
Introduction to Machine Learning

Doina Precup
McGill University

Email: dprecup@cs.mcgill.ca

Deep Learning Summer School, Montreal, 2016

Outline

• Types of machine learning problems

• Linear approximators

• Error/objective functions and how to optimize them

• Bias-variance trade-off, overfitting and underfitting

• L2 and L1 regularization for linear estimators

• A Bayesian interpretation of regularization

• Logistic regression

Deep Learning Summer School, Montreal, 2016 1

Types of machine learning problems

Based on the information available:

• Supervised learning

• Reinforcement learning

• Unsupervised learning

Deep Learning Summer School, Montreal, 2016 2

Supervised learning

• Training experience: a set of labeled examples of the form

〈x1 x2 . . . xn, y〉,
where xj are values for input variables and y is the output

• This implies the existence of a “teacher” who knows the right answers

• What to learn: A function f : X1 ×X2 × · · · ×Xn → Y , which maps
the input variables into the output domain

• Goal: minimize the error (loss) function

– Ideally, we would like to minimize error on all possible instances
– But we only have access to a limited set of data...

Deep Learning Summer School, Montreal, 2016 3

Example: Face detection and recognition

Deep Learning Summer School, Montreal, 2016 4

Reinforcement learning

• Training experience: interaction with an environment; the agent receives
a numerical reward signal

• E.g., a trading agent in a market; the reward signal is the profit

• What to learn: a way of behaving that is very rewarding in the long run

• Goal: estimate and maximize the long-term cumulative reward

Deep Learning Summer School, Montreal, 2016 5

Example: TD-Gammon (Tesauro, 1990-1995)

• Early predecessor of AlphaGo

• Learning from self-play, using TD-learning

• Became the best player in the world

• Discovered new ways of opening not used by people before

Deep Learning Summer School, Montreal, 2016 6

Unsupervised learning

• Training experience: unlabelled data

• What to learn: interesting associations in the data

• E.g., clustering, dimensionality reduction

• Often there is no single correct answer

Deep Learning Summer School, Montreal, 2016 7

Example: Oncology (Alizadeh et al.)

• Activity levels of all (≈ 25,000) genes were measured in lymphoma
patients
• Cluster analysis determined three different subtypes (where only two were

known before), having different clinical outcomes

Deep Learning Summer School, Montreal, 2016 8

Example: A data set
Cell Nuclei of Fine Needle Aspirate

• Cell samples were taken from tumors in breast cancer patients before
surgery, and imaged

• Tumors were excised

• Patients were followed to determine whether or not the cancer recurred,
and how long until recurrence or disease free

Deep Learning Summer School, Montreal, 2016 9

Data (continued)

• Thirty real-valued variables per tumor.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

Deep Learning Summer School, Montreal, 2016 10

Terminology

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

• Columns are called input variables or features or attributes

• The outcome and time (which we are trying to predict) are called output
variables or targets

• A row in the table is called training example or instance

• The whole table is called (training) data set.

• The problem of predicting the recurrence is called (binary) classification

• The problem of predicting the time is called regression

Deep Learning Summer School, Montreal, 2016 11

More formally
tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31

17.99 10.38 122.8 N 61

20.29 14.34 135.1 R 27

. . .

• A training example i has the form: 〈xi,1, . . . xi,n, yi〉 where n is the
number of attributes (30 in our case).

• We will use the notation xi to denote the column vector with elements
xi,1, . . . xi,n.

• The training set D consists of m training examples

• We denote the m× n matrix of attributes by X and the size-m column
vector of outputs from the data set by y.

Deep Learning Summer School, Montreal, 2016 12

Supervised learning problem

• Let X denote the space of input values

• Let Y denote the space of output values

• Given a data set D ⊂ X × Y, find a function:

h : X → Y

such that h(x) is a “good predictor” for the value of y.

• h is called a hypothesis

• Problems are categorized by the type of output domain

– If Y = R, this problem is called regression
– If Y is a categorical variable (i.e., part of a finite discrete set), the

problem is called classification
– In general, Y could be a lot more complex (graph, tree, etc), which is

called structured prediction

Deep Learning Summer School, Montreal, 2016 13

Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

(We will discuss this in detail later)

3. Choose a class of hypotheses/representations H .

4. ...

Deep Learning Summer School, Montreal, 2016 14

Example: What hypothesis class should we pick?

