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Outline

• Types of machine learning problems

• Linear approximators

• Error/objective functions and how to optimize them

• Bias-variance trade-off, overfitting and underfitting

• L2 and L1 regularization for linear estimators

• A Bayesian interpretation of regularization

• Logistic regression
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Types of machine learning problems

Based on the information available:

• Supervised learning

• Reinforcement learning

• Unsupervised learning
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Supervised learning

• Training experience: a set of labeled examples of the form

〈x1 x2 . . . xn, y〉,
where xj are values for input variables and y is the output

• This implies the existence of a “teacher” who knows the right answers

• What to learn: A function f : X1 ×X2 × · · · ×Xn → Y , which maps
the input variables into the output domain

• Goal: minimize the error (loss) function

– Ideally, we would like to minimize error on all possible instances
– But we only have access to a limited set of data...
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Example: Face detection and recognition
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Reinforcement learning

• Training experience: interaction with an environment; the agent receives
a numerical reward signal

• E.g., a trading agent in a market; the reward signal is the profit

• What to learn: a way of behaving that is very rewarding in the long run

• Goal: estimate and maximize the long-term cumulative reward
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Example: TD-Gammon (Tesauro, 1990-1995)

• Early predecessor of AlphaGo

• Learning from self-play, using TD-learning

• Became the best player in the world

• Discovered new ways of opening not used by people before
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Unsupervised learning

• Training experience: unlabelled data

• What to learn: interesting associations in the data

• E.g., clustering, dimensionality reduction

• Often there is no single correct answer
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Example: Oncology (Alizadeh et al.)

• Activity levels of all (≈ 25,000) genes were measured in lymphoma
patients
• Cluster analysis determined three different subtypes (where only two were

known before), having different clinical outcomes
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Example: A data set
Cell Nuclei of Fine Needle Aspirate

• Cell samples were taken from tumors in breast cancer patients before
surgery, and imaged

• Tumors were excised

• Patients were followed to determine whether or not the cancer recurred,
and how long until recurrence or disease free
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Data (continued)

• Thirty real-valued variables per tumor.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

Deep Learning Summer School, Montreal, 2016 10



Terminology

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

• Columns are called input variables or features or attributes

• The outcome and time (which we are trying to predict) are called output
variables or targets

• A row in the table is called training example or instance

• The whole table is called (training) data set.

• The problem of predicting the recurrence is called (binary) classification

• The problem of predicting the time is called regression
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More formally
tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31

17.99 10.38 122.8 N 61

20.29 14.34 135.1 R 27

. . .

• A training example i has the form: 〈xi,1, . . . xi,n, yi〉 where n is the
number of attributes (30 in our case).

• We will use the notation xi to denote the column vector with elements
xi,1, . . . xi,n.

• The training set D consists of m training examples

• We denote the m× n matrix of attributes by X and the size-m column
vector of outputs from the data set by y.
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Supervised learning problem

• Let X denote the space of input values

• Let Y denote the space of output values

• Given a data set D ⊂ X × Y, find a function:

h : X → Y

such that h(x) is a “good predictor” for the value of y.

• h is called a hypothesis

• Problems are categorized by the type of output domain

– If Y = R, this problem is called regression
– If Y is a categorical variable (i.e., part of a finite discrete set), the

problem is called classification
– In general, Y could be a lot more complex (graph, tree, etc), which is

called structured prediction
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

(We will discuss this in detail later)

3. Choose a class of hypotheses/representations H .

4. ...
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Example: What hypothesis class should we pick?

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43
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Linear hypothesis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1(+ · · · )

• wi are called parameters or weights

• To simplify notation, we can add an attribute x0 = 1 to the other n
attributes (also called bias term or intercept term):

hw(x) =

n∑
i=0

wixi = wTx

where w and x are vectors of size n+ 1.

How should we pick w?
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Error minimization!

