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Deep Learning for Vision

What if we treat an existing deep model as 
a black box in pedestrian detection? 

ConvNet−U−MS  
 
–  Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with 
Unsupervised Multi-Stage Feature Learning,” CVPR 2013. 
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Figure 1: Example “story” statements, questions and answers generated by a simple simulation.
Answering the question about the location of the milk requires comprehension of the actions “picked
up” and “left”. The questions also require comprehension of the time elements of the story, e.g., to
answer “where was Joe before the office?”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office
Where is Joe? A: bathroom
Where was Joe before the office? A: kitchen

Training We train in a fully supervised setting where we are given desired inputs and responses,
and the supporting sentences are labeled as such in the training data (but not in the test data, where
we are given only the inputs). That is, during training we know the best choice of both max functions
in eq. (2) and (3)5. Training is then performed with a margin ranking loss and stochastic gradient
descent (SGD). Specifically, for a given question x with true response r and supporting sentences
mo1 andmo2 (when k = 2), we minimize over model parameters UO and UR:

∑

f̄ ̸=mo1

max(0, γ − sO(x,mo1) + sO(x, f̄)) + (6)

∑

f̄ ′ ̸=mo2

max(0, γ − sO([x,mo1 ],mo2 ]) + sO([x,mo1 ], f̄ ′])) + (7)

∑

r̄ ̸=r

max(0, γ − sR([x,mo1 ,mo2 ], r) + sR([x,mo1 ,mo2 ], r̄])) (8)

where f̄ , f̄ ′ and r̄ are all other choices than the correct labels, and γ is the margin. At every step
of SGD we sample f̄ , f̄ ′, r̄ rather than compute the whole sum for each training example, following
e.g., Weston et al. (2011).

In the case of employing an RNN for the R component of our MemNN (instead of using a single
word response as above) we replace the last term with the standard log likelihood used in a language
modeling task, where the RNN is fed the sequence [x, o1, o2, r]. At test time we output its prediction
r given [x, o1, o2]. In contrast the absolute simplest model, that of using k = 1 and outputting the
located memorymo1 as response r, would only use the first term to train.

In the following subsections we consider some extensions of our basic model.

3.2 WORD SEQUENCES AS INPUT

If input is at the word rather than sentence level, that is words arrive in a stream (as is often done, e.g.,
with RNNs) and not already segmented as statements and questions, we need to modify the approach
we have so far described. We hence add a “segmentation” function, to be learned, which takes as in-
put the last sequence of words that have so far not been segmented and looks for breakpoints. When
the segmenter fires (indicates the current sequence is a segment) we write that sequence to memory,
and can then proceed as before. The segmenter is modeled similarly to our other components, as an
embedding model of the form:

seg(c) = W⊤
segUSΦseg(c) (9)

whereWseg is a vector (effectively the parameters of a linear classifier in embedding space), and c is
the sequence of input words represented as bag of words using a separate dictionary. If seg(c) > γ,
where γ is the margin, then this sequence is recognised as a segment. In this way, our MemNN has
a learning component in its write operation. We consider this segmenter a first proof of concept:
of course, one could design something much more sophisticated. Further details on the training
mechanism are given in Appendix B.

5 However, note that methods like RNNs and LSTMs cannot easily use this information.
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However, not all contextual models reach this level of performance. We find the way in which wider
context is represented in memory to be critical. If memories are encoded from a small window
around important words in the context, there is an optimal size for memory representations between
single words and entire sentences, that depends on the class of word to be predicted. We have nick-
named this effect the Goldilocks Principle after the well-known English fairytale (Hassall, 1904).
In the case of Memory Networks, we also find that self-supervised training of the memory access
mechanism yields a clear performance boost when predicting named entities, a class of word that
has typically posed problems for neural language models. Indeed, we train a Memory Network with
these design features to beat the best reported performance on the CNN QA test of entity prediction
from news articles (Hermann et al., 2015).

2 THE CHILDREN’S BOOK TEST

The experiments in this paper are based on a new resource, the Children’s Book Test, designed to
measure directly how well language models can exploit wider linguistic context. The CBT is built
from books that are freely available thanks to Project Gutenberg.1 Using children’s books guarantees
a clear narrative structure, which can make the role of context more salient. After allocating books
to either training, validation or test sets, we formed example ‘questions’ (denoted x) from chapters
in the book by enumerating 21 consecutive sentences.

In each question, the first 20 sentences form the context (denoted S), and a word (denoted a) is
removed from the 21st sentence, which becomes the query (denoted q). Models must identify the
answer word a among a selection of 10 candidate answers (denoted C) appearing in the context
sentences and the query. Thus, for a question answer pair (x, a): x = (q, S, C); S is an ordered
list of sentences; q is a sentence (an ordered list q = q1, . . . ql of words) containing a missing word
symbol; C is a bag of unique words such that a 2 C, its cardinality |C| is 10 and every candidate
word w 2 C is such that w 2 q [ S. An example question is given in Figure 1.

Figure 1: A Named Entity question from the CBT (right), created from a book passage (left, in
blue). In this case, the candidate answers C are both entities and common nouns, since fewer than
ten named entities are found in the context.

For finer-grained analyses, we evaluated four classes of question by removing distinct types of word:
Named Entities, (Common) Nouns, Verbs and Prepositions (based on output from the POS tagger
and named-entity-recogniser in the Stanford Core NLP Toolkit (Manning et al., 2014)). For a given
question class, the nine incorrect candidates are selected at random from words in the context having
the same type as the answer. The exact number of questions in the training, validation and test sets is
shown in Table 1. Full details of the candidate selection algorithm (e.g. how candidates are selected
if there are insufficient words of a given type in the context) can be found with the dataset.2

1
https://www.gutenberg.org/

2The dataset can be downloaded from http://fb.ai/babi/.

2

Scenario 2



Published as a conference paper at ICLR 2016

However, not all contextual models reach this level of performance. We find the way in which wider
context is represented in memory to be critical. If memories are encoded from a small window
around important words in the context, there is an optimal size for memory representations between
single words and entire sentences, that depends on the class of word to be predicted. We have nick-
named this effect the Goldilocks Principle after the well-known English fairytale (Hassall, 1904).
In the case of Memory Networks, we also find that self-supervised training of the memory access
mechanism yields a clear performance boost when predicting named entities, a class of word that
has typically posed problems for neural language models. Indeed, we train a Memory Network with
these design features to beat the best reported performance on the CNN QA test of entity prediction
from news articles (Hermann et al., 2015).

2 THE CHILDREN’S BOOK TEST

The experiments in this paper are based on a new resource, the Children’s Book Test, designed to
measure directly how well language models can exploit wider linguistic context. The CBT is built
from books that are freely available thanks to Project Gutenberg.1 Using children’s books guarantees
a clear narrative structure, which can make the role of context more salient. After allocating books
to either training, validation or test sets, we formed example ‘questions’ (denoted x) from chapters
in the book by enumerating 21 consecutive sentences.

In each question, the first 20 sentences form the context (denoted S), and a word (denoted a) is
removed from the 21st sentence, which becomes the query (denoted q). Models must identify the
answer word a among a selection of 10 candidate answers (denoted C) appearing in the context
sentences and the query. Thus, for a question answer pair (x, a): x = (q, S, C); S is an ordered
list of sentences; q is a sentence (an ordered list q = q1, . . . ql of words) containing a missing word
symbol; C is a bag of unique words such that a 2 C, its cardinality |C| is 10 and every candidate
word w 2 C is such that w 2 q [ S. An example question is given in Figure 1.

Figure 1: A Named Entity question from the CBT (right), created from a book passage (left, in
blue). In this case, the candidate answers C are both entities and common nouns, since fewer than
ten named entities are found in the context.

For finer-grained analyses, we evaluated four classes of question by removing distinct types of word:
Named Entities, (Common) Nouns, Verbs and Prepositions (based on output from the POS tagger
and named-entity-recogniser in the Stanford Core NLP Toolkit (Manning et al., 2014)). For a given
question class, the nine incorrect candidates are selected at random from words in the context having
the same type as the answer. The exact number of questions in the training, validation and test sets is
shown in Table 1. Full details of the candidate selection algorithm (e.g. how candidates are selected
if there are insufficient words of a given type in the context) can be found with the dataset.2

1
https://www.gutenberg.org/

2The dataset can be downloaded from http://fb.ai/babi/.

2

Scenario 2



Published as a conference paper at ICLR 2016

However, not all contextual models reach this level of performance. We find the way in which wider
context is represented in memory to be critical. If memories are encoded from a small window
around important words in the context, there is an optimal size for memory representations between
single words and entire sentences, that depends on the class of word to be predicted. We have nick-
named this effect the Goldilocks Principle after the well-known English fairytale (Hassall, 1904).
In the case of Memory Networks, we also find that self-supervised training of the memory access
mechanism yields a clear performance boost when predicting named entities, a class of word that
has typically posed problems for neural language models. Indeed, we train a Memory Network with
these design features to beat the best reported performance on the CNN QA test of entity prediction
from news articles (Hermann et al., 2015).

2 THE CHILDREN’S BOOK TEST

The experiments in this paper are based on a new resource, the Children’s Book Test, designed to
measure directly how well language models can exploit wider linguistic context. The CBT is built
from books that are freely available thanks to Project Gutenberg.1 Using children’s books guarantees
a clear narrative structure, which can make the role of context more salient. After allocating books
to either training, validation or test sets, we formed example ‘questions’ (denoted x) from chapters
in the book by enumerating 21 consecutive sentences.

In each question, the first 20 sentences form the context (denoted S), and a word (denoted a) is
removed from the 21st sentence, which becomes the query (denoted q). Models must identify the
answer word a among a selection of 10 candidate answers (denoted C) appearing in the context
sentences and the query. Thus, for a question answer pair (x, a): x = (q, S, C); S is an ordered
list of sentences; q is a sentence (an ordered list q = q1, . . . ql of words) containing a missing word
symbol; C is a bag of unique words such that a 2 C, its cardinality |C| is 10 and every candidate
word w 2 C is such that w 2 q [ S. An example question is given in Figure 1.

Figure 1: A Named Entity question from the CBT (right), created from a book passage (left, in
blue). In this case, the candidate answers C are both entities and common nouns, since fewer than
ten named entities are found in the context.

For finer-grained analyses, we evaluated four classes of question by removing distinct types of word:
Named Entities, (Common) Nouns, Verbs and Prepositions (based on output from the POS tagger
and named-entity-recogniser in the Stanford Core NLP Toolkit (Manning et al., 2014)). For a given
question class, the nine incorrect candidates are selected at random from words in the context having
the same type as the answer. The exact number of questions in the training, validation and test sets is
shown in Table 1. Full details of the candidate selection algorithm (e.g. how candidates are selected
if there are insufficient words of a given type in the context) can be found with the dataset.2

1
https://www.gutenberg.org/

2The dataset can be downloaded from http://fb.ai/babi/.

2

Scenario 2

Baxter



Published as a conference paper at ICLR 2016

Long-Term Shaolin Soccer directed by Stephen Chow
Memories hi Shaolin Soccer written by Stephen Chow

Shaolin Soccer starred actors Stephen Chow
Shaolin Soccer release year 2001
Shaolin Soccer has genre comedy
Shaolin Soccer has tags martial arts, kung fu soccer, stephen chow
Kung Fu Hustle directed by Stephen Chow
Kung Fu Hustle written by Stephen Chow
Kung Fu Hustle starred actors Stephen Chow
Kung Fu Hustle has genre comedy action
Kung Fu Hustle has imdb votes famous
Kung Fu Hustle has tags comedy, action, martial arts, kung fu, china, soccer, hong kong, stephen chow
The God of Cookery directed by Stephen Chow
The God of Cookery written by Stephen Chow
The God of Cookery starred actors Stephen Chow
The God of Cookery has tags hong kong Stephen Chow
From Beijing with Love directed by Stephen Chow
From Beijing with Love written by Stephen Chow
From Beijing with Love starred actors Stephen Chow, Anita Yuen

. . .<and more> . . .
Short-Term cu1 1) I’m looking a fun comedy to watch tonight, any ideas?
Memories cr1 2) Have you seen Shaolin Soccer? That was zany and great.. really funny but in a whacky way.
Input cu2 3) Yes! Shaolin Soccer and Kung Fu Hustle are so good I really need to find some more Stephen Chow

films I feel like there is more awesomeness out there that I haven’t discovered yet ...
Output y 4) God of Cookery is pretty great, one of his mid 90’s hong kong martial art comedies.