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43

Deep Learning Summer School, Montreal, 2016 15

Linear hypothesis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1(+ · · ·)

• wi are called parameters or weights

• To simplify notation, we can add an attribute x0 = 1 to the other n
attributes (also called bias term or intercept term):

hw(x) =

n∑
i=0

wixi = wTx

where w and x are vectors of size n+ 1.

How should we pick w?

Deep Learning Summer School, Montreal, 2016 16

Error minimization!

• Intuitively, w should make the predictions of hw close to the true values
y on the data we have

• Hence, we will define an error function or cost function to measure how
much our prediction differs from the ”true” answer

• We will pick w such that the error function is minimized

How should we choose the error function?

Deep Learning Summer School, Montreal, 2016 17

Least mean squares (LMS)

• Main idea: try to make hw(x) close to y on the examples in the training
set

• We define a sum-of-squares error function

J(w) =
1

2

m∑
i=1

(hw(xi)− yi)2

(the 1/2 is just for convenience)

• We will choose w such as to minimize J(w)

Deep Learning Summer School, Montreal, 2016 18

Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

3. Choose a class of hypotheses/representations H .

4. Choose an error function (cost function) to define the best hypothesis

5. Choose an algorithm for searching efficiently through the space of
hypotheses.

Deep Learning Summer School, Montreal, 2016 19

Notation reminder

• Consider a function f(u1, u2, . . . , un) : Rn 7→ R (for us, this will usually
be an error function)

• The partial derivative w.r.t. ui is denoted:

∂

∂ui
f(u1, u2, . . . , un) : Rn 7→ R

The partial derivative is the derivative along the ui axis, keeping all other
variables fixed.

• The gradient ∇f(u1, u2, . . . , un) : Rn 7→ Rn is a function which outputs
a vector containing the partial derivatives.
That is:

∇f =

〈
∂

∂u1
f,

∂

∂u2
f, . . . ,

∂

∂un
f

〉

Deep Learning Summer School, Montreal, 2016 20

A bit of algebra

∂

∂wj
J(w) =

∂

∂wj

1

2

m∑
i=1

(hw(xi)− yi)2

=
1

2
· 2

m∑
i=1

(hw(xi)− yi)
∂

∂wj
(hw(xi)− yi)

=

m∑
i=1

(hw(xi)− yi)
∂

∂wj

(
n∑
l=0

wlxi,l − yi

)

=
m∑
i=1

(hw(xi)− yi)xi,j

Setting all these partial derivatives to 0, we get a linear system with (n+ 1)
equations and (n+ 1) unknowns.

Deep Learning Summer School, Montreal, 2016 21

The solution

• Recalling some multivariate calculus:

∇wJ = ∇w(Xw − y)T (Xw − y)

= ∇w(wTXTXw − yTXw −wTXTy + yTy)

= 2XTXw − 2XTy

• Setting gradient equal to zero:

2XTXw − 2XTy = 0

⇒ XTXw = XTy

⇒ w = (XTX)−1XTy

• The inverse exists if the columns of X are linearly independent.

Deep Learning Summer School, Montreal, 2016 22

Example: Data and best linear hypothesis
y = 1.60x+ 1.05

x

y

Deep Learning Summer School, Montreal, 2016 23

Linear regression summary

• The optimal solution (minimizing sum-squared-error) can be computed
in polynomial time in the size of the data set.

• The solution is w = (XTX)−1XTy, where X is the data matrix
augmented with a column of ones, and y is the column vector of target
outputs.

• A very rare case in which an analytical, exact solution is possible

Deep Learning Summer School, Montreal, 2016 24

Linear function approximation in general

• Given a set of examples 〈xi, yi〉i=1...m, we fit a hypothesis

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions

• The best w is considered the one which minimizes the sum-squared error
over the training data:

m∑
i=1

(yi − hw(xi))
2

• We can find the best w in closed form:

w = (ΦTΦ)−1ΦTy

or by other methods (e.g. gradient descent - as will be seen later)

Deep Learning Summer School, Montreal, 2016 25

Linear models in general

• By linear models, we mean that the hypothesis function hw(x) is a linear
function of the parameters w
• This does not mean the hw(x) is a linear function of the input vector x

(e.g., polynomial regression)
• In general

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions
• Usually, we will assume that φ0(x) = 1,∀x, to create a bias term
• The hypothesis can alternatively be written as:

hw(x) = Φw

where Φ is a matrix with one row per instance; row j contains φ(xj).
• Basis functions are fixed

Deep Learning Summer School, Montreal, 2016 26

Remarks

• Linear models are an example of parametric models, because we choose
a priori a number of parameters that does not depend on the size of the
data

• Non-parametric models grow with the size of the data

• Eg. Nearest neighbour, locally weighted linear regression

• Deep nets are very large parametric models.