• Intuitively, w should make the predictions of hw close to the true values
y on the data we have

• Hence, we will define an error function or cost function to measure how
much our prediction differs from the ”true” answer

• We will pick w such that the error function is minimized

How should we choose the error function?
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Least mean squares (LMS)

• Main idea: try to make hw(x) close to y on the examples in the training
set

• We define a sum-of-squares error function

J(w) =
1

2

m∑
i=1

(hw(xi)− yi)2

(the 1/2 is just for convenience)

• We will choose w such as to minimize J(w)
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

3. Choose a class of hypotheses/representations H .

4. Choose an error function (cost function) to define the best hypothesis

5. Choose an algorithm for searching efficiently through the space of
hypotheses.
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Notation reminder

• Consider a function f(u1, u2, . . . , un) : Rn 7→ R (for us, this will usually
be an error function)

• The partial derivative w.r.t. ui is denoted:

∂

∂ui
f(u1, u2, . . . , un) : Rn 7→ R

The partial derivative is the derivative along the ui axis, keeping all other
variables fixed.

• The gradient ∇f(u1, u2, . . . , un) : Rn 7→ Rn is a function which outputs
a vector containing the partial derivatives.
That is:

∇f =

〈
∂

∂u1
f,

∂

∂u2
f, . . . ,

∂

∂un
f

〉
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A bit of algebra

∂

∂wj
J(w) =

∂

∂wj

1

2

m∑
i=1

(hw(xi)− yi)2

=
1

2
· 2

m∑
i=1

(hw(xi)− yi)
∂

∂wj
(hw(xi)− yi)

=

m∑
i=1

(hw(xi)− yi)
∂

∂wj

(
n∑
l=0

wlxi,l − yi

)

=
m∑
i=1

(hw(xi)− yi)xi,j

Setting all these partial derivatives to 0, we get a linear system with (n+ 1)
equations and (n+ 1) unknowns.
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The solution

• Recalling some multivariate calculus:

∇wJ = ∇w(Xw − y)T (Xw − y)

= ∇w(wTXTXw − yTXw −wTXTy + yTy)

= 2XTXw − 2XTy

• Setting gradient equal to zero:

2XTXw − 2XTy = 0

⇒ XTXw = XTy

⇒ w = (XTX)−1XTy

• The inverse exists if the columns of X are linearly independent.
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Example: Data and best linear hypothesis
y = 1.60x+ 1.05

x

y
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Linear regression summary

• The optimal solution (minimizing sum-squared-error) can be computed
in polynomial time in the size of the data set.

• The solution is w = (XTX)−1XTy, where X is the data matrix
augmented with a column of ones, and y is the column vector of target
outputs.

• A very rare case in which an analytical, exact solution is possible
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Linear function approximation in general

• Given a set of examples 〈xi, yi〉i=1...m, we fit a hypothesis

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions

• The best w is considered the one which minimizes the sum-squared error
over the training data:

m∑
i=1

(yi − hw(xi))
2

• We can find the best w in closed form:

w = (ΦTΦ)−1ΦTy

or by other methods (e.g. gradient descent - as will be seen later)
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Linear models in general

• By linear models, we mean that the hypothesis function hw(x) is a linear
function of the parameters w
• This does not mean the hw(x) is a linear function of the input vector x

(e.g., polynomial regression)
• In general

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions
• Usually, we will assume that φ0(x) = 1,∀x, to create a bias term
• The hypothesis can alternatively be written as:

hw(x) = Φw

where Φ is a matrix with one row per instance; row j contains φ(xj).
• Basis functions are fixed
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Remarks

• Linear models are an example of parametric models, because we choose
a priori a number of parameters that does not depend on the size of the
data

• Non-parametric models grow with the size of the data

• Eg. Nearest neighbour, locally weighted linear regression

• Deep nets are very large parametric models.
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Order-2 fit

x

y

Is this a better fit to the data?
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Order-3 fit

x

y

Is this a better fit to the data?
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Order-4 fit

x

y

Is this a better fit to the data?
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Order-5 fit

x

y

Is this a better fit to the data?
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Order-6 fit

x

y

Is this a better fit to the data?
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Order-7 fit

x

y

Is this a better fit to the data?
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Order-8 fit

x

y

Is this a better fit to the data?
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Order-9 fit

x

y

Is this a better fit to the data?
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Overfitting

• A general, HUGELY IMPORTANT problem for all machine learning
algorithms

• We can find a hypothesis that predicts perfectly the training data but
does not generalize well to new data

• E.g., a lookup table!