Table 5: Memory Network long-term and short-term memories. Blue underlined text indicates
those words that hashed into the knowledge base to recall sentences from the long-term memory.
Those, along with the recent short-term context (lines labeled 1 and 2) are used as input memories
to the Memory Network along with the input (labeled 3). The desired goal is to output dialog line 4.

3.2 SUPERVISED EMBEDDING MODELS

While one of the major uses of word embedding models is to learn unsupervised embeddings over
large unlabeled datasets such as in Word2Vec (Mikolov et al., 2013) there are also very effective
word embedding models for training supervised models when labeled data is available. The sim-
plest approach which works suprisingly well is to sum the word embeddings of the input and the
target independently and then compare them with a similarity metric such as inner product or co-
sine similarity. A ranking loss is used to ensure the correct targets are ranked higher than any other
targets. Several variants of this approach exist. For matching two documents supervised semantic
indexing (SSI) was shown to be superior to unsupervised latent semantic indexing (LSI) (Bai et al.,
2009). Similar methods were shown to outperform SVD for recommendation (Weston et al., 2013).
However, we do not expect this method to work as well on question answering tasks, as all the
memorization must occur in the individual word embeddings, which was shown to perform poorly
in (Bordes et al., 2014). For example, consider asking the question “who was born in Paris?” and re-
quiring the word embedding for Paris to effectively contain all the pertinent information. However,
for rarer items requiring less storage, performance may not be as degraded. In general we believe
this is a surprisingly strong baseline that is often neglected in evaluations. Our implementation
corresponds to a Memory Network with no attention over memory.

3.3 RECURRENT LANGUAGE MODELS

Recurrent Neural Networks (RNNs) have proven successful at several tasks involving natural
language, language modeling (Mikolov et al., 2011), and have been applied recently to dialog
(Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). LSTMs are not known however for
tasks such as QA or item recommendation, and so we expect them to find our datasets challenging.

There are a large number of variants of RNNs, including Long-Short Term Memory activa-
tion units (LSTMs) (Hochreiter & Schmidhuber, 1997), bidirectional LSTMs (Graves et al., 2012),
seq2seq models (Sutskever et al., 2014), RNNs that take into account the document context
(Mikolov & Zweig, 2012) and RNNs that perform attention over their input in various different
ways (Bahdanau et al., 2015; Hermann et al., 2015; Rush et al., 2015). Evaluating all these variants
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Short-Term cu1 1) I’m looking a fun comedy to watch tonight, any ideas?
Memories cr1 2) Have you seen Shaolin Soccer? That was zany and great.. really funny but in a whacky way.
Input cu2 3) Yes! Shaolin Soccer and Kung Fu Hustle are so good I really need to find some more Stephen Chow

films I feel like there is more awesomeness out there that I haven’t discovered yet ...
Output y 4) God of Cookery is pretty great, one of his mid 90’s hong kong martial art comedies.
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those words that hashed into the knowledge base to recall sentences from the long-term memory.
Those, along with the recent short-term context (lines labeled 1 and 2) are used as input memories
to the Memory Network along with the input (labeled 3). The desired goal is to output dialog line 4.
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While one of the major uses of word embedding models is to learn unsupervised embeddings over
large unlabeled datasets such as in Word2Vec (Mikolov et al., 2013) there are also very effective
word embedding models for training supervised models when labeled data is available. The sim-
plest approach which works suprisingly well is to sum the word embeddings of the input and the
target independently and then compare them with a similarity metric such as inner product or co-
sine similarity. A ranking loss is used to ensure the correct targets are ranked higher than any other
targets. Several variants of this approach exist. For matching two documents supervised semantic
indexing (SSI) was shown to be superior to unsupervised latent semantic indexing (LSI) (Bai et al.,
2009). Similar methods were shown to outperform SVD for recommendation (Weston et al., 2013).
However, we do not expect this method to work as well on question answering tasks, as all the
memorization must occur in the individual word embeddings, which was shown to perform poorly
in (Bordes et al., 2014). For example, consider asking the question “who was born in Paris?” and re-
quiring the word embedding for Paris to effectively contain all the pertinent information. However,
for rarer items requiring less storage, performance may not be as degraded. In general we believe
this is a surprisingly strong baseline that is often neglected in evaluations. Our implementation
corresponds to a Memory Network with no attention over memory.
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Recurrent Neural Networks (RNNs) have proven successful at several tasks involving natural
language, language modeling (Mikolov et al., 2011), and have been applied recently to dialog
(Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). LSTMs are not known however for
tasks such as QA or item recommendation, and so we expect them to find our datasets challenging.

There are a large number of variants of RNNs, including Long-Short Term Memory activa-
tion units (LSTMs) (Hochreiter & Schmidhuber, 1997), bidirectional LSTMs (Graves et al., 2012),
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(Mikolov & Zweig, 2012) and RNNs that perform attention over their input in various different
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User Bot
Hi!

Hello. What can I help you with today? 

I’d like to book a table for 6 in an expensive restaurant which serves French food. 

I’m on it. Where should it be? 

In London

Ok. Let me look into some options for you.

Actually I would prefer for four.

Sure. Is there anything else to update? 

No.

Ok. Let me look into some options for you. 

What do you think of The_Fancy_Pub

No. I don’t like that. 

Sure. Let me find another option.

How about The_palace

Lets do it.

Great. Let me make the reservation. 

Can you provide me with the address? 

Here it is: The_Palace_Address 
You roci

You rock!

Is there anything else i can help you with

No. Thanks. 

You are welcome.

Scenario 4



What is Required?

Not all problems can be mapped to y = f(x) 
The model needs to remember external context 

Given an input, the model needs to know where to look for in the context 
It needs to know what to look for in the context 

It needs to know how to reason using this external context 
It needs to handle the potentially changing external context

X

Y = fW (X)

fW



Not all problems can be mapped to y = f(x) 
The model needs to remember external context 

Given an input, the model needs to know where to look for in the context 
It needs to know what to look for in the context 

It needs to know how to reason using this external context 
It needs to handle the potentially changing external context

X

Y = fW (X)

fW

Needs to have a notion of  
Memory

What is Required?



Possible Solution

Hidden states of RNNs have memory 

Run an RNN on the context/story/KB and get its 
representation 

Use the representation to map question to answers/response 

We know this will not scale!



Possible Solution

Hidden states of RNNs have memory 

Run an RNN on the context/story/KB and get its 
representation 

Use the representation to map question to answers/response 

We know this will not scale!



Outline
Memory Networks 

Fully Supervised MemNNs 
End2End MemNNs 
Key-Value MemNNs 

Architecture - How to reason - Advantages/Disadvantages 

Neural Turing Machines 
Architecture - How to reason - Advantages/Disadvantages 

Stack/List/Queue Augmented RNNs 
If time permits - otherwise you’ll hear about this in lot more detail tomorrow



General Architecture

Controller takes external inputs and controls the heads 
Heads read from and write to the memory 

Controller combines memory reads with external input to 
produce an external output 

What goes inside each of these components defines the model

Controller

Read Head

Memory BankWrite Head

X

Y



Memory Networks
Class of models which combine large memory with learning 

component which can read and write to it 
Incorporates reasoning via attention over memory 

The model framework is flexible enough to store rich 
representations of input in memory 

Models are scalable - can store and read large amount of 
data in memory - entire KB 

Memory specification is flexible - can have both long-term 
memory and short-term memory - consider dialog modeling



Controller

Read Head

Memory BankWrite Head

X

Y Memory Networks

Step 1: controller converts incoming data to internal 
feature representation (I) 

Step 2: write head updates the memories and writes the 
data into memory (G) 

Step 3: given the external input, the read head reads 
the memory and fetches relevant data (O) 

Step 4: controller combines the external data with 
memory contents returned by read head to generate 

output (O, R)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

Context

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

Context

Question, Answer Pair

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

Context

Question, Answer Pair
Supporting Fact

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Step 1 
Store the representations of facts in the memory 
Free to choose what representations you store 

Individual words - window of words - full sentences 
Bag-of-words - CNN - RNN - LSTM

Memories

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Step 2 
Represent the question using similar function. 

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Step 3 
Define a scoring function S and score the memories with the question 

Scoring function should be such that it gives a high score to the relevant 
memories:  

S(Where is John?, John went to the kitchen.) > S(Where is John?, Bob travelled back home.) 

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Step 3 
Define a scoring function S and score the memories with the question 

Scoring function should be such that it gives a high score to the relevant 
memories:  

S(Where is John?, John went to the kitchen.) > S(Where is John?, Bob travelled back home.) 

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)

Example Choices

qU tUd

Gw(q, d)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Step 4 
Define another parametric function which maps the current question 

and relevant memories to the final response 
In the first experiments, this was another scoring function which 

scored all possible responses against the given input and memories 

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)



John was in the bathroom. 
Bob was in the office. 
John went to kitchen. 

Bob travelled back home. 
Where is John? A: kitchen

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Inference 
Given the question, pick the memory which scores the highest 

Use the selected memory and the question to generate the 
answer

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)



Training 
It involves training the memory 

representations and the scoring functions 
to generate answer 

We do so my minimizing the following loss

L =
X

f̄ 6=m

o1

max(0, � � S

o

(x,m
o1) + S

o

(x, f̄))+

X

r̄ 6=r

max(0, � � S

r

([x,m
o1], r) + S

r

([x,m
o1], r̄))

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Memories

x = f(Where is John?)

Memory Networks (Fully Supervised)



Training 
It involves training the memory 

representations and the scoring functions 
to generate answer 

We do so my minimizing the following loss
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mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Memories

x = f(Where is John?)
We had access to true supporting fact during training 

that’s what we mean by “Fully Supervised”

S

o

: scoring function for memories

S

r

: scoring function for responses

Memory Networks (Fully Supervised)



Training 
It involves training the memory 

representations and the scoring functions 
to generate answer 

We do so my minimizing the following loss

L =
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mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

Memories

x = f(Where is John?)
We had access to true supporting fact during training 

that’s what we mean by “Fully Supervised”

S

o

: scoring function for memories

S

r

: scoring function for responses

This was the case when we have a single supporting fact!

Memory Networks (Fully Supervised)
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The current loss function will not work

But the cool thing is that we can iterate! 

Memory Networks (Fully Supervised)

John is in the playground. 
Bob is in the office.  

John picked up the football.  
Bob went to the kitchen.  

Where is the football? A: playground.
Supporting Fact 1

Supporting Fact 2
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John is in the playground. 
Bob is in the office.  

John picked up the football.  
Bob went to the kitchen.  