Deep Learning Summer School, Montreal, 2016 27

Order-2 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 28

Order-3 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 29

Order-4 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 30

Order-5 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 31

Order-6 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 32

Order-7 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 33

Order-8 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 34

Order-9 fit

x

y

Is this a better fit to the data?

Deep Learning Summer School, Montreal, 2016 35

Overfitting

• A general, HUGELY IMPORTANT problem for all machine learning
algorithms

• We can find a hypothesis that predicts perfectly the training data but
does not generalize well to new data

• E.g., a lookup table!

• We are seeing an instance here: if we have a lot of parameters, the
hypothesis ”memorizes” the data points, but is wild everywhere else.

Deep Learning Summer School, Montreal, 2016 36

Overfitting and underfitting

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

• The higher the degree of the polynomial M , the more degrees of freedom
• Typical overfitting means that error on the training data is very low, but

error on new instances is high
• Typical underfitting means that error on the training data is very high

(few dof)

Deep Learning Summer School, Montreal, 2016 37

Overfitting more formally

• Assume that the data is drawn from some fixed, unknown probability
distribution

• Every hypothesis has a ”true” error J∗(h), which is the expected error
when data is drawn from the distribution.

• Because we do not have all the data, we measure the error on the training
set JD(h)

• Suppose we compare hypotheses h1 and h2 on the training set, and
JD(h1) < JD(h2)

• If h2 is ”truly” better, i.e. J∗(h2) < J∗(h1), our algorithm is overfitting.

• We need theoretical and empirical methods to guard against it!

Deep Learning Summer School, Montreal, 2016 38

Typical overfitting plot

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

• The training error decreases with the degree of the polynomial M , i.e.
the complexity of the hypothesis
• The testing error, measured on independent data, decreases at first, then

starts increasing
• Cross-validation helps us:

– Find a good hypothesis class (M in our case), using a validation set
of data

– Report unbiased results, using a test set, untouched during either
parameter training or validation

Deep Learning Summer School, Montreal, 2016 39

Cross-validation

• A general procedure for estimating the true error of a predictor

• The data is split into two subsets:

– A training and validation set used only to find the right predictor
– A test set used to report the prediction error of the algorithm

• These sets must be disjoint!

• The process is repeated several times, and the results are averaged to
provide error estimates.

Deep Learning Summer School, Montreal, 2016 40

The anatomy of the error of an estimator

• Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is Gaussian
noise with zero mean and standard deviation σ
• We fit a linear hypothesis h(x) = wTx, such as to minimize sum-squared

error over the training data:

m∑
i=1

(yi − h(xi))
2

• Because of the hypothesis class that we chose (hypotheses linear in
the parameters) for some target functions f we will have a systematic
prediction error
• Even if f were truly from the hypothesis class we picked, depending on

the data set we have, the parameters w that we find may be different;
this variability due to the specific data set on hand is a different source
of error

Deep Learning Summer School, Montreal, 2016 41

Bias-variance analysis

• Given a new data point x, what is the expected prediction error?
• Assume that the data points are drawn independently and identically

distributed (i.i.d.) from a unique underlying probability distribution
P (〈x, y〉) = P (x)P (y|x)
• The goal of the analysis is to compute, for an arbitrary given point x,

EP
[
(y − h(x))2|x

]
where y is the value of x in a data set, and the expectation is over all
training sets of a given size, drawn according to P
• For a given hypothesis class, we can also compute the true error, which

is the expected error over the input distribution:∑
x

EP
[
(y − h(x))2|x

]
P (x)

(if x continuous, sum becomes integral with appropriate conditions).
• We will decompose this expectation into three components

Deep Learning Summer School, Montreal, 2016 42

Recall: Statistics 101

• Let X be a random variable with possible values xi, i = 1 . . . n and with
probability distribution P (X)

• The expected value or mean of X is:

E[X] =

n∑
i=1

xiP (xi)