• We are seeing an instance here: if we have a lot of parameters, the
hypothesis ”memorizes” the data points, but is wild everywhere else.
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Overfitting and underfitting
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• The higher the degree of the polynomial M , the more degrees of freedom
• Typical overfitting means that error on the training data is very low, but

error on new instances is high
• Typical underfitting means that error on the training data is very high

(few dof)
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Overfitting more formally

• Assume that the data is drawn from some fixed, unknown probability
distribution

• Every hypothesis has a ”true” error J∗(h), which is the expected error
when data is drawn from the distribution.

• Because we do not have all the data, we measure the error on the training
set JD(h)

• Suppose we compare hypotheses h1 and h2 on the training set, and
JD(h1) < JD(h2)

• If h2 is ”truly” better, i.e. J∗(h2) < J∗(h1), our algorithm is overfitting.

• We need theoretical and empirical methods to guard against it!
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Typical overfitting plot
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• The training error decreases with the degree of the polynomial M , i.e.
the complexity of the hypothesis
• The testing error, measured on independent data, decreases at first, then

starts increasing
• Cross-validation helps us:

– Find a good hypothesis class (M in our case), using a validation set
of data

– Report unbiased results, using a test set, untouched during either
parameter training or validation
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Cross-validation

• A general procedure for estimating the true error of a predictor

• The data is split into two subsets:

– A training and validation set used only to find the right predictor
– A test set used to report the prediction error of the algorithm

• These sets must be disjoint!

• The process is repeated several times, and the results are averaged to
provide error estimates.
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The anatomy of the error of an estimator

• Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is Gaussian
noise with zero mean and standard deviation σ
• We fit a linear hypothesis h(x) = wTx, such as to minimize sum-squared

error over the training data:

m∑
i=1

(yi − h(xi))
2

• Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error
• Even if f were truly from the hypothesis class we picked, depending on

the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error
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Bias-variance analysis

• Given a new data point x, what is the expected prediction error?
• Assume that the data points are drawn independently and identically

distributed (i.i.d.) from a unique underlying probability distribution
P (〈x, y〉) = P (x)P (y|x)
• The goal of the analysis is to compute, for an arbitrary given point x,

EP
[
(y − h(x))2|x

]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P
• For a given hypothesis class, we can also compute the true error, which

is the expected error over the input distribution:∑
x

EP
[
(y − h(x))2|x

]
P (x)

(if x continuous, sum becomes integral with appropriate conditions).
• We will decompose this expectation into three components
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Recall: Statistics 101

• Let X be a random variable with possible values xi, i = 1 . . . n and with
probability distribution P (X)

• The expected value or mean of X is:

E[X] =

n∑
i=1

xiP (xi)

• If X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

• The variance of X is:

V ar[X] = E[(X − E(X))2]

= E[X2]− (E[X])2

Deep Learning Summer School, Montreal, 2016 43



The variance lemma

V ar[X] = E[(X − E[X])2]

=

n∑
i=1

(xi − E[X])2P (xi)

=

n∑
i=1

(x2i − 2xiE[X] + (E[X])2)P (xi)

=

n∑
i=1

x2iP (xi)− 2E[X]

n∑
i=1

xiP (xi) + (E[X])2
n∑
i=1

P (xi)

= E[X2]− 2E[X]E[X] + (E[X])2 · 1
= E[X2]− (E[X])2

We will use the form:

E[X2] = (E[X])2 + V ar[X]
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Bias-variance decomposition

• Simple algebra:

EP
[
(y − h(x))2|x

]
= EP

[
(h(x))2 − 2yh(x) + y2|x

]
= EP

[
(h(x))2|x

]
+ EP

[
y2|x

]
− 2EP [y|x]EP [h(x)|x]

• Let h̄(x) = EP [h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

• For the first term, using the variance lemma, we have:

EP [(h(x))2|x] = EP [(h(x)− h̄(x))2|x] + (h̄(x))2

• Note that EP [y|x] = EP [f(x) + ε|x] = f(x) (because of linearity of
expectation and the assumption on ε ∼ N (0, σ))

• For the second term, using the variance lemma, we have:

E[y2|x] = E[(y − f(x))2|x] + (f(x))2

Deep Learning Summer School, Montreal, 2016 45



Bias-variance decomposition (2)

• Putting everything together, we have:

EP
[
(y − h(x))2|x

]
= EP [(h(x)− h̄(x))2|x] + (h̄(x))2 − 2f(x)h̄(x)

+ EP [(y − f(x))2|x] + (f(x))2

= EP [(h(x)− h̄(x))2|x] + (f(x)− h̄(x))2

+ E[(y − f(x))2|x]

• The first term, EP [(h(x) − h̄(x))2|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

• The second term, (f(x) − h̄(x))2, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

• The last term, E[(y−f(x))2|x] is the noise, which is due to the problem
at hand, and cannot be avoided
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Error decomposition
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• The bias-variance sum approximates well the test error over a set of 1000
points

• x-axis measures the hypothesis complexity (decreasing left-to-right)

• Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

• Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.
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Bias-variance trade-off

• Typically, bias comes from not having good hypotheses in the considered
class

• Variance results from the hypothesis class containing “too many”
hypotheses

• MLE estimation is typically unbiased, but has high variance

• Bayesian estimation is biased, but typically has lower variance

• Hence, we are faced with a trade-off: choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

• Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)

Deep Learning Summer School, Montreal, 2016 48



More on overfitting

• Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

• With more data, we can explore more complex hypotheses spaces, and
still find a good solution
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Coming back to mean-squared error function...

• Good intuitive feel (small errors are ignored, large errors are penalized)

• Nice math (closed-form solution, unique global optimum)

• Geometric interpretation

• Any other interpretation?
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A probabilistic assumption

• Assume yi is a noisy target value, generated from a hypothesis hw(x)

• More specifically, assume that there exists w such that:

yi = hw(xi) + εi

where εi is random variable (noise) drawn independently for each xi
according to some Gaussian (normal) distribution with mean zero and
variance σ.

• How should we choose the parameter vector w?
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Bayes theorem in learning

Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P (h|D) =
P (D|h)P (h)

P (D)
,

where:

• P (h) is the prior probability of hypothesis h

• P (D) =
∫
h
P (D|h)P (h) is the probability of training data D

(normalization, independent of h)

• P (h|D) is the probability of h given D

• P (D|h) is the probability of D given h (likelihood of the data)
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Choosing hypotheses

• What is the most probable hypothesis given the training data?

• Maximum a posteriori (MAP) hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)
(using Bayes theorem)

= arg max
h∈H

P (D|h)P (h)

Last step is because P (D) is independent of h (so constant for the
maximization)

• This is the Bayesian answer (more in a minute)
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Maximum likelihood estimation

hMAP = arg max
h∈H

P (D|h)P (h)

• If we assume P (hi) = P (hj) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood (ML)
hypothesis:

hML = arg max
h∈H

P (D|h) = arg max
h∈H

L(h)

• Standard assumption: the training examples are independently identically
distributed (i.i.d.)
• This alows us to simplify P (D|h):

P (D|h) =

m∏
i=1

P (〈xi, yi〉|h) =

m∏
i=1

P (yi|xi;h)P (xi)
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The log trick

• We want to maximize:

L(h) =

m∏
i=1

P (yi|xi;h)P (xi)

This is a product, and products are hard to maximize!