Where is the football? A: playground.
Supporting Fact 1
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We call these “Hops” 
And they are not 

limited to two

Memory Networks (Fully Supervised)



bAbI Dataset: Slight Digression
While working on MemNNs we also defined 20 simulated 
tasks to test models which have long-term memory — can 

do complex reasoning using those memories 
The objective was to generate a set of tasks which can act 

“unit tests” in software engineering 
Each task would test a single (or may be a couple of) “skills” 

which we think are natural to humans w.r.t. text 
understanding and reasoning 

Language skills - conjunction, coreference, negation etc 
Reasoning skills - counting, path finding etc



bAbI Dataset: Simulator



bAbI Dataset: Simulator



bAbI Dataset
Factoid QA with Single Supporting Fact 

Questions where a single supporting fact is used and it is 
given in the context 

We test this by asking for location of a person

Task (1) Factoid QA with Single 
Supporting Fact (“where is actor”) 

Our first task consists of  questions where a single supporting fact, 
previously given, provides the answer. 

We test simplest case of  this, by asking for the location of  a person. 

A small sample of  the task is thus: 

We could use supporting facts for supervision at training 
time, but are not known at test time (we call this “strong 
supervision”). However weak supervision is much better!! 

John is in the playground. 
Bob is in the office. 
Where is John? A:playground 

SUPPORTING FACT 



bAbI Dataset
Factoid QA with Two 

Supporting Facts 
Questions where two 

supporting facts have to 
be chained together in 
order to find the answer

(2) Factoid QA with Two Supporting 
Facts (“where is actor+object”) 

A harder task is to answer questions where two supporting statements 
have to be chained to answer the question: 

 

 

 

John is in the playground. 
Bob is in the office. 
John picked up the football. 
Bob went to the kitchen. 
Where is the football?  A:playground 

To answer the question Where is the football? both John picked up the 
football and John is in the playground are supporting facts. 
 
. 
 

SUPPORTING FACT 

SUPPORTING FACT 

Factoid QA with Three 
Supporting Facts 

Questions where Three 
supporting facts have to be 
chained together in order to 

find the answer
(3) Factoid QA with Three 

Supporting Facts 

Similarly, one can make a task with three supporting facts: 

 

 
John picked up the apple. 
John went to the office. 
John went to the kitchen. 
John dropped the apple. 
Where was the apple before the kitchen? A:office 
 

The first three statements are all required to answer this. 



bAbI Dataset
Two Argument Relations: Subject vs. Object 

Questions where the model learns the ability to differentiate and 
recognize subjects and objects 

We make the problem harder by having sentences which have re-
ordered words 

For example the two questions below have same words but 
different meaning

(4) Two Argument Relations: 
Subject vs. Object 

To answer questions the ability to differentiate and recognize subjects 
and objects is crucial. 

We consider the extreme case: sentences feature re-ordered words: 

 The office is north of  the bedroom. 
The bedroom is north of  the bathroom. 
What is north of  the bedroom? A:office 
What is the bedroom north of? A:bathroom 

Note that the two questions above have exactly the same words, but in 
a different order, and different answers. 
 
So a bag-of-words will not work. 



bAbI Dataset

Three Argument Relations 
Questions where the model learns the ability to differentiate 

and recognize two subjects and an object
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Table 1: Sample statements and questions from tasks 1 to 10.

Task 1: Single Supporting Fact Task 2: Two Supporting Facts
Mary went to the bathroom. John is in the playground.
John moved to the hallway. John picked up the football.
Mary travelled to the office. Bob went to the kitchen.
Where is Mary? A:office Where is the football? A:playground

Task 3: Three Supporting Facts Task 4: Two Argument Relations
John picked up the apple. The office is north of the bedroom.
John went to the office. The bedroom is north of the bathroom.
John went to the kitchen. The kitchen is west of the garden.
John dropped the apple. What is north of the bedroom? A: office
Where was the apple before the kitchen? A:office What is the bedroom north of? A: bathroom

Task 5: Three Argument Relations Task 6: Yes/No Questions
Mary gave the cake to Fred. John moved to the playground.
Fred gave the cake to Bill. Daniel went to the bathroom.
Jeff was given the milk by Bill. John went back to the hallway.
Who gave the cake to Fred? A: Mary Is John in the playground? A:no
Who did Fred give the cake to? A: Bill Is Daniel in the bathroom? A:yes

Task 7: Counting Task 8: Lists/Sets
Daniel picked up the football. Daniel picks up the football.
Daniel dropped the football. Daniel drops the newspaper.
Daniel got the milk. Daniel picks up the milk.
Daniel took the apple. John took the apple.
How many objects is Daniel holding? A: two What is Daniel holding? milk, football

Task 9: Simple Negation Task 10: Indefinite Knowledge
Sandra travelled to the office. John is either in the classroom or the playground.
Fred is no longer in the office. Sandra is in the garden.
Is Fred in the office? A:no Is John in the classroom? A:maybe
Is Sandra in the office? A:yes Is John in the office? A:no

Simple Negation and Indefinite Knowledge Tasks 9 and 10 test slightly more complex natural
language constructs. Task 9 tests one of the simplest forms of negation, that of supporting facts that
imply a statement is false e.g. “Fred is no longer in the office” rather than “Fred travelled to the
office”. (In this case, task 6 (yes/no questions) is a prerequisite to the task.) Task 10 tests if we
can model statements that describe possibilities rather than certainties, e.g. “John is either in the
classroom or the playground.”, where in that case the answer is “maybe” to the question “Is John
in the classroom?”.

Basic Coreference, Conjunctions and Compound Coreference Task 11 tests the simplest type
of coreference, that of detecting the nearest referent, e.g. “Daniel was in the kitchen. Then he went
to the studio.”. Real-world data typically addresses this as a labeling problem and studies more
sophisticated phenomena (Soon et al., 2001), whereas we evaluate it as in all our other tasks as a
question answering problem. Task 12 (conjunctions) tests referring to multiple subjects in a single
statement, e.g. “Mary and Jeff went to the kitchen.”. Task 13 tests coreference in the case where
the pronoun can refer to multiple actors, e.g. “Daniel and Sandra journeyed to the office. Then they
went to the garden”.

Time Reasoning While our tasks so far have included time implicitly in the order of the state-
ments, task 14 tests understanding the use of time expressions within the statements, e.g. “In the
afternoon Julie went to the park. Yesterday Julie was at school.”, followed by questions about the
order of events such as “Where was Julie before the park?”. Real-world datasets address the task of
evaluating time expressions typically as a labeling, rather than a QA task, see e.g. UzZaman et al.
(2012).

Basic Deduction and Induction Task 15 tests basic deduction via inheritance of properties, e.g.
“Sheep are afraid of wolves. Gertrude is a sheep. What is Gertrude afraid of?”. Task 16 similarly
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bAbI Dataset
Yes/No Questions 

Questions where the model learns answer true/false type 
questions 

Start with the simple case of a single supporting fact

(6) Yes/No Questions 
!  This task tests, in the simplest case possible (with a single supporting 

fact) the ability of  a model to answer true/false type questions: 

John is in the playground. 
Daniel picks up the milk. 
Is John in the classroom? A:no 
Does Daniel have the milk? A:yes 



bAbI Dataset

Counting 
Questions where the model 

learns to count

(8) Lists/Sets 
!  Tests ability to produce lists/sets: 

Daniel picks up the football. 
Daniel drops the newspaper. 
Daniel picks up the milk. 
What is Daniel holding? A:milk,football 

Daniel picked up the football. 
Daniel dropped the football. 
Daniel got the milk. 
Daniel took the apple. 
How many objects is Daniel holding? A:two 

(7) Counting 
Tests ability to count sets: 

Lists/Sets 
Questions where the model 

learns to generate a set or list 
of answers(8) Lists/Sets 

!  Tests ability to produce lists/sets: 

Daniel picks up the football. 
Daniel drops the newspaper. 
Daniel picks up the milk. 
What is Daniel holding? A:milk,football 

Daniel picked up the football. 
Daniel dropped the football. 
Daniel got the milk. 
Daniel took the apple. 
How many objects is Daniel holding? A:two 

(7) Counting 
Tests ability to count sets: 



bAbI Dataset

Indefinite Knowledge 
Questions where the model learns to answer under 

uncertainty
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Table 1: Sample statements and questions from tasks 1 to 10.

Task 1: Single Supporting Fact Task 2: Two Supporting Facts
Mary went to the bathroom. John is in the playground.
John moved to the hallway. John picked up the football.
Mary travelled to the office. Bob went to the kitchen.
Where is Mary? A:office Where is the football? A:playground

Task 3: Three Supporting Facts Task 4: Two Argument Relations
John picked up the apple. The office is north of the bedroom.
John went to the office. The bedroom is north of the bathroom.
John went to the kitchen. The kitchen is west of the garden.
John dropped the apple. What is north of the bedroom? A: office
Where was the apple before the kitchen? A:office What is the bedroom north of? A: bathroom

Task 5: Three Argument Relations Task 6: Yes/No Questions
Mary gave the cake to Fred. John moved to the playground.
Fred gave the cake to Bill. Daniel went to the bathroom.
Jeff was given the milk by Bill. John went back to the hallway.
Who gave the cake to Fred? A: Mary Is John in the playground? A:no
Who did Fred give the cake to? A: Bill Is Daniel in the bathroom? A:yes

Task 7: Counting Task 8: Lists/Sets
Daniel picked up the football. Daniel picks up the football.
Daniel dropped the football. Daniel drops the newspaper.
Daniel got the milk. Daniel picks up the milk.
Daniel took the apple. John took the apple.
How many objects is Daniel holding? A: two What is Daniel holding? milk, football

Task 9: Simple Negation Task 10: Indefinite Knowledge
Sandra travelled to the office. John is either in the classroom or the playground.
Fred is no longer in the office. Sandra is in the garden.
Is Fred in the office? A:no Is John in the classroom? A:maybe
Is Sandra in the office? A:yes Is John in the office? A:no

Simple Negation and Indefinite Knowledge Tasks 9 and 10 test slightly more complex natural
language constructs. Task 9 tests one of the simplest forms of negation, that of supporting facts that
imply a statement is false e.g. “Fred is no longer in the office” rather than “Fred travelled to the
office”. (In this case, task 6 (yes/no questions) is a prerequisite to the task.) Task 10 tests if we
can model statements that describe possibilities rather than certainties, e.g. “John is either in the
classroom or the playground.”, where in that case the answer is “maybe” to the question “Is John
in the classroom?”.

Basic Coreference, Conjunctions and Compound Coreference Task 11 tests the simplest type
of coreference, that of detecting the nearest referent, e.g. “Daniel was in the kitchen. Then he went
to the studio.”. Real-world data typically addresses this as a labeling problem and studies more
sophisticated phenomena (Soon et al., 2001), whereas we evaluate it as in all our other tasks as a
question answering problem. Task 12 (conjunctions) tests referring to multiple subjects in a single
statement, e.g. “Mary and Jeff went to the kitchen.”. Task 13 tests coreference in the case where
the pronoun can refer to multiple actors, e.g. “Daniel and Sandra journeyed to the office. Then they
went to the garden”.

Time Reasoning While our tasks so far have included time implicitly in the order of the state-
ments, task 14 tests understanding the use of time expressions within the statements, e.g. “In the
afternoon Julie went to the park. Yesterday Julie was at school.”, followed by questions about the
order of events such as “Where was Julie before the park?”. Real-world datasets address the task of
evaluating time expressions typically as a labeling, rather than a QA task, see e.g. UzZaman et al.
(2012).