• If X is continuous, roughly speaking, the sum is replaced by an integral,
and the distribution by a density function

• The variance of X is:

V ar[X] = E[(X − E(X))2]

= E[X2]− (E[X])2

Deep Learning Summer School, Montreal, 2016 43

The variance lemma

V ar[X] = E[(X − E[X])2]

=

n∑
i=1

(xi − E[X])2P (xi)

=

n∑
i=1

(x2i − 2xiE[X] + (E[X])2)P (xi)

=

n∑
i=1

x2iP (xi)− 2E[X]

n∑
i=1

xiP (xi) + (E[X])2
n∑
i=1

P (xi)

= E[X2]− 2E[X]E[X] + (E[X])2 · 1
= E[X2]− (E[X])2

We will use the form:

E[X2] = (E[X])2 + V ar[X]

Deep Learning Summer School, Montreal, 2016 44

Bias-variance decomposition

• Simple algebra:

EP
[
(y − h(x))2|x

]
= EP

[
(h(x))2 − 2yh(x) + y2|x

]
= EP

[
(h(x))2|x

]
+ EP

[
y2|x

]
− 2EP [y|x]EP [h(x)|x]

• Let h̄(x) = EP [h(x)|x] denote the mean prediction of the hypothesis at
x, when h is trained with data drawn from P

• For the first term, using the variance lemma, we have:

EP [(h(x))2|x] = EP [(h(x)− h̄(x))2|x] + (h̄(x))2

• Note that EP [y|x] = EP [f(x) + ε|x] = f(x) (because of linearity of
expectation and the assumption on ε ∼ N (0, σ))

• For the second term, using the variance lemma, we have:

E[y2|x] = E[(y − f(x))2|x] + (f(x))2

Deep Learning Summer School, Montreal, 2016 45

Bias-variance decomposition (2)

• Putting everything together, we have:

EP
[
(y − h(x))2|x

]
= EP [(h(x)− h̄(x))2|x] + (h̄(x))2 − 2f(x)h̄(x)

+ EP [(y − f(x))2|x] + (f(x))2

= EP [(h(x)− h̄(x))2|x] + (f(x)− h̄(x))2

+ E[(y − f(x))2|x]

• The first term, EP [(h(x) − h̄(x))2|x], is the variance of the hypothesis
h at x, when trained with finite data sets sampled randomly from P

• The second term, (f(x) − h̄(x))2, is the squared bias (or systematic
error) which is associated with the class of hypotheses we are considering

• The last term, E[(y−f(x))2|x] is the noise, which is due to the problem
at hand, and cannot be avoided

Deep Learning Summer School, Montreal, 2016 46

Error decomposition

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

• The bias-variance sum approximates well the test error over a set of 1000
points

• x-axis measures the hypothesis complexity (decreasing left-to-right)

• Simple hypotheses usually have high bias (bias will be high at many
points, so it will likely be high for many possible input distributions)

• Complex hypotheses have high variance: the hypothesis is very dependent
on the data set on which it was trained.

Deep Learning Summer School, Montreal, 2016 47

Bias-variance trade-off

• Typically, bias comes from not having good hypotheses in the considered
class

• Variance results from the hypothesis class containing “too many”
hypotheses

• MLE estimation is typically unbiased, but has high variance

• Bayesian estimation is biased, but typically has lower variance

• Hence, we are faced with a trade-off: choose a more expressive class
of hypotheses, which will generate higher variance, or a less expressive
class, which will generate higher bias

• Making the trade-off has to depend on the amount of data available to
fit the parameters (data usually mitigates the variance problem)

Deep Learning Summer School, Montreal, 2016 48

More on overfitting

• Overfitting depends on the amount of data, relative to the complexity of
the hypothesis

• With more data, we can explore more complex hypotheses spaces, and
still find a good solution

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Deep Learning Summer School, Montreal, 2016 49

Coming back to mean-squared error function...

• Good intuitive feel (small errors are ignored, large errors are penalized)

• Nice math (closed-form solution, unique global optimum)

• Geometric interpretation

• Any other interpretation?

Deep Learning Summer School, Montreal, 2016 50

A probabilistic assumption

• Assume yi is a noisy target value, generated from a hypothesis hw(x)

• More specifically, assume that there exists w such that:

yi = hw(xi) + εi

where εi is random variable (noise) drawn independently for each xi
according to some Gaussian (normal) distribution with mean zero and
variance σ.

