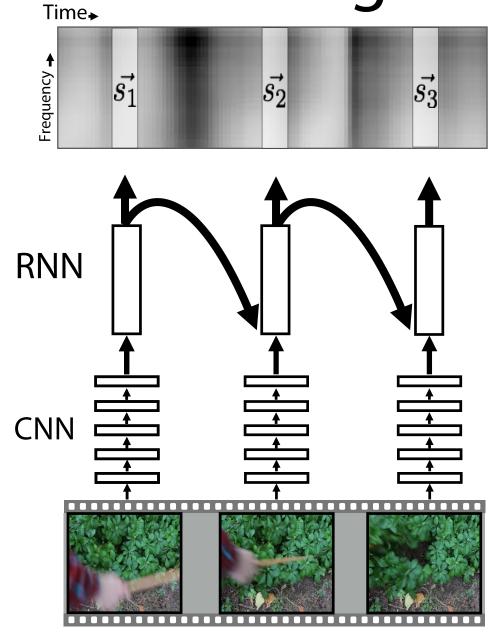


Predicting audio features





Predicting audio features



Regression loss Ground truth

$$\sum_{t=1}^{T} \rho(\|\vec{s}_t - \tilde{\vec{s}}_t\|)$$

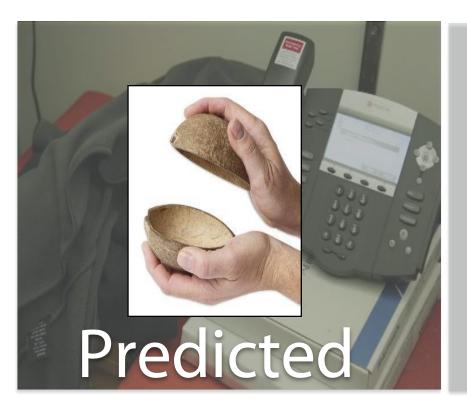
where
$$\rho(r) = \log(\epsilon + r^2)$$

- 3D CNN in time domain
- Pretrain from ImageNet
- Long short-term memory

Real-or-fake study

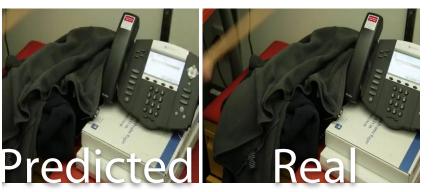
Real-or-fake study

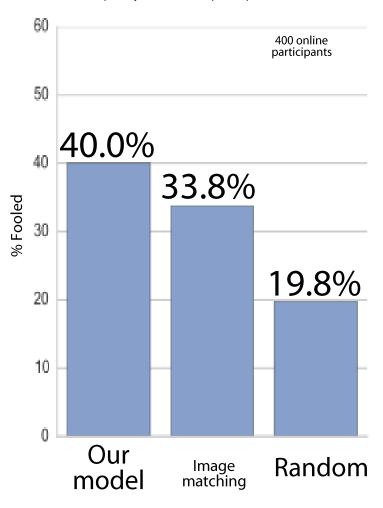
Real-or-fake study



Real-or-fake study

Frequency that human participants were fooled.





Adding soundtracks to silent videos

Predicted cochleagram

Predicted sound

- ARTE

Predicted cochleagram

Input video

Transferred audio clips

A

Transferred audio clips

Input video

Predicted cochleagra m

Input video

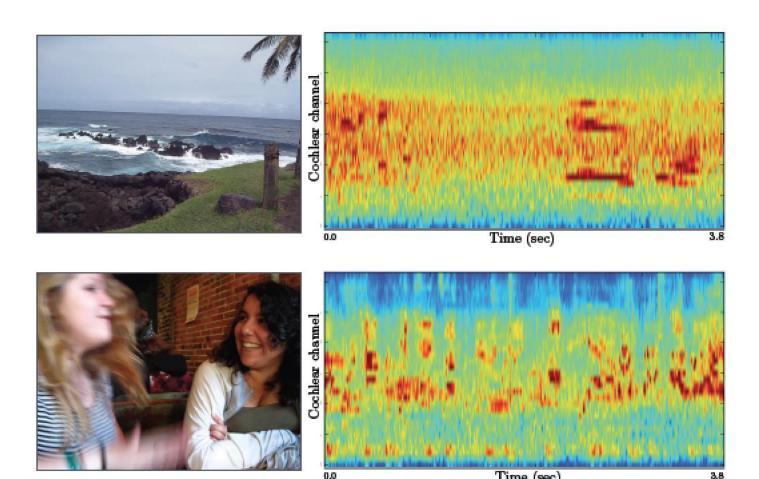
Transferred audio clips

Predicted cochleagra m

Predicted sound

Predicted cochleagra m

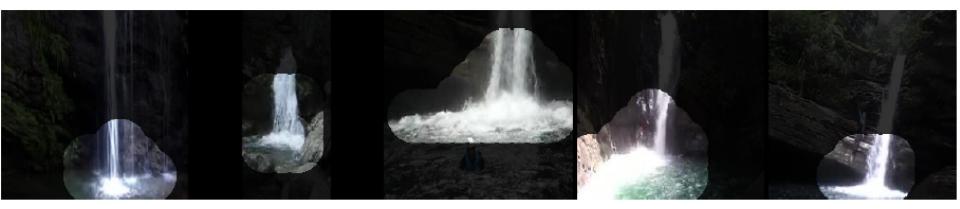
Ambient sound



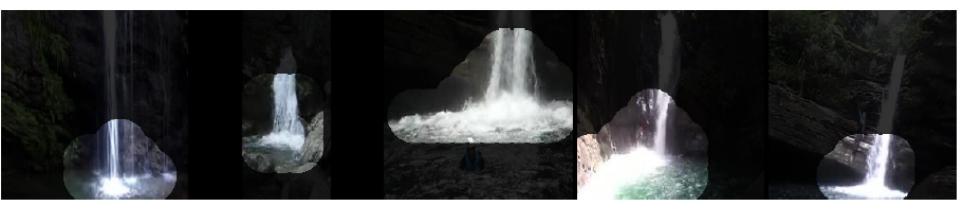
(a) Video frame

Time (sec) (b) Cochleagram

99 waterfall



99 waterfall



194 crowd

111 baby

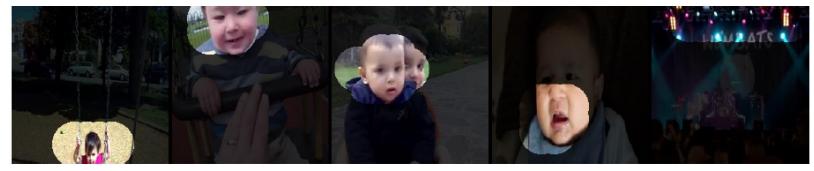
111 baby

171 baby

111 baby

171 baby

153 baby



Neuron visualizations of the network trained by sound

Learning about the world by hitting things with a drumstick and listening

- Sound is a ubiquitous training signal
- Predicted sounds convey material properties
- Objects make characteristic noises