Basic Deduction and Induction Task 15 tests basic deduction via inheritance of properties, e.g.
“Sheep are afraid of wolves. Gertrude is a sheep. What is Gertrude afraid of?”. Task 16 similarly
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bAbI Dataset
Basic Coreference 

Questions where the model 
learns to recognize 

coreferences of a single 
entity

Compound Coreferences 
Questions where the model 

learns to recognize 
coreferences of multiple 

entities
(11) Basic Coreference (nearest referent) 

Daniel was in the kitchen. 
Then he went to the studio. 
Sandra was in the office. 
Where is Daniel? A:studio 

Daniel and Sandra journeyed to the office. 
Then they went to the garden. 
Sandra and John travelled to the kitchen. 
After that they moved to the hallway. 
Where is Daniel? A:garden 

(13) Compound Coreference 

(11) Basic Coreference (nearest referent) 

Daniel was in the kitchen. 
Then he went to the studio. 
Sandra was in the office. 
Where is Daniel? A:studio 

Daniel and Sandra journeyed to the office. 
Then they went to the garden. 
Sandra and John travelled to the kitchen. 
After that they moved to the hallway. 
Where is Daniel? A:garden 

(13) Compound Coreference 



bAbI Dataset
Time Manipulation 

While we have an implicit 
notion of time already in our 

tasks, this particular one 
tests understanding the use 
of explicit time expressions

Basic Deduction 
Questions where the model 
learns basic deduction via 
inheritance of properties(14) Time manipulation 

!  While our tasks so far have included time implicitly in the order of  the 
statements, this task tests understanding the use of  time expressions 
within the statements: 

In the afternoon Julie went to the park.  
Yesterday Julie was at school. 
Julie went to the cinema this evening. 
Where did Julie go after the park? A:cinema 

Much harder difficulty: adapt a real time expression labeling dataset 
into a question answer format, e.g. Uzzaman et al., ‘12.  
 

(15) Basic Deduction 
!  This task tests basic deduction via inheritance of  properties: 

Sheep are afraid of  wolves. 
Cats are afraid of  dogs. 
Mice are afraid of  cats. 
Gertrude is a sheep. 
What is Gertrude afraid of? A:wolves 

Deduction should prove difficult for MemNNs because it effectively 
involves search, although our setup might be simple enough for it. 
 

Deduction for MemNNs should be hard because it 
effectively involves search. 



bAbI Dataset
Positional Reasoning 

Questions where the model 
learns to do spatial reasoning

Reasoning About Size 
Questions where the model 

learns to reason about relative 
sizes of objects. 

Inspired by the commonsense 
reasoning examples in the 

Winograd Schema Challenge

Task of three supporting facts and Yes/No questions 
are prerequisites. 

(17) Positional Reasoning 
!  This task tests spatial reasoning, one of  many components of  the 

classical SHRDLU system: 

The triangle is to the right of  the blue square. 
The red square is on top of  the blue square. 
The red sphere is to the right of  the blue square. 
Is the red sphere to the right of  the blue square? A:yes 
Is the red square to the left of  the triangle? A:yes 

(18) Reasoning about size 
!  This tasks requires reasoning about relative size of  objects and is 

inspired by the commonsense reasoning examples in the Winograd 
schema challenge: 

The football fits in the suitcase. 
The suitcase fits in the cupboard. 
The box of  chocolates is smaller than the football. 
Will the box of  chocolates fit in the suitcase? A:yes 

Tasks 3 (three supporting facts) and 6 (Yes/No) are prerequisites. 
 



bAbI Dataset

Path Finding 
Questions in which the model learns to find a path 

between two locations. 

(19) Path Finding 
!  In this task the goal is to find the path between locations: 

The kitchen is north of  the hallway. 
The den is east of  the hallway. 
How do you go from den to kitchen?  A:west,north 

This is going to prove difficult for MemNNs because it effectively 
involves search. 

Path Finding for MemNNs should be hard because it 
effectively involves search. 



bAbI Dataset
Agent’s Motivation 

Questions in which the model learns to find the reason 
behind an agent’s action
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Table 2: Sample statements and questions from tasks 11 to 20.

Task 11: Basic Coreference Task 12: Conjunction
Daniel was in the kitchen. Mary and Jeff went to the kitchen.
Then he went to the studio. Then Jeff went to the park.
Sandra was in the office. Where is Mary? A: kitchen
Where is Daniel? A:studio Where is Jeff? A: park

Task 13: Compound Coreference Task 14: Time Reasoning
Daniel and Sandra journeyed to the office. In the afternoon Julie went to the park.
Then they went to the garden. Yesterday Julie was at school.
Sandra and John travelled to the kitchen. Julie went to the cinema this evening.
After that they moved to the hallway. Where did Julie go after the park? A:cinema
Where is Daniel? A: garden Where was Julie before the park? A:school

Task 15: Basic Deduction Task 16: Basic Induction
Sheep are afraid of wolves. Lily is a swan.
Cats are afraid of dogs. Lily is white.
Mice are afraid of cats. Bernhard is green.
Gertrude is a sheep. Greg is a swan.
What is Gertrude afraid of? A:wolves What color is Greg? A:white

Task 17: Positional Reasoning Task 18: Size Reasoning
The triangle is to the right of the blue square. The football fits in the suitcase.
The red square is on top of the blue square. The suitcase fits in the cupboard.
The red sphere is to the right of the blue square. The box is smaller than the football.
Is the red sphere to the right of the blue square? A:yes Will the box fit in the suitcase? A:yes
Is the red square to the left of the triangle? A:yes Will the cupboard fit in the box? A:no

Task 19: Path Finding Task 20: Agent’s Motivations
The kitchen is north of the hallway. John is hungry.
The bathroom is west of the bedroom. John goes to the kitchen.
The den is east of the hallway. John grabbed the apple there.
The office is south of the bedroom. Daniel is hungry.
How do you go from den to kitchen? A: west, north Where does Daniel go? A:kitchen
How do you go from office to bathroom? A: north, west Why did John go to the kitchen? A:hungry

tests basic induction via inheritance of properties. A full analysis of induction and deduction is
clearly beyond the scope of this work, and future tasks should analyse further, deeper aspects.

Positional and Size Reasoning Task 17 tests spatial reasoning, one of many components of the
classical SHRDLU system (Winograd, 1972) by asking questions about the relative positions of
colored blocks. Task 18 requires reasoning about the relative size of objects and is inspired by the
commonsense reasoning examples in the Winograd schema challenge (Levesque et al., 2011).

Path Finding The goal of task 19 is to find the path between locations: given the description
of various locations, it asks: how do you get from one to another? This is related to the work of
Chen & Mooney (2011) and effectively involves a search problem.

Agent’s Motivations Finally, task 20 questions, in the simplest way possible, why an agent per-
forms an action. It addresses the case of actors being in a given state (hungry, thirsty, tired, . . . ) and
the actions they then take, e.g. it should learn that hungry people might go to the kitchen, and so on.

As already stated, these tasks are meant to foster the development and understanding of machine
learning algorithms. A single model should be evaluated across all the tasks (not tuning per task)
and then the same model should be tested on additional real-world tasks.

In our data release, in addition to providing the above 20 tasks in English, we also provide them
(i) in Hindi; and (ii) with shuffled English words so they are no longer readable by humans. A
good learning algorithm should perform similarly on all three, which would likely not be the case
for a method using external resources, a setting intended to mimic a learner being first presented a
language and having to learn from scratch.
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Table 3: Test accuracy (%) on our 20 Tasks for various methods (1000 training examples each). Our proposed
extensions to MemNNs are in columns 5-9: with adaptive memory (AM), N -grams (NG), nonlinear matching
function (NL), and combinations thereof. Bold numbers indicate tasks where our extensions achieve ≥ 95%
accuracy but the original MemNN model of Weston et al. (2014) did not. The last two columns (10-11) give
extra analysis of the MemNN

AM + NG + NL
method. Column 10 gives the amount of training data for each task needed to

obtain ≥ 95% accuracy, or FAIL if this is not achievable with 1000 training examples. The final column gives
the accuracy when training on all data at once, rather than separately.
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TASK N-
gr
am

Cl
as
sifi
er

LS
TM

St
ru
ctu
re
d S
VM

CO
RE
F+
SR
L
fea
tu
re
s

M
em
NN

W
es
to
n e
t a
l.
(2
01
4)

M
em
NN

AD
AP
TI
VE

M
EM

OR
Y

M
em
NN

AM
+
N-
GR
AM

S

M
em
NN

AM
+
NO
NL
IN
EA
R

M
em
NN

AM
+
NG

+
NL

No
. o
f e
x.
re
q.
≥
95

M
ul
tiT
as
k T
ra
in
in
g

1 - Single Supporting Fact 36 50 99 100 100 100 100 100 250 ex. 100
2 - Two Supporting Facts 2 20 74 100 100 100 100 100 500 ex. 100
3 - Three Supporting Facts 7 20 17 20 100 99 100 100 500 ex. 98
4 - Two Arg. Relations 50 61 98 71 69 100 73 100 500 ex. 80
5 - Three Arg. Relations 20 70 83 83 83 86 86 98 1000 ex. 99
6 - Yes/No Questions 49 48 99 47 52 53 100 100 500 ex. 100
7 - Counting 52 49 69 68 78 86 83 85 FAIL 86
8 - Lists/Sets 40 45 70 77 90 88 94 91 FAIL 93
9 - Simple Negation 62 64 100 65 71 63 100 100 500 ex. 100
10 - Indefinite Knowledge 45 44 99 59 57 54 97 98 1000 ex. 98
11 - Basic Coreference 29 72 100 100 100 100 100 100 250 ex. 100
12 - Conjunction 9 74 96 100 100 100 100 100 250 ex. 100
13 - Compound Coref. 26 94 99 100 100 100 100 100 250 ex. 100
14 - Time Reasoning 19 27 99 99 100 99 100 99 500 ex. 99
15 - Basic Deduction 20 21 96 74 73 100 77 100 100 ex. 100
16 - Basic Induction 43 23 24 27 100 100 100 100 100 ex. 94
17 - Positional Reasoning 46 51 61 54 46 49 57 65 FAIL 72
18 - Size Reasoning 52 52 62 57 50 74 54 95 1000 ex. 93
19 - Path Finding 0 8 49 0 9 3 15 36 FAIL 19
20 - Agent’s Motivations 76 91 95 100 100 100 100 100 250 ex. 100
Mean Performance 34 49 79 75 79 83 87 93 100 92

Methods The N -gram classifier baseline is inspired by the baselines in Richardson et al. (2013)
but applied to the case of producing a 1-word answer rather than a multiple choice question: we
construct a bag-of-N -grams for all sentences in the story that share at least one word with the
question, and then learn a linear classifier to predict the answer using those features4.

LSTMs are a popular method for sequence prediction (Sutskever et al., 2014) and outperform stan-
dard RNNs (Recurrent Neural Networks) for tasks similar to ours (Weston et al., 2014). They work
by reading the story until the point they reach a question and then have to output an answer. Note that
they are weakly supervised by answers only, and are hence at a disadvantage compared to strongly
supervised methods or methods that use external resources.

MemNNs (Weston et al., 2014) are a recently proposed class of models that have been shown to
perform well at QA. They work by a “controller” neural network performing inference over the
stored memories that consist of the previous statements in the story. The original proposed model
performs 2 hops of inference: finding the first supporting fact with the maximum match score with
the question, and then the second supporting fact with the maximum match score with both the
question and the first fact that was found. The matching function consists of mapping the bag-of-
words for the question and facts into an embedding space by summing word embeddings. The word
embeddings are learnt using strong supervision to optimize the QA task. After finding supporting
facts, a final ranking is performed to rank possible responses (answer words) given those facts. We
also consider some extensions to this model:

• Adaptive memories performing a variable number of hops rather than 2, the model is
trained to predict a hop or the special “STOP” class. A similar procedure can be applied to
output multiple tokens as well.