• How should we choose the parameter vector w?

Deep Learning Summer School, Montreal, 2016 51

Bayes theorem in learning

Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P (h|D) =
P (D|h)P (h)

P (D)
,

where:

• P (h) is the prior probability of hypothesis h

• P (D) =
∫
h
P (D|h)P (h) is the probability of training data D

(normalization, independent of h)

• P (h|D) is the probability of h given D

• P (D|h) is the probability of D given h (likelihood of the data)

Deep Learning Summer School, Montreal, 2016 52

Choosing hypotheses

• What is the most probable hypothesis given the training data?

• Maximum a posteriori (MAP) hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)

P (D)
(using Bayes theorem)

= arg max
h∈H

P (D|h)P (h)

Last step is because P (D) is independent of h (so constant for the
maximization)

• This is the Bayesian answer (more in a minute)

Deep Learning Summer School, Montreal, 2016 53

Maximum likelihood estimation

hMAP = arg max
h∈H

P (D|h)P (h)

• If we assume P (hi) = P (hj) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood (ML)
hypothesis:

hML = arg max
h∈H

P (D|h) = arg max
h∈H

L(h)

• Standard assumption: the training examples are independently identically
distributed (i.i.d.)
• This alows us to simplify P (D|h):

P (D|h) =

m∏
i=1

P (〈xi, yi〉|h) =

m∏
i=1

P (yi|xi;h)P (xi)

Deep Learning Summer School, Montreal, 2016 54

The log trick

• We want to maximize:

L(h) =

m∏
i=1

P (yi|xi;h)P (xi)

This is a product, and products are hard to maximize!

• Instead, we will maximize logL(h)! (the log-likelihood function)

logL(h) =

m∑
i=1

logP (yi|xi;h) +

m∑
i=1

logP (xi)

• The second sum depends on D, but not on h, so it can be ignored in the
search for a good hypothesis

Deep Learning Summer School, Montreal, 2016 55

Maximum likelihood for regression

• Adopt the assumption that:

yi = hw(xi) + εi,

where εi ∼ N (0, σ).

• The best hypothesis maximizes the likelihood of yi − hw(xi) = εi

• Hence,

L(w) =

m∏
i=1

1√
2πσ2

e
−1

2

(
yi−hw(xi)

σ

)2

because the noise variables εi are from a Gaussian distribution

Deep Learning Summer School, Montreal, 2016 56

Applying the log trick

logL(w) =

m∑
i=1

log

(
1√

2πσ2
e
−1

2
(yi−hw(xi))

2

σ2

)

=

m∑
i=1

log

(
1√

2πσ2

)
−

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

Maximizing the right hand side is the same as minimizing:

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

This is our old friend, the sum-squared-error function! (the constants that
are independent of h can again be ignored)

Deep Learning Summer School, Montreal, 2016 57

Maximum likelihood hypothesis for least-squares
estimators

• Under the assumption that the training examples are i.i.d. and that we
have Gaussian target noise, the maximum likelihood parameters w are
those minimizing the sum squared error:

w∗ = arg min
w

m∑
i=1

(yi − hw(xi))
2

• This makes explicit the hypothesis behind minimizing the sum-squared
error

• If the noise is not normally distributed, maximizing the likelihood will not
be the same as minimizing the sum-squared error

• In practice, different loss functions are used depending on the noise
assumption

Deep Learning Summer School, Montreal, 2016 58

A graphical representation for the data generation
process

w
eps

y

X X~P(X)

eps~N(0,sigma)
ML: fixed

but unknown

y=h_w(x)+eps
Deterministic

• Circles represent (random) variables)

• Arrows represent dependencies between variables

• Some variables are observed, others need to be inferred because they are
hidden (latent)

• New assumptions can be incorporated by making the model more
complicated

Deep Learning Summer School, Montreal, 2016 59

Regularization

• Remember the intuition: complicated hypotheses lead to overfitting

• Idea: change the error function to penalize hypothesis complexity:

J(w) = JD(w) + λJpen(w)

This is called regularization in machine learning and shrinkage in statistics

• λ is called regularization coefficient and controls how much we value
fitting the data well, vs. a simple hypothesis

Deep Learning Summer School, Montreal, 2016 60

Regularization for linear models

• A squared penalty on the weights would make the math work nicely in
our case:

1

2
(Φw − y)T (Φw − y) +

λ

2
wTw

• This is also known as L2 regularization, or weight decay in neural
networks

• By re-grouping terms, we get:

JD(w) =
1

2
(wT (ΦTΦ + λI)w −wTΦTy − yTΦw + yTy)

• Optimal solution (obtained by solving ∇wJD(w) = 0)

w = (ΦTΦ + λI)−1ΦTy

Deep Learning Summer School, Montreal, 2016 61

What L2 regularization does

arg min
w

1

2
(Φw − y)T (Φw − y) +

λ

2
wTw = (ΦTΦ + λI)−1ΦTy

• If λ = 0, the solution is the same as in regular least-squares linear
regression

• If λ→∞, the solution w→ 0

• Positive λ will cause the magnitude of the weights to be smaller than in
the usual linear solution

• This is also called ridge regression, and it is a special case of Tikhonov
regularization (more on that later)

• A different view of regularization: we want to optimize the error while
keeping the L2 norm of the weights, wTw, bounded.

Deep Learning Summer School, Montreal, 2016 62

Detour: Constrained optimization

Suppose we want to find

min
w
f(w)

such that g(w) = 0

∇f(x)

∇g(x)

xA

g(x) = 0

Deep Learning Summer School, Montreal, 2016 63

Detour: Lagrange multipliers

∇f(x)

∇g(x)

xA

g(x) = 0

• ∇g has to be orthogonal to the constraint surface (red curve)

• At the optimum, ∇f and ∇g have to be parallel (in same or opposite
direction)

• Hence, there must exist some λ ∈ R such that ∇f + λ∇g = 0

• Lagrangian function: L(x, λ) = f(x) + λg(x)
λ is called Lagrange multiplier

• We obtain the solution to our optimization problem by setting both
∇xL = 0 and ∂L

∂λ = 0

Deep Learning Summer School, Montreal, 2016 64

Detour: Inequality constraints

• Suppose we want to find

min
w
f(w)

such that g(w) ≥ 0

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

• In the interior (g(x > 0)) - simply find ∇f(x) = 0

• On the boundary (g(x = 0)) - same situation as before, but the sign
matters this time
For minimization, we want ∇f pointing in the same direction as ∇g

Deep Learning Summer School, Montreal, 2016 65

Detour: KKT conditions

• Based on the previous observations, let the Lagrangian be L(x, λ) =
f(x)− λg(x)

• We minimize L wrt x subject to the following constraints:

λ ≥ 0

g(x) ≥ 0

λg(x) = 0

• These are called Karush-Kuhn-Tucker (KKT) conditions

Deep Learning Summer School, Montreal, 2016 66

L2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the weights
bounded

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that wTw ≤ η

• The Lagrangian is:

L(w, λ) = JD(w)−λ(η−wTw) = (Φw−y)T (Φw−y) +λwTw−λη

• For a fixed λ, and η = λ−1, the best w is the same as obtained by
weight decay

Deep Learning Summer School, Montreal, 2016 67

Visualizing regularization (2 parameters)

w1

w2

w?

w∗ = (ΦTΦ + λI)−1Φy

Deep Learning Summer School, Montreal, 2016 68

Pros and cons of L2 regularization

• If λ is at a “good” value, regularization helps to avoid overfitting

• Choosing λ may be hard: cross-validation is often used

• If there are irrelevant features in the input (i.e. features that do not
affect the output), L2 will give them small, but non-zero weights.

• Ideally, irrelevant input should have weights exactly equal to 0.

Deep Learning Summer School, Montreal, 2016 69

L1 Regularization for linear models

• Instead of requiring the L2 norm of the weight vector to be bounded,
make the requirement on the L1 norm:

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that
n∑
i=1

|wi| ≤ η

• This yields an algorithm called Lasso (Tibshirani, 1996)

Deep Learning Summer School, Montreal, 2016 70

Solving L1 regularization

• The optimization problem is a quadratic program

• There is one constraint for each possible sign of the weights (2n

constraints for n weights)

• For example, with two weights:

min
w1,w2

m∑
j=1

(yj − w1x1 − w2x2)
2

such that w1 + w2 ≤ η

w1 − w2 ≤ η

−w1 + w2 ≤ η

−w1 − w2 ≤ η

• Solving this program directly can be done for problems with a small
number of inputs

Deep Learning Summer School, Montreal, 2016 71

Visualizing L1 regularization

w1

w2

w?