• Instead, we will maximize logL(h)! (the log-likelihood function)

logL(h) =

m∑
i=1

logP (yi|xi;h) +

m∑
i=1

logP (xi)

• The second sum depends on D, but not on h, so it can be ignored in the
search for a good hypothesis
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Maximum likelihood for regression

• Adopt the assumption that:

yi = hw(xi) + εi,

where εi ∼ N (0, σ).

• The best hypothesis maximizes the likelihood of yi − hw(xi) = εi

• Hence,

L(w) =

m∏
i=1

1√
2πσ2

e
−1

2

(
yi−hw(xi)

σ

)2

because the noise variables εi are from a Gaussian distribution
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Applying the log trick

logL(w) =

m∑
i=1

log

(
1√

2πσ2
e
−1

2
(yi−hw(xi))

2

σ2

)

=

m∑
i=1

log

(
1√

2πσ2

)
−

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

Maximizing the right hand side is the same as minimizing:

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

This is our old friend, the sum-squared-error function! (the constants that
are independent of h can again be ignored)
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Maximum likelihood hypothesis for least-squares
estimators

• Under the assumption that the training examples are i.i.d. and that we
have Gaussian target noise, the maximum likelihood parameters w are
those minimizing the sum squared error:

w∗ = arg min
w

m∑
i=1

(yi − hw(xi))
2

• This makes explicit the hypothesis behind minimizing the sum-squared
error

• If the noise is not normally distributed, maximizing the likelihood will not
be the same as minimizing the sum-squared error

• In practice, different loss functions are used depending on the noise
assumption
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A graphical representation for the data generation
process

w
eps

y

X X~P(X)

eps~N(0,sigma)
ML: fixed

but unknown

y=h_w(x)+eps
Deterministic

• Circles represent (random) variables)

• Arrows represent dependencies between variables

• Some variables are observed, others need to be inferred because they are
hidden (latent)

• New assumptions can be incorporated by making the model more
complicated
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Regularization

• Remember the intuition: complicated hypotheses lead to overfitting

• Idea: change the error function to penalize hypothesis complexity:

J(w) = JD(w) + λJpen(w)

This is called regularization in machine learning and shrinkage in statistics

• λ is called regularization coefficient and controls how much we value
fitting the data well, vs. a simple hypothesis
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Regularization for linear models

• A squared penalty on the weights would make the math work nicely in
our case:

1

2
(Φw − y)T (Φw − y) +

λ

2
wTw

• This is also known as L2 regularization, or weight decay in neural
networks

• By re-grouping terms, we get:

JD(w) =
1

2
(wT (ΦTΦ + λI)w −wTΦTy − yTΦw + yTy)

• Optimal solution (obtained by solving ∇wJD(w) = 0)

w = (ΦTΦ + λI)−1ΦTy
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What L2 regularization does

arg min
w

1

2
(Φw − y)T (Φw − y) +

λ

2
wTw = (ΦTΦ + λI)−1ΦTy

• If λ = 0, the solution is the same as in regular least-squares linear
regression

• If λ→∞, the solution w→ 0

• Positive λ will cause the magnitude of the weights to be smaller than in
the usual linear solution

• This is also called ridge regression, and it is a special case of Tikhonov
regularization (more on that later)

• A different view of regularization: we want to optimize the error while
keeping the L2 norm of the weights, wTw, bounded.
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Detour: Constrained optimization

Suppose we want to find

min
w
f(w)

such that g(w) = 0

∇f(x)

∇g(x)

xA

g(x) = 0
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Detour: Lagrange multipliers

∇f(x)

∇g(x)

xA

g(x) = 0

• ∇g has to be orthogonal to the constraint surface (red curve)

• At the optimum, ∇f and ∇g have to be parallel (in same or opposite
direction)

• Hence, there must exist some λ ∈ R such that ∇f + λ∇g = 0

• Lagrangian function: L(x, λ) = f(x) + λg(x)
λ is called Lagrange multiplier

• We obtain the solution to our optimization problem by setting both
∇xL = 0 and ∂L