4Constructing N -grams from all sentences rather than using the filtered set gave worse results.
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Table 3: Test accuracy (%) on our 20 Tasks for various methods (1000 training examples each). Our proposed
extensions to MemNNs are in columns 5-9: with adaptive memory (AM), N -grams (NG), nonlinear matching
function (NL), and combinations thereof. Bold numbers indicate tasks where our extensions achieve ≥ 95%
accuracy but the original MemNN model of Weston et al. (2014) did not. The last two columns (10-11) give
extra analysis of the MemNN

AM + NG + NL
method. Column 10 gives the amount of training data for each task needed to

obtain ≥ 95% accuracy, or FAIL if this is not achievable with 1000 training examples. The final column gives
the accuracy when training on all data at once, rather than separately.
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2 - Two Supporting Facts 2 20 74 100 100 100 100 100 500 ex. 100
3 - Three Supporting Facts 7 20 17 20 100 99 100 100 500 ex. 98
4 - Two Arg. Relations 50 61 98 71 69 100 73 100 500 ex. 80
5 - Three Arg. Relations 20 70 83 83 83 86 86 98 1000 ex. 99
6 - Yes/No Questions 49 48 99 47 52 53 100 100 500 ex. 100
7 - Counting 52 49 69 68 78 86 83 85 FAIL 86
8 - Lists/Sets 40 45 70 77 90 88 94 91 FAIL 93
9 - Simple Negation 62 64 100 65 71 63 100 100 500 ex. 100
10 - Indefinite Knowledge 45 44 99 59 57 54 97 98 1000 ex. 98
11 - Basic Coreference 29 72 100 100 100 100 100 100 250 ex. 100
12 - Conjunction 9 74 96 100 100 100 100 100 250 ex. 100
13 - Compound Coref. 26 94 99 100 100 100 100 100 250 ex. 100
14 - Time Reasoning 19 27 99 99 100 99 100 99 500 ex. 99
15 - Basic Deduction 20 21 96 74 73 100 77 100 100 ex. 100
16 - Basic Induction 43 23 24 27 100 100 100 100 100 ex. 94
17 - Positional Reasoning 46 51 61 54 46 49 57 65 FAIL 72
18 - Size Reasoning 52 52 62 57 50 74 54 95 1000 ex. 93
19 - Path Finding 0 8 49 0 9 3 15 36 FAIL 19
20 - Agent’s Motivations 76 91 95 100 100 100 100 100 250 ex. 100
Mean Performance 34 49 79 75 79 83 87 93 100 92

Methods The N -gram classifier baseline is inspired by the baselines in Richardson et al. (2013)
but applied to the case of producing a 1-word answer rather than a multiple choice question: we
construct a bag-of-N -grams for all sentences in the story that share at least one word with the
question, and then learn a linear classifier to predict the answer using those features4.

LSTMs are a popular method for sequence prediction (Sutskever et al., 2014) and outperform stan-
dard RNNs (Recurrent Neural Networks) for tasks similar to ours (Weston et al., 2014). They work
by reading the story until the point they reach a question and then have to output an answer. Note that
they are weakly supervised by answers only, and are hence at a disadvantage compared to strongly
supervised methods or methods that use external resources.

MemNNs (Weston et al., 2014) are a recently proposed class of models that have been shown to
perform well at QA. They work by a “controller” neural network performing inference over the
stored memories that consist of the previous statements in the story. The original proposed model
performs 2 hops of inference: finding the first supporting fact with the maximum match score with
the question, and then the second supporting fact with the maximum match score with both the
question and the first fact that was found. The matching function consists of mapping the bag-of-
words for the question and facts into an embedding space by summing word embeddings. The word
embeddings are learnt using strong supervision to optimize the QA task. After finding supporting
facts, a final ranking is performed to rank possible responses (answer words) given those facts. We
also consider some extensions to this model:

• Adaptive memories performing a variable number of hops rather than 2, the model is
trained to predict a hop or the special “STOP” class. A similar procedure can be applied to
output multiple tokens as well.

4Constructing N -grams from all sentences rather than using the filtered set gave worse results.
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Table 3: Test accuracy (%) on our 20 Tasks for various methods (1000 training examples each). Our proposed
extensions to MemNNs are in columns 5-9: with adaptive memory (AM), N -grams (NG), nonlinear matching
function (NL), and combinations thereof. Bold numbers indicate tasks where our extensions achieve ≥ 95%
accuracy but the original MemNN model of Weston et al. (2014) did not. The last two columns (10-11) give
extra analysis of the MemNN

AM + NG + NL
method. Column 10 gives the amount of training data for each task needed to

obtain ≥ 95% accuracy, or FAIL if this is not achievable with 1000 training examples. The final column gives
the accuracy when training on all data at once, rather than separately.
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TASK N-
gr
am

Cl
as
sifi
er

LS
TM

St
ru
ctu
re
d S
VM

CO
RE
F+
SR
L
fea
tu
re
s

M
em
NN

W
es
to
n e
t a
l.
(2
01
4)

M
em
NN

AD
AP
TI
VE

M
EM

OR
Y

M
em
NN

AM
+
N-
GR
AM

S

M
em
NN

AM
+
NO
NL
IN
EA
R

M
em
NN

AM
+
NG

+
NL

No
. o
f e
x.
re
q.
≥
95

M
ul
tiT
as
k T
ra
in
in
g

1 - Single Supporting Fact 36 50 99 100 100 100 100 100 250 ex. 100
2 - Two Supporting Facts 2 20 74 100 100 100 100 100 500 ex. 100
3 - Three Supporting Facts 7 20 17 20 100 99 100 100 500 ex. 98
4 - Two Arg. Relations 50 61 98 71 69 100 73 100 500 ex. 80
5 - Three Arg. Relations 20 70 83 83 83 86 86 98 1000 ex. 99
6 - Yes/No Questions 49 48 99 47 52 53 100 100 500 ex. 100
7 - Counting 52 49 69 68 78 86 83 85 FAIL 86
8 - Lists/Sets 40 45 70 77 90 88 94 91 FAIL 93
9 - Simple Negation 62 64 100 65 71 63 100 100 500 ex. 100
10 - Indefinite Knowledge 45 44 99 59 57 54 97 98 1000 ex. 98
11 - Basic Coreference 29 72 100 100 100 100 100 100 250 ex. 100
12 - Conjunction 9 74 96 100 100 100 100 100 250 ex. 100
13 - Compound Coref. 26 94 99 100 100 100 100 100 250 ex. 100
14 - Time Reasoning 19 27 99 99 100 99 100 99 500 ex. 99
15 - Basic Deduction 20 21 96 74 73 100 77 100 100 ex. 100
16 - Basic Induction 43 23 24 27 100 100 100 100 100 ex. 94
17 - Positional Reasoning 46 51 61 54 46 49 57 65 FAIL 72
18 - Size Reasoning 52 52 62 57 50 74 54 95 1000 ex. 93
19 - Path Finding 0 8 49 0 9 3 15 36 FAIL 19
20 - Agent’s Motivations 76 91 95 100 100 100 100 100 250 ex. 100
Mean Performance 34 49 79 75 79 83 87 93 100 92

Methods The N -gram classifier baseline is inspired by the baselines in Richardson et al. (2013)
but applied to the case of producing a 1-word answer rather than a multiple choice question: we
construct a bag-of-N -grams for all sentences in the story that share at least one word with the
question, and then learn a linear classifier to predict the answer using those features4.

LSTMs are a popular method for sequence prediction (Sutskever et al., 2014) and outperform stan-
dard RNNs (Recurrent Neural Networks) for tasks similar to ours (Weston et al., 2014). They work
by reading the story until the point they reach a question and then have to output an answer. Note that
they are weakly supervised by answers only, and are hence at a disadvantage compared to strongly
supervised methods or methods that use external resources.

MemNNs (Weston et al., 2014) are a recently proposed class of models that have been shown to
perform well at QA. They work by a “controller” neural network performing inference over the
stored memories that consist of the previous statements in the story. The original proposed model
performs 2 hops of inference: finding the first supporting fact with the maximum match score with
the question, and then the second supporting fact with the maximum match score with both the
question and the first fact that was found. The matching function consists of mapping the bag-of-
words for the question and facts into an embedding space by summing word embeddings. The word
embeddings are learnt using strong supervision to optimize the QA task. After finding supporting
facts, a final ranking is performed to rank possible responses (answer words) given those facts. We
also consider some extensions to this model:

• Adaptive memories performing a variable number of hops rather than 2, the model is
trained to predict a hop or the special “STOP” class. A similar procedure can be applied to
output multiple tokens as well.

4Constructing N -grams from all sentences rather than using the filtered set gave worse results.
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Full Supervision in MemNNs

mi = f(John was in the bathroom.)

mi+1 = f(Bob was in the office.)

mi+2 = f(John went to the kitchen.)

mi+3 = f(Bob travelled back home.)

x = f(Where is John?)

.

This is like hard 
attention except that 

you already know 
where to attend!

Drawbacks 

Fairly hard assumption to make 

Not the most natural scenario 

Expensive to get such data in real world



End2End MemNNs
No current supporting fact supplied 

Learns which parts of the memory are relevant 

This is achieved by reading using soft attention as opposed to hard 

Performs multiple lookups to refine its guess about memory relevance 

The whole architecture is end-to-end differentiable 

Only needs supervision at the final output



End2End MemNNs

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
size d⇥V ). The query q is also embedded (again, in the simplest case via another embedding matrix
B with the same dimensions as A) to obtain an internal state u. In the embedding space, we compute
the match between u and each memory mi by taking the inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the transformed inputs ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).

Question  
q

O
utput 

Input 

Embedding B

Embedding C

W
eights Softmax 

Weighted Sum 

pi

ci

mi

Sentences 
 {xi}

Embedding A

o  W Softm
ax

 

Predicted  
Answer  
â
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k
(different ways to combine ok and uk are proposed later):

uk+1 = uk + ok. (4)
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â

{xi}

 

o1

u1

o2

u2

 o3

u3

A1

C1

A3

C3

A2

C2

Question q

O
ut2 In

2 
O

ut1 In
1 

Predicted  
Answer 

(a) (b)

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k
(different ways to combine ok and uk are proposed later):

uk+1 = uk + ok. (4)

2

pi = Softmax(uT
mi)

o =
X

i

pici
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End2End MemNNs

Multiple Layer (Hops)

2.1 Single Layer
We start by describing our model in the single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The entire set of {xi} are converted into memory vectors {mi} of dimension d computed by
embedding each xi in a continuous space, in the simplest case, using an embedding matrix A (of
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where Softmax(zi) = ezi/
P

j e
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Output memory representation: Each xi has a corresponding output vector ci (given in the
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2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

• The input to layers above the first is the sum of the output ok and the input uk from layer k
(different ways to combine ok and uk are proposed later):

uk+1 = uk + ok. (4)
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u) = Softmax(W (ko+ k

u))



E2EMemNNs: Other Details
Share the input and output embeddings or not 

What to store in memories — individual words, word 
windows, full sentences 

How to represent the memories — bag-or-words, RNN style 
reading at words or characters 

Positional Encodings - instead of modeling the sentence as 
a bag, the word position was modeled by a multiplicative 
weights on each word vector with the value of the weight 

being depended on the position.