• If λ is big enough, the circle is very likely to intersect the diamond at
one of the corners

• This makes L1 regularization much more likely to make some weights
exactly 0

Deep Learning Summer School, Montreal, 2016 72

Pros and cons of L1 regularization

• If there are irrelevant input features, Lasso is likely to make their weights
0, while L2 is likely to just make all weights small

• Lasso is biased towards providing sparse solutions in general

• Lasso optimization is computationally more expensive than L2

• More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).

• L1 methods of various types are very popular

Deep Learning Summer School, Montreal, 2016 73

Example of L1 vs L2 effect

Example: lasso vs. ridge

From HTF: prostate data
Red lines: choice of � by 10-fold CV.

Degrees of Freedom

C
oe

ffi
ci

en
ts

0 2 4 6 8

-0
.2

0.
0

0.
2

0.
4

0.
6

•

•••••
•

•
•

•
•

•
•

•
•

•
•

•
•

•
••••

•

lcavol

••••••••••••••••••••••••

•

lweight

•••••••••••••••••••••••••

age

••••••••••••••••••••••••
•

lbph

••••••••••••••••••••••••

•

svi

•

••••
•

•
•

•
•

••••••••••••••
•

lcp

•
•••••••••••••••••••••••

•
gleason

•
•••••••••••••••••••••••

•

pgg45

Shrinkage Factor s

C
oe

ffi
ci

en
ts

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
2

0.
4

0.
6

•

•

•

•

•

•
•

• • • • • • • • • • • • • • • • • • lcavol

• • • • •
•

•
•

•
• • • • • • • • • • • • • • • • lweight

• •age

• • • • • • • • • •
•

•
•

•
• • • • • • • • • • • lbph

• • • • • • •
•

•
•

•
•

•
• • • • • • • • • • • •svi

• • • • • • • • • • • • • • • •
•

•
•

•
•

•
•

•
• lcp

• •gleason• •
•pgg45

CS195-5 2006 – Lecture 14 7

• Note the sparsity in the coefficients induces by L1

• Lasso is an efficient way of performing the L1 optimization

Deep Learning Summer School, Montreal, 2016 74

Bayesian view of regularization

• Start with a prior distribution over hypotheses

• As data comes in, compute a posterior distribution

• We often work with conjugate priors, which means that when combining
the prior with the likelihood of the data, one obtains the posterior in the
same form as the prior

• Regularization can be obtained from particular types of prior (usually,
priors that put more probability on simple hypotheses)

• E.g. L2 regularization can be obtained using a circular Gaussian prior for
the weights, and the posterior will also be Gaussian

• E.g. L1 regularization uses double-exponential prior (see (Tibshirani,
1996))

Deep Learning Summer School, Montreal, 2016 75

Bayesian view of regularization

• Prior is round Gaussian

• Posterior will be skewed by the data

Deep Learning Summer School, Montreal, 2016 76

What does the Bayesian view give us?

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

• Circles are data points
• Green is the true function
• Red lines on right are drawn from the posterior distribution

Deep Learning Summer School, Montreal, 2016 77

What does the Bayesian view give us?

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

• Functions drawn from the posterior can be very different

• Uncertainty decreases where there are data points

Deep Learning Summer School, Montreal, 2016 78

What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the function

• These can be used to guide active learning: ask about inputs for which
the uncertainty in the value of the function is very high

• In the limit, Bayesian and maximum likelihood learning converge to the
same answer

• In the short term, one needs a good prior to get good estimates of the
parameters

• Sometimes the prior is overwhelmed by the data likelihood too early.

• Using the Bayesian approach does NOT eliminate the need to do cross-
validation in general

• More on this later...

Deep Learning Summer School, Montreal, 2016 79

Logistic regression

• Suppose we represent the hypothesis itself as a logistic function of a
linear combination of inputs:

h(x) =
1

1 + exp(wTx)

This is also known as a sigmoid neuron
• Suppose we interpret h(x) as P (y = 1|x)
• Then the log-odds ratio,

ln

(
P (y = 1|x)

P (y = 0|x)

)
= wTx

which is linear (nice!)
• The optimum weights will maximize the conditional likelihood of the

outputs, given the inputs.