∂λ = 0
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Detour: Inequality constraints

• Suppose we want to find

min
w
f(w)

such that g(w) ≥ 0

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

• In the interior (g(x > 0)) - simply find ∇f(x) = 0

• On the boundary (g(x = 0)) - same situation as before, but the sign
matters this time
For minimization, we want ∇f pointing in the same direction as ∇g
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Detour: KKT conditions

• Based on the previous observations, let the Lagrangian be L(x, λ) =
f(x)− λg(x)

• We minimize L wrt x subject to the following constraints:

λ ≥ 0

g(x) ≥ 0

λg(x) = 0

• These are called Karush-Kuhn-Tucker (KKT) conditions
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L2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the weights
bounded

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that wTw ≤ η

• The Lagrangian is:

L(w, λ) = JD(w)−λ(η−wTw) = (Φw−y)T (Φw−y) +λwTw−λη

• For a fixed λ, and η = λ−1, the best w is the same as obtained by
weight decay
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Visualizing regularization (2 parameters)

w1

w2

w?

w∗ = (ΦTΦ + λI)−1Φy
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Pros and cons of L2 regularization

• If λ is at a “good” value, regularization helps to avoid overfitting

• Choosing λ may be hard: cross-validation is often used

• If there are irrelevant features in the input (i.e. features that do not
affect the output), L2 will give them small, but non-zero weights.

• Ideally, irrelevant input should have weights exactly equal to 0.
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L1 Regularization for linear models

• Instead of requiring the L2 norm of the weight vector to be bounded,
make the requirement on the L1 norm:

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that
n∑
i=1

|wi| ≤ η

• This yields an algorithm called Lasso (Tibshirani, 1996)
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Solving L1 regularization

• The optimization problem is a quadratic program

• There is one constraint for each possible sign of the weights (2n

constraints for n weights)

• For example, with two weights:

min
w1,w2

m∑
j=1

(yj − w1x1 − w2x2)
2

such that w1 + w2 ≤ η

w1 − w2 ≤ η

−w1 + w2 ≤ η

−w1 − w2 ≤ η

• Solving this program directly can be done for problems with a small
number of inputs
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Visualizing L1 regularization

w1

w2

w?

• If λ is big enough, the circle is very likely to intersect the diamond at
one of the corners

• This makes L1 regularization much more likely to make some weights
exactly 0
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Pros and cons of L1 regularization

• If there are irrelevant input features, Lasso is likely to make their weights
0, while L2 is likely to just make all weights small

• Lasso is biased towards providing sparse solutions in general

• Lasso optimization is computationally more expensive than L2

• More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).

• L1 methods of various types are very popular
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Example of L1 vs L2 effect

Example: lasso vs. ridge

From HTF: prostate data
Red lines: choice of � by 10-fold CV.
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• Note the sparsity in the coefficients induces by L1

• Lasso is an efficient way of performing the L1 optimization
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Bayesian view of regularization

• Start with a prior distribution over hypotheses

• As data comes in, compute a posterior distribution

• We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

• Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

• E.g. L2 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

• E.g. L1 regularization uses double-exponential prior (see (Tibshirani,
1996))
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Bayesian view of regularization

• Prior is round Gaussian

• Posterior will be skewed by the data
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What does the Bayesian view give us?
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• Circles are data points
• Green is the true function
• Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

• Functions drawn from the posterior can be very different

• Uncertainty decreases where there are data points
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What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the function

• These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

• In the limit, Bayesian and maximum likelihood learning converge to the
same answer

• In the short term, one needs a good prior to get good estimates of the
parameters

• Sometimes the prior is overwhelmed by the data likelihood too early.

• Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

• More on this later...
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Logistic regression

• Suppose we represent the hypothesis itself as a logistic function of a
linear combination of inputs:

h(x) =
1

1 + exp(wTx)

This is also known as a sigmoid neuron
• Suppose we interpret h(x) as P (y = 1|x)
• Then the log-odds ratio,

ln

(
P (y = 1|x)

P (y = 0|x)

)
= wTx

which is linear (nice!)
• The optimum weights will maximize the conditional likelihood of the

outputs, given the inputs.
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The cross-entropy error function

• Suppose we interpret the output of the hypothesis, h(xi), as the
probability that yi = 1

• Then the log-likelihood of a hypothesis h is:

logL(h) =

m∑
i=1

logP (yi|xi, h) =

m∑
i=1

{
log h(xi) if yi = 1
log(1− h(xi)) if yi = 0

=

m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

• The cross-entropy error function is the opposite quantity:

JD(w) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)
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Cross-entropy error surface for logistic function

JD(w) = −

(
m∑
i=1

yi log σ(wTxi) + (1− yi) log(1− σ(wTxi))

)

Nice error surface, unique minimum, but cannot solve in closed form
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Gradient descent

• The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill”.
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• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient
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Example gradient descent traces

• For more general hypothesis classes, there may be may local optima

• In this case, the final solution may depend on the initial parameters
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Gradient descent algorithm

• The basic algorithm assumes that ∇J is easily computed

• We want to produce a sequence of vectors w1,w2,w3, . . . with the goal
that:

– J(w1) > J(w2) > J(w3) > . . .
– limi→∞wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi − αi∇J(wi) ,

where αi > 0 is the step size or learning rate for iteration i.
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Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w:

∇ logL(w)=
∑
i

yi
1

hw(xi)
hw(xi)(1− hw(xi))xi

+(1− yi)
1

1− hw(xi)
hw(xi)(1− hw(xi))xi(−1)

=
∑
i

xi(yi − yihw(xi)− hw(xi) + yihw(xi)) =
∑
i

(yi − hw(xi))xi

• The update rule (because we maximize) is:

w← w +α∇ logL(w) = w +α

m∑
i=1

(yi−hw(xi))xi = w +αXT (y− ŷ)

where α ∈ (0, 1) is a step-size or learning rate parameter
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Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)

• Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

wi+1 = wi − g(wi)

g′(wi)
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Application to machine learning

• Suppose for simplicity that the error function J has only one parameter

• We want to optimize J , so we can apply Newton’s method to find the
zeros of J ′ = d

dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)

J ′′(wi)

• Note that there is no step size parameter!

• This is a second-order method, because it requires computing the second
derivative

• But, if our error function is quadratic, this will find the global optimum
in one step!

Deep Learning Summer School, Montreal, 2016 88



Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates

• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method for logistic regression, or
Fisher scoring
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Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent

• Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

• Inverting the Hessian explicitly is expensive, but almost never necessary

• Computing the product of a Hessian with a vector can be done in linear
time (Schraudolph, 1994)

Deep Learning Summer School, Montreal, 2016 90



Newton-Raphson for logistic regression

• Leads to a nice algorithm called iterative recursive least squares

• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi)) (you can check that
this is the form of the second derivative.

• The weight update becomes:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(Φw − y))
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Regularization for logistic regression

• One can do regularization for logistic regression just like in the case of
linear regression

• Recall regularization makes a statement about the weights, so does not
affect the error function

• Eg: L2 regularization will have the optimization criterions:

J(w = JD(w) +
λ

2
wTw
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Probabilistic view of logistic regression

• Consider the additive noise model we discussed before:

yi = hw(xi) + ε

where ε are drawn iid from some distribution

• At first glance, log reg does not fit very well

• We will instead think of a latent variable ŷi such that:

ŷi = hw(xi) + ε

• Then the output is generated as:

yi = 1 iff ŷi > 0
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Recap

• Machine learning algorithms make choices of hypothesis space, error
function and optimization procedure

• In some cases, optimization is easy

• Gradient descent is a general procedure (lots more on this to come)

• All algorithms are affected by bias-variance trade-off (too much
variance=overfitting)

• Bayesian interpretation gives us a handle on what the algorithms really
do
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