E2EMemNNs: bAbI
TASK N-grams LSTMs MemN2N Memory 

Networks 
StructSVM
+coref+srl 

T1. Single supporting fact 36 50 PASS PASS PASS 

T2. Two supporting facts 2 20 87 PASS 74 

T3. Three supporting facts 7 20 60 PASS 17 

T4. Two arguments relations 50 61 PASS PASS PASS 

T5. Three arguments relations 20 70 87 PASS 83 

T6. Yes/no questions 49 48 92 PASS PASS 

T7. Counting 52 49 83 85 69 

T8. Sets 40 45 90 91 70 

T9. Simple negation  62 64 87 PASS PASS 

T10. Indefinite knowledge 45 44 85 PASS PASS 

T11. Basic coreference 29 72 PASS PASS PASS 

T12. Conjunction 9 74 PASS PASS PASS 

T13. Compound coreference 26 PASS PASS PASS PASS 

T14. Time reasoning 19 27 PASS PASS PASS 

T15. Basic deduction 20 21 PASS PASS PASS 

T16. Basic induction  43 23 PASS PASS 24 

T17. Positional reasoning 46 51 49 65 61 

T18. Size reasoning 52 52 89 PASS 62 

T19. Path finding 0 8 7 36 49 

T20. Agent’s motivation 76 91 PASS PASS PASS 

Weakly supervised Training on 1k stories 
Supervised Supp. Facts 



E2EMemNNs: bAbI
Attention during memory 

lookups 

Story (1: 1 supporting fact) Support Hop 1 Hop 2 Hop 3 Story (2: 2 supporting facts) Support Hop 1 Hop 2 Hop 3
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 0.00 0.00
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88 1.00 0.00
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00 0.00 0.00
John travelled to the bathroom. yes 0.60 0.98 0.96 John moved to the hallway. yes 0.00 0.00 1.00
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 0.00 0.00

Story (16: basic induction) Support Hop 1 Hop 2 Hop 3 Story (18: size reasoning) Support Hop 1 Hop 2 Hop 3
Brian is a frog. yes 0.00 0.98 0.00 The suitcase is bigger than the chest. yes 0.00 0.88 0.00
Lily is gray. 0.07 0.00 0.00 The box is bigger than the chocolate. 0.04 0.05 0.10
Brian is yellow. yes 0.07 0.00 1.00 The chest is bigger than the chocolate. yes 0.17 0.07 0.90
Julius is green. 0.06 0.00 0.00 The chest fits inside the container. 0.00 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00 The chest fits inside the box. 0.00 0.00 0.00

Where is John?   Answer: bathroom    Prediction: bathroom Where is the milk?   Answer: hallway    Prediction: hallway

What color is Greg?  Answer: yellow    Prediction: yellow Does the suitcase fit in the chocolate?   Answer: no    Prediction: no

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple

7

Samples from toy QA tasks 

Test Acc Failed 
tasks 

MemNN 93.3% 4 

LSTM 49% 20 

MemN2N 
1 hop 

74.82% 17 

2 hops 84.4% 11 

3 hops 87.6.% 11 

20 bAbI Tasks 



E2EMemNNs: Language Modeling
Predict the next work given previous words in a word 

sequence.  
Results on PennTree Bank and Text8 data (a subset of 

wikipedia)

Language Modeling 

Hops vs. Attention:  
Average over (PTB)  Average over (Text8) 

Penn Tree Text8 

RNN 129 184 

LSTM 115 154 

MemN2N 
2 hops 

121 187 

5 hops 118 154 

7 hops 111 147 

Test perplexity 

The goal is to predict the next word in a text sequence given the 
previous words. Results on the Penn Treebank and Text8 (Wikipedia-
based) corpora. 



E2EMemNNs: Language Modeling
Same ballpark as LSTMs 

For many words we don’t really need long term sequence 
Might help for nouns or entities? 

Language Modeling 

Hops vs. Attention:  
Average over (PTB)  Average over (Text8) 

Penn Tree Text8 

RNN 129 184 

LSTM 115 154 

MemN2N 
2 hops 

121 187 

5 hops 118 154 

7 hops 111 147 

Test perplexity 

The goal is to predict the next word in a text sequence given the 
previous words. Results on the Penn Treebank and Text8 (Wikipedia-
based) corpora. 



Relevant Literature
RNNSearch (Bahdanau et. al.) for Machine Translation 

Can be seen as a Memory Network with memory storing individual words and 
is only a single sentence long.  

At inference it reads all the memories and performs Softmax to find best 
alignment. It is only 1 hop though. 

Generating Sequences With RNNs (Graves., 13) 
Also does alignment with previous sentence to generate handwriting 

Neural Turing Machines (Graves at. al., 14) 
Has read/write operations over fixed small sized memory. 

Until recently has only been used for toy tasks - copy, sorting etc 

Earlier works by Das et. al., 92, Schmidhuber et. al., 93, DISCERN by 
Miikkulainen, 90) and others fall into this category



Large Scale Memories
So far we’ve only dealt with limited sized memory module



Large Scale Memories
So far we’ve only dealt with limited sized memory module

Published as a conference paper at ICLR 2016

Long-Term Shaolin Soccer directed by Stephen Chow
Memories hi Shaolin Soccer written by Stephen Chow

Shaolin Soccer starred actors Stephen Chow
Shaolin Soccer release year 2001
Shaolin Soccer has genre comedy
Shaolin Soccer has tags martial arts, kung fu soccer, stephen chow
Kung Fu Hustle directed by Stephen Chow
Kung Fu Hustle written by Stephen Chow
Kung Fu Hustle starred actors Stephen Chow
Kung Fu Hustle has genre comedy action
Kung Fu Hustle has imdb votes famous
Kung Fu Hustle has tags comedy, action, martial arts, kung fu, china, soccer, hong kong, stephen chow
The God of Cookery directed by Stephen Chow
The God of Cookery written by Stephen Chow
The God of Cookery starred actors Stephen Chow
The God of Cookery has tags hong kong Stephen Chow
From Beijing with Love directed by Stephen Chow
From Beijing with Love written by Stephen Chow
From Beijing with Love starred actors Stephen Chow, Anita Yuen

. . .<and more> . . .
Short-Term cu1 1) I’m looking a fun comedy to watch tonight, any ideas?
Memories cr1 2) Have you seen Shaolin Soccer? That was zany and great.. really funny but in a whacky way.
Input cu2 3) Yes! Shaolin Soccer and Kung Fu Hustle are so good I really need to find some more Stephen Chow

films I feel like there is more awesomeness out there that I haven’t discovered yet ...
Output y 4) God of Cookery is pretty great, one of his mid 90’s hong kong martial art comedies.

Table 5: Memory Network long-term and short-term memories. Blue underlined text indicates
those words that hashed into the knowledge base to recall sentences from the long-term memory.
Those, along with the recent short-term context (lines labeled 1 and 2) are used as input memories
to the Memory Network along with the input (labeled 3). The desired goal is to output dialog line 4.

3.2 SUPERVISED EMBEDDING MODELS

While one of the major uses of word embedding models is to learn unsupervised embeddings over
large unlabeled datasets such as in Word2Vec (Mikolov et al., 2013) there are also very effective
word embedding models for training supervised models when labeled data is available. The sim-
plest approach which works suprisingly well is to sum the word embeddings of the input and the
target independently and then compare them with a similarity metric such as inner product or co-
sine similarity. A ranking loss is used to ensure the correct targets are ranked higher than any other
targets. Several variants of this approach exist. For matching two documents supervised semantic
indexing (SSI) was shown to be superior to unsupervised latent semantic indexing (LSI) (Bai et al.,
2009). Similar methods were shown to outperform SVD for recommendation (Weston et al., 2013).
However, we do not expect this method to work as well on question answering tasks, as all the
memorization must occur in the individual word embeddings, which was shown to perform poorly
in (Bordes et al., 2014). For example, consider asking the question “who was born in Paris?” and re-
quiring the word embedding for Paris to effectively contain all the pertinent information. However,
for rarer items requiring less storage, performance may not be as degraded. In general we believe
this is a surprisingly strong baseline that is often neglected in evaluations. Our implementation
corresponds to a Memory Network with no attention over memory.

3.3 RECURRENT LANGUAGE MODELS

Recurrent Neural Networks (RNNs) have proven successful at several tasks involving natural
language, language modeling (Mikolov et al., 2011), and have been applied recently to dialog
(Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). LSTMs are not known however for
tasks such as QA or item recommendation, and so we expect them to find our datasets challenging.

There are a large number of variants of RNNs, including Long-Short Term Memory activa-
tion units (LSTMs) (Hochreiter & Schmidhuber, 1997), bidirectional LSTMs (Graves et al., 2012),
seq2seq models (Sutskever et al., 2014), RNNs that take into account the document context
(Mikolov & Zweig, 2012) and RNNs that perform attention over their input in various different
ways (Bahdanau et al., 2015; Hermann et al., 2015; Rush et al., 2015). Evaluating all these variants
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Large Scale Memories
Write into the memories more intelligently 

During the write operation, hash the memories to store 
in buckets 

The hash functions could be a function of words in the 
statement: buckets would correspond to topics 

Or it could be a function of the embeddings of words 

The result is you avoid reading from all the memories - 
not only it is inefficient, it is also hard to train



Reverb Dataset
14 million facts stored as triples [subject, relation, object] 

Triples are REVERB extractions mined from ClueWeb09 

Statements cover diverse topics:  
[milne, authored, winnie-the-pooh] 

[sheep, be-afraid-of, wolf] 

Training set: weakly labeled QA pairs and 35M paraphrased 
questions from WikiAnsweres 

Who wrote the Winnie the Pooh books? 
Who is Pooh’s creator?

Paraphrase Driven Learning for Open Question Answering: Fader et. al., 2013



MemNNs on Reverb Dataset

14 million facts stored in memory 
Single hop processing. Embedding dimension = 128 

Outputs top scoring statement 
Also tried adding BoW features

 
Results: QA on Reverb data     

from (Fader et al.) 

•  14M statements stored in the memNN memory. 
•  k=1 loops MemNN, 128-dim embedding. 
•  R response simply outputs top scoring statement. 
•  Time features are not necessary, hence not used. 
•  We also tried adding bag of  words (BoW) features. 

Paraphrase Driven Learning for Open Question Answering: Fader et. al., 2013



MemNNs on Reverb Dataset

Scoring all 14 million facts in memory hard and slow 
So we hash based on: 

Words in the statement: inverted index 
K-means in embedding space

QA reference - complete the reference

 
Fast QA on Reverb data 

Scoring all 14M candidates in the memory is slow. 

We consider speedups using hashing in S and O as 
mentioned earlier: 

!  Hashing via words (essentially: inverted index) 

!  Hashing via k-means in embedding space (k=1000) 

 



Multitasked MemNNs:bAbI + Reverb
Story told to the model after training

Antoine went to the kitchen. 
Antoine picked up the milk. 

Antoine travelled to the office

Where is the milk? : office 
Where was Antoine before the office?: kitchen 

Where does milk come from?: milk come from cow 
What is cow a type of?: cow be female of cattle 

Where are cattle found?: cattle farm become widespread in Brazil 
What does milk taste like?: milk taste like milk 

What does milk go well with?: milk go with coffee



Cloze Style QA
Teaching a machine to understand language is hard 

One way is to read a comprehension and answer questions 
pertaining to it 

However the questions should be such that they cannot be 
answered using external world knowledge - Cloze Style QA 
Until recently only small sized dataset existed - which were 

primarily used for testing - nothing to train on 
Two primary efforts in this direction 

Teaching Machines to Read and Comprehend: Hermann et. al.2015
The Goldilocks Principle: Reading Children’s Books with Explicit 

Memory Representation: Hill et. al., 2015



CBT: Children’s Book Dataset

The Goldilocks Principle: Reading Children’s Books with Explicit 
Memory Representation: Hill et. al., 2015

Dataset built from 118 freely 
available books from project 

Gutenberg 
Children stories provide a clear 

narrative structure 
Can make the role of context 

more salient



First 20 sentences form a context - 21st sentence becomes the query.  
A single word from the 21st sentence is removed, which becomes the answer.  

The model must identify the answer word from a selection of 10 provided candidates

Published as a conference paper at ICLR 2016

However, not all contextual models reach this level of performance. We find the way in which wider
context is represented in memory to be critical. If memories are encoded from a small window
around important words in the context, there is an optimal size for memory representations between
single words and entire sentences, that depends on the class of word to be predicted. We have nick-
named this effect the Goldilocks Principle after the well-known English fairytale (Hassall, 1904).
In the case of Memory Networks, we also find that self-supervised training of the memory access
mechanism yields a clear performance boost when predicting named entities, a class of word that
has typically posed problems for neural language models. Indeed, we train a Memory Network with
these design features to beat the best reported performance on the CNN QA test of entity prediction
from news articles (Hermann et al., 2015).