Deep Learning Summer School, Montreal, 2016 80

The cross-entropy error function

• Suppose we interpret the output of the hypothesis, h(xi), as the
probability that yi = 1

• Then the log-likelihood of a hypothesis h is:

logL(h) =

m∑
i=1

logP (yi|xi, h) =

m∑
i=1

{
log h(xi) if yi = 1
log(1− h(xi)) if yi = 0

=

m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

• The cross-entropy error function is the opposite quantity:

JD(w) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)

Deep Learning Summer School, Montreal, 2016 81

Cross-entropy error surface for logistic function

JD(w) = −

(
m∑
i=1

yi log σ(wTxi) + (1− yi) log(1− σ(wTxi))

)

Nice error surface, unique minimum, but cannot solve in closed form

Deep Learning Summer School, Montreal, 2016 82

Gradient descent

• The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill”.

−10

−5

0

5

10

−10

−5

0

5

10
0

500

1000

1500

2000

w1w0

S
S
Q

• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient

Deep Learning Summer School, Montreal, 2016 83

Example gradient descent traces

• For more general hypothesis classes, there may be may local optima

• In this case, the final solution may depend on the initial parameters

Deep Learning Summer School, Montreal, 2016 84

Gradient descent algorithm

• The basic algorithm assumes that ∇J is easily computed

• We want to produce a sequence of vectors w1,w2,w3, . . . with the goal
that:

– J(w1) > J(w2) > J(w3) > . . .
– limi→∞wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi − αi∇J(wi) ,

where αi > 0 is the step size or learning rate for iteration i.

Deep Learning Summer School, Montreal, 2016 85

Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w:

∇ logL(w)=
∑
i

yi
1

hw(xi)
hw(xi)(1− hw(xi))xi

+(1− yi)
1

1− hw(xi)
hw(xi)(1− hw(xi))xi(−1)

=
∑
i

xi(yi − yihw(xi)− hw(xi) + yihw(xi)) =
∑
i

(yi − hw(xi))xi

• The update rule (because we maximize) is:

w← w +α∇ logL(w) = w +α

m∑
i=1

(yi−hw(xi))xi = w +αXT (y− ŷ)

where α ∈ (0, 1) is a step-size or learning rate parameter

Deep Learning Summer School, Montreal, 2016 86

Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)

• Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

wi+1 = wi − g(wi)

g′(wi)

Deep Learning Summer School, Montreal, 2016 87

Application to machine learning

• Suppose for simplicity that the error function J has only one parameter

• We want to optimize J , so we can apply Newton’s method to find the
zeros of J ′ = d

dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)

J ′′(wi)

• Note that there is no step size parameter!

• This is a second-order method, because it requires computing the second
derivative

• But, if our error function is quadratic, this will find the global optimum
in one step!

Deep Learning Summer School, Montreal, 2016 88

Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates

• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method for logistic regression, or
Fisher scoring

Deep Learning Summer School, Montreal, 2016 89

Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent

• Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

• Inverting the Hessian explicitly is expensive, but almost never necessary

• Computing the product of a Hessian with a vector can be done in linear
time (Schraudolph, 1994)

Deep Learning Summer School, Montreal, 2016 90

Newton-Raphson for logistic regression

• Leads to a nice algorithm called iterative recursive least squares

• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi)) (you can check that
this is the form of the second derivative.

• The weight update becomes:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(Φw − y))

Deep Learning Summer School, Montreal, 2016 91

Regularization for logistic regression

• One can do regularization for logistic regression just like in the case of
linear regression

• Recall regularization makes a statement about the weights, so does not
affect the error function

• Eg: L2 regularization will have the optimization criterions:

J(w = JD(w) +
λ

2
wTw

Deep Learning Summer School, Montreal, 2016 92

Probabilistic view of logistic regression

• Consider the additive noise model we discussed before:

yi = hw(xi) + ε

where ε are drawn iid from some distribution

• At first glance, log reg does not fit very well

• We will instead think of a latent variable ŷi such that:

ŷi = hw(xi) + ε

• Then the output is generated as:

yi = 1 iff ŷi > 0

Deep Learning Summer School, Montreal, 2016 93

Recap

• Machine learning algorithms make choices of hypothesis space, error
function and optimization procedure

• In some cases, optimization is easy

• Gradient descent is a general procedure (lots more on this to come)

• All algorithms are affected by bias-variance trade-off (too much
variance=overfitting)

• Bayesian interpretation gives us a handle on what the algorithms really
do

Deep Learning Summer School, Montreal, 2016 94