2 THE CHILDREN’S BOOK TEST

The experiments in this paper are based on a new resource, the Children’s Book Test, designed to
measure directly how well language models can exploit wider linguistic context. The CBT is built
from books that are freely available thanks to Project Gutenberg.1 Using children’s books guarantees
a clear narrative structure, which can make the role of context more salient. After allocating books
to either training, validation or test sets, we formed example ‘questions’ (denoted x) from chapters
in the book by enumerating 21 consecutive sentences.

In each question, the first 20 sentences form the context (denoted S), and a word (denoted a) is
removed from the 21st sentence, which becomes the query (denoted q). Models must identify the
answer word a among a selection of 10 candidate answers (denoted C) appearing in the context
sentences and the query. Thus, for a question answer pair (x, a): x = (q, S, C); S is an ordered
list of sentences; q is a sentence (an ordered list q = q1, . . . ql of words) containing a missing word
symbol; C is a bag of unique words such that a 2 C, its cardinality |C| is 10 and every candidate
word w 2 C is such that w 2 q [ S. An example question is given in Figure 1.

Figure 1: A Named Entity question from the CBT (right), created from a book passage (left, in
blue). In this case, the candidate answers C are both entities and common nouns, since fewer than
ten named entities are found in the context.

For finer-grained analyses, we evaluated four classes of question by removing distinct types of word:
Named Entities, (Common) Nouns, Verbs and Prepositions (based on output from the POS tagger
and named-entity-recogniser in the Stanford Core NLP Toolkit (Manning et al., 2014)). For a given
question class, the nine incorrect candidates are selected at random from words in the context having
the same type as the answer. The exact number of questions in the training, validation and test sets is
shown in Table 1. Full details of the candidate selection algorithm (e.g. how candidates are selected
if there are insufficient words of a given type in the context) can be found with the dataset.2

1
https://www.gutenberg.org/

2The dataset can be downloaded from http://fb.ai/babi/.

2



MemNNs for Story Understanding

Figure: Jason Weston



MemNNs for Story Understanding
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MemNNs for Story Understanding
Results on Children’s Book Test The Goldilocks Principle: Reading Children’s Books with Explicit 

Memory Representation: Hill et. al., 2015



Results on Children’s Book Test 
MemNNs for Story Understanding

The Goldilocks Principle: Reading Children’s Books with Explicit 
Memory Representation: Hill et. al., 2015



Self Supervision in MemNNs

During training we have knowledge about the correct answer 
word 

We can treat all the memories in which the answer word 
appears as the relevant supporting fact 
Bump up the scores of these memories 

This speeds up training 
Of course this knowledge is not available at test time - so you 

simply pick the most relevant memory to generate your 
answer



QA on News Articles
Teaching Machines to Read and Comprehend: Hermann et. al.2015

We evaluate our models on this dataset as well

CNN Daily Mail
train valid test train valid test

# months 95 1 1 56 1 1
# documents 90,266 1,220 1,093 196,961 12,148 10,397
# queries 380,298 3,924 3,198 879,450 64,835 53,182
Max # entities 527 187 396 371 232 245
Avg # entities 26.4 26.5 24.5 26.5 25.5 26.0
Avg # tokens 762 763 716 813 774 780
Vocab size 118,497 208,045

Table 1: Corpus statistics. Articles were collected starting in
April 2007 for CNN and June 2010 for the Daily Mail, both until
the end of April 2015. Validation data is from March, test data
from April 2015. Articles of over 2000 tokens and queries whose
answer entity did not appear in the context were filtered out.

Top N Cumulative %
CNN Daily Mail

1 30.5 25.6
2 47.7 42.4
3 58.1 53.7
5 70.6 68.1
10 85.1 85.5

Table 2: Percentage of time that
the correct answer is contained in
the top N most frequent entities
in a given document.

(NLP) pipeline. Our results indicate that the neural models achieve a higher accuracy, and do so
without any specific encoding of the document or query structure.

2 Supervised training data for reading comprehension

The reading comprehension task naturally lends itself to a formulation as a supervised learning
problem. Specifically we seek to estimate the conditional probability p(a|c, q), where c is a context
document, q a query relating to that document, and a the answer to that query. For a focused
evaluation we wish to be able to exclude additional information, such as world knowledge gained
from co-occurrence statistics, in order to test a model’s core capability to detect and understand the
linguistic relationships between entities in the context document.

Such an approach requires a large training corpus of document–query–answer triples and until now
such corpora have been limited to hundreds of examples and thus mostly of use only for testing [9].
This limitation has meant that most work in this area has taken the form of unsupervised approaches
which use templates or syntactic/semantic analysers to extract relation tuples from the document to
form a knowledge graph that can be queried.

Here we propose a methodology for creating real-world, large scale supervised training data for
learning reading comprehension models. Inspired by work in summarisation [10, 11], we create two
machine reading corpora by exploiting online newspaper articles and their matching summaries. We
have collected 93k articles from the CNN1 and 220k articles from the Daily Mail2 websites. Both
news providers supplement their articles with a number of bullet points, summarising aspects of the
information contained in the article. Of key importance is that these summary points are abstractive
and do not simply copy sentences from the documents. We construct a corpus of document–query–
answer triples by turning these bullet points into Cloze [12] style questions by replacing one entity
at a time with a placeholder. This results in a combined corpus of roughly 1M data points (Table 1).
Code to replicate our datasets—and to apply this method to other sources—is available online3.

2.1 Entity replacement and permutation

Note that the focus of this paper is to provide a corpus for evaluating a model’s ability to read
and comprehend a single document, not world knowledge or co-occurrence. To understand that
distinction consider for instance the following Cloze form queries (created from headlines in the
Daily Mail validation set): a) The hi-tech bra that helps you beat breast X; b) Could Saccharin help
beat X ?; c) Can fish oils help fight prostate X ? An ngram language model trained on the Daily Mail
would easily correctly predict that (X = cancer), regardless of the contents of the context document,
simply because this is a very frequently cured entity in the Daily Mail corpus.

1
www.cnn.com

2
www.dailymail.co.uk

3
http://www.github.com/deepmind/rc-data/
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QA on News ArticlesQuestion Answering on New’s Articles 
We evaluate our models on the data from: 
“Teaching Machines to Read and Comprehend” 
Karl Moritz Hermann, Tomáš Ko�iský, Edward Grefenstette, Lasse 
Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom 
 

Teaching Machines to Read and Comprehend: Hermann et. al.2015



QA on News Articles
   Results on CNN QA dataset 



Dialog Modeling

So far we have focused on a single step QA potentially with long term context 

How about Dialog Modeling? 

We have built another large scale dataset focussed towards movie domain 

Ask about movies — Ask about movie recommendation — Have dialog which 
combines facts and opinions — General chit-chat about movies 

75k entities, and 3.5M exchanges

Evaluating Prerequisite Qualities for Learning End-toEnd Dialog 
Systems: Dodge et. al., 2016



Dialog Modeling
Task 1: QA on Movies

(Dialog 1) QA: facts about movies 

Sample input contexts and target replies (in red) from Dialog Task 1: 

 What movies are about open source?   Revolution OS 
Ruggero Raimondi appears in which movies? Carmen 
What movies did Darren McGavin star in?  Billy Madison, The Night 
Stalker, Mrs. Pollifax-Spy, The Challenge 
Can you name a film directed by Stuart Ortiz? Grave Encounters 
Who directed the film White Elephant?  Pablo Trapero 
What is the genre of  the film Dial M for Murder?   Thriller, Crime 
What language is Whity in?  German 

Evaluating Prerequisite Qualities for Learning End-toEnd Dialog 
Systems: Dodge et. al., 2016



Dialog Modeling(Dialog 2) Recs: movie recommendations 

Sample input contexts and target replies (in red) from Dialog Task 2: 

 Schindler's List, The Fugitive, Apocalypse Now, Pulp Fiction, and 
The Godfather are films I really liked. Can you suggest a film?         
The Hunt for Red October 
 
Some movies I like are Heat, Kids, Fight Club, Shaun of  the Dead, 
The Avengers, Skyfall, and Jurassic Park. Can you suggest 
something else I might like?  Ocean's Eleven 

Task 2: Movie Recommendation

Evaluating Prerequisite Qualities for Learning End-toEnd Dialog 
Systems: Dodge et. al., 2016



Dialog Modeling
Task 3: Combining QA and Movie Recommendation

(Dialog 3) QA+Recs: combination dialog 

Sample input contexts and target replies (in red) from Dialog Task 3: 

 I loved Billy Madison, Blades of  Glory, Bio-Dome, Clue, and Happy 
Gilmore. I'm looking for a Music movie.   School of  Rock 
What else is that about?    Music, Musical, Jack Black, school, 
teacher, Richard Linklater, rock, guitar 
I like rock and roll movies more. Do you know anything else?   
Little Richard 
 

Evaluating Prerequisite Qualities for Learning End-toEnd Dialog 
Systems: Dodge et. al., 2016



Dialog Modeling
Task 4: Dialog from Reddit Dataset (Real Dialog)

(Dialog 4) Reddit: real dialog 

Sample input contexts and target replies (in red) from Dialog Task 4: 

  
I think the Terminator movies really suck, I mean the first one was 
kinda ok, but after that they got really cheesy. Even the second one 
which people somehow think is great. And after that... 
forgeddabotit. 
C’mon the second one was still pretty cool.. Arny was still so 
badass, as was Sararah Connor’s character.. and the way they 
blended real action and effects was perhaps the last of  its kind... 

Evaluating Prerequisite Qualities for Learning End-toEnd Dialog 
Systems: Dodge et. al., 2016



Memory Networks for DialogMemory Network: example 



Results
Results 



Key-Value MemNNs
Key Value Memory Networks for Directly Reading Documents: Miller et. al., 2016

Facts are stored in a key value structured memory 

Memory is designed so that the model learns to use keys to address 
relevant memories with respect to the question 

Structure allows the model to encode prior knowledge for the 
considered task 

Structure also allows to leverage possibly complex transforms 
between key and value 

Example: for a KB triple [subject, relation, object], Key could be 
[subject,relation] and value could be  [object] or vice versa



Key-Value MemNNs
Key Value Memory Networks for Directly Reading Documents: Miller et. al., 2016

Recent Work: New Models for QA on documents 
Miller et al. Key-Value Memory Networks for Directly 

Reading Documents. arXiv:1606.03126.  



Key-Value MemNNs

Method MAP MRR
Word Cnt 0.4891 0.4924
Wgt Word Cnt 0.5099 0.5132
2-gram CNN (Yang et al., 2015) 0.6520 0.6652
AP-CNN (Santos et al., 2016) 0.6886 0.6957
Attentive LSTM (Miao et al., 2015) 0.6886 0.7069
Attentive CNN (Yin and Schütze, 2015) 0.6921 0.7108
L.D.C. (Wang et al., 2016) 0.7058 0.7226
Memory Network 0.5170 0.5236
Key-Value Memory Network 0.7069 0.7265

Table 6: Test results on WikiQA.

be split roughly equally between conjunctions (74%)
and coreference (76%). When combined, which is
the hardest synthetic dataset (All Templates + Conj.
+ Coref.), this is actually harder than using the real
Wikipedia documents (72.5% vs. 76.2%). This is
possibly because the amount of conjunctions and
coreferences we make are artificially too high (50%
and 80% of the time, respectively).

5.2 WikiQA

WIKIQA (Yang et al., 2015) is an existing dataset
for answer sentence selection using Wikipedia as
the knowledge source. The task is, given a ques-
tion, to select the sentence coming from a Wikipedia
document that best answers the question, where per-
formance is measured using mean average preci-
sion (MAP) and mean reciprocal rank (MRR) of the
ranked set of answers. The dataset uses a pre-built
information retrieval step and hence provides a fixed
set of candidate sentences per question, so systems
do not have to consider ranking all of Wikipedia. In
contrast to MOVIEQA, the training set size is small
(⇠1000 examples) whilst the topic is much more
broad (all of Wikipedia, rather than just movies) and
the questions can only be answered by reading the
documents, so no comparison to the use of KBs can
be performed. However, a wide range of methods
have already been tried on WIKIQA, thus providing
a useful benchmark to test if the same results found
on MOVIEQA carry across to WIKIQA, in particular
the performance of Key-Value Memory Networks.

Due to the size of the training set, following many
other works (Yang et al., 2015; Santos et al., 2016;
Miao et al., 2015) we pre-trained the word vectors
(matrices A and B which are constrained to be iden-
tical) before training KV-MemNNs. We employed
Supervised Embeddings (Dodge et al., 2016) for that

goal, training on all of Wikipedia while treating the
input as a random sentence and the target as the subse-
quent sentence. We then trained KV-MemNNs with
dropout regularization: we sample words from the
question, memory representations and the answers,
choosing the dropout rate using the development set.
Finally, again following other successful methods
(Yin and Schütze, 2015), we combine our approach
with exact matching word features between question
and answers. Key hashing was not used as candidates
were already pre-selected. To represent the memo-
ries, we used the Window-Level representation (the
best choice on the dev set was W = 7) as the key
and the whole sentence as the value, as the value
should match the answer which in this case is a sen-
tence. Additionally, in the representation all numbers
in the text and the phrase “how many” in the question
were replaced with the feature “_number_”. The best
choice of hops was also H = 2 for KV-MemNNs.

The results are given in Table 6. Key-Value Mem-
ory Networks outperform a large set of other meth-
ods, although the L.D.C. method of (Wang et al.,
2016) is only slightly worse. Memory Networks,
which cannot easily pair windows to sentences, per-
form much worse, highlighting the importance of
key-value memories.

6 Conclusion

We studied the problem of directly reading docu-
ments in order to answer questions, concentrating our
analysis on the gap between such direct methods and
using human-annotated or automatically constructed
KBs. We presented a new model, Key-Value Mem-
ory Networks, which helps bridge this gap, outper-
forming several other methods across two datasets,
MOVIEQA and WIKIQA. However, some gap in
performance still remains. MOVIEQA serves as an
analysis tool to shed some light on the causes. Future
work should try to close this gap further.

Key-Value Memory Networks are a versatile tool
for reading documents or KBs and answering ques-
tions about them – allowing to encode prior knowl-
edge about the task at hand in the key and value
memories. These models could be applied to storing
and reading memories for other tasks as well, and
future work should try them in other domains, such
as in a full dialog setting.

Test results on WikiQA
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2. Dynamic Memory Networks
We now give an overview of the modules that make up the
DMN. We then examine each module in detail and give
intuitions about its formulation. A high-level illustration of
the DMN is shown in Fig. 2.1.

Input Module: The input module encodes raw text inputs
from the task into distributed vector representations. In this
paper, we focus on natural language related problems. In
these cases, the input may be a sentence, a long story, a
movie review, a news article, or several Wikipedia articles.

Question Module: Like the input module, the question
module encodes the question of the task into a distributed
vector representation. For example, in the case of question
answering, the question may be a sentence such as Where
did the author first fly?. The representation is fed into the
episodic memory module, and forms the basis, or initial
state, upon which the episodic memory module iterates.

Episodic Memory Module: Given a collection of in-
put representations, the episodic memory module chooses
which parts of the inputs to focus on through the attention
mechanism. It then produces a ”memory” vector represen-
tation taking into account the question as well as the pre-
vious memory. Each iteration provides the module with
newly relevant information about the input. In other words,
the module has the ability to retrieve new information, in
the form of input representations, which were thought to
be irrelevant in previous iterations.

Answer Module: The answer module generates an answer
from the final memory vector of the memory module.

A detailed visualization of these modules is shown in Fig.3.

2.1. Input Module

In natural language processing problems, the input is a se-
quence of TI words w

1

, . . . , wTI
. One way to encode the

input sequence is via a recurrent neural network (Elman,
1991). Word embeddings are given as inputs to the recur-
rent network. At each time step t, the network updates its
hidden state ht = RNN(L[wt], ht�1

), where L is the em-
bedding matrix and wt is the word index of the tth word of
the input sequence.

In cases where the input sequence is a single sentence, the
input module outputs the hidden states of the recurrent net-
work. In cases where the input sequence is a list of sen-
tences, we concatenate the sentences into a long list of word
tokens, inserting after each sentence an end-of-sentence to-
ken. The hidden states at each of the end-of-sentence to-
kens are then the final representations of the input mod-
ule. In subsequent sections, we denote the output of the
input module as the sequence of TC fact representations c,
whereby ct denotes the tth element in the output sequence

Figure 2. Overview of DMN modules. Communication between
them is indicated by arrows and uses vector representations.
Questions trigger gates which allow vectors for certain inputs to
be given to the episodic memory module. The final state of the
episodic memory is the input to the answer module.

of the input module. Note that in the case where the input
is a single sentence, TC = TI . That is, the number of out-
put representations is equal to the number of words in the
sentence. In the case where the input is a list of sentences,
TC is equal the number of sentences.

Choice of recurrent network: In our experiments, we use
a gated recurrent network (GRU) (Cho et al., 2014a; Chung
et al., 2014). We also explored the more complex LSTM
(Hochreiter & Schmidhuber, 1997) but it performed sim-
ilarly and is more computationally expensive. Both work
much better than the standard tanh RNN and we postulate
that the main strength comes from having gates that allow
the model to suffer less from the vanishing gradient prob-
lem (Hochreiter & Schmidhuber, 1997). Assume each time
step t has an input xt and a hidden state ht. The internal
mechanics of the GRU is defined as:
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where � is an element-wise product, W

(z)
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(r)
,W 2

RnH⇥nI and U

(z)
, U

(r)
, U 2 RnH⇥nH . The dimensions

n are hyperparameters. We abbreviate the above computa-
tion with ht = GRU(xt, ht�1

).

2.2. Question Module

Similar to the input sequence, the question is also most
commonly given as a sequence of words in natural lan-
guage processing problems. As before, we encode the
question via a recurrent neural network. Given a question

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing: Kumar et. al., 2016
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Figure 3. Real example of an input list of sentences and the attention gates that are triggered by a specific question from the bAbI tasks
(Weston et al., 2015a). Gate values git are shown above the corresponding vectors. The gates change with each search over inputs. We
do not draw connections for gates that are close to zero. Note that the second iteration has wrongly placed some weight in sentence 2,
which makes some intuitive sense, as sentence 2 is another place John had been.

of TQ words, hidden states for the question encoder at time
t is given by qt = GRU(L[w

Q
t ], qt�1

), L represents the
word embedding matrix as in the previous section and w

Q
t

represents the word index of the tth word in the question.
We share the word embedding matrix across the input mod-
ule and the question module. Unlike the input module, the
question module produces as output the final hidden state
of the recurrent network encoder: q = qTQ

.

2.3. Episodic Memory Module

The episodic memory module iterates over representations
outputted by the input module, while updating its internal
episodic memory. In its general form, the episodic memory
module is comprised of an attention mechanism as well as
a recurrent network with which it updates its memory. Dur-
ing each iteration, the attention mechanism attends over the
fact representations c while taking into consideration the
question representation q and the previous memory m

i�1

to produce an episode e

i.

The episode is then used, alongside the previous mem-
ories m

i�1, to update the episodic memory m

i
=

GRU(e

i
,m

i�1

). The initial state of this GRU is initialized
to the question vector itself: m

0

= q. For some tasks, it
is beneficial for episodic memory module to take multiple
passes over the input. After TM passes, the final memory
m

TM is given to the answer module.

Need for Multiple Episodes: The iterative nature of this
module allows it to attend to different inputs during each
pass. It also allows for a type of transitive inference, since
the first pass may uncover the need to retrieve additional
facts. For instance, in the example in Fig. 3, we are asked
Where is the football? In the first iteration, the model ought
attend to sentence 7 (John put down the football.), as the
question asks about the football. Only once the model sees
that John is relevant can it reason that the second iteration
should retrieve where John was. Similarly, a second pass
may help for sentiment analysis as we show in the experi-
ments section below.

Attention Mechanism: In our work, we use a gating func-
tion as our attention mechanism. For each pass i, the
mechanism takes as input a candidate fact ct, a previ-
ous memory m

i�1, and the question q to compute a gate:
g

i
t = G(ct,m

i�1

, q).

The scoring function G takes as input the feature set
z(c,m, q) and produces a scalar score. We first define a
large feature vector that captures a variety of similarities
between input, memory and question vectors: z(c,m, q) =

h
c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)

q, c

T
W

(b)
m

i
,

(5)
where � is the element-wise product. The function
G is a simple two-layer feed forward neural network
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Figure 3. Real example of an input list of sentences and the attention gates that are triggered by a specific question from the bAbI tasks
(Weston et al., 2015a). Gate values git are shown above the corresponding vectors. The gates change with each search over inputs. We
do not draw connections for gates that are close to zero. Note that the second iteration has wrongly placed some weight in sentence 2,
which makes some intuitive sense, as sentence 2 is another place John had been.
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), L represents the
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represents the word index of the tth word in the question.
We share the word embedding matrix across the input mod-
ule and the question module. Unlike the input module, the
question module produces as output the final hidden state
of the recurrent network encoder: q = qTQ

.

2.3. Episodic Memory Module

The episodic memory module iterates over representations
outputted by the input module, while updating its internal
episodic memory. In its general form, the episodic memory
module is comprised of an attention mechanism as well as
a recurrent network with which it updates its memory. Dur-
ing each iteration, the attention mechanism attends over the
fact representations c while taking into consideration the
question representation q and the previous memory m
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=
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). The initial state of this GRU is initialized
to the question vector itself: m

0

= q. For some tasks, it
is beneficial for episodic memory module to take multiple
passes over the input. After TM passes, the final memory
m

TM is given to the answer module.

Need for Multiple Episodes: The iterative nature of this
module allows it to attend to different inputs during each
pass. It also allows for a type of transitive inference, since
the first pass may uncover the need to retrieve additional
facts. For instance, in the example in Fig. 3, we are asked
Where is the football? In the first iteration, the model ought
attend to sentence 7 (John put down the football.), as the
question asks about the football. Only once the model sees
that John is relevant can it reason that the second iteration
should retrieve where John was. Similarly, a second pass
may help for sentiment analysis as we show in the experi-
ments section below.

Attention Mechanism: In our work, we use a gating func-
tion as our attention mechanism. For each pass i, the
mechanism takes as input a candidate fact ct, a previ-
ous memory m

i�1, and the question q to compute a gate:
g

i
t = G(ct,m

i�1

, q).

The scoring function G takes as input the feature set
z(c,m, q) and produces a scalar score. We first define a
large feature vector that captures a variety of similarities
between input, memory and question vectors: z(c,m, q) =
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c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
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where � is the element-wise product. The function
G is a simple two-layer feed forward neural network
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Figure 3. Real example of an input list of sentences and the attention gates that are triggered by a specific question from the bAbI tasks
(Weston et al., 2015a). Gate values git are shown above the corresponding vectors. The gates change with each search over inputs. We
do not draw connections for gates that are close to zero. Note that the second iteration has wrongly placed some weight in sentence 2,
which makes some intuitive sense, as sentence 2 is another place John had been.
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represents the word index of the tth word in the question.
We share the word embedding matrix across the input mod-
ule and the question module. Unlike the input module, the
question module produces as output the final hidden state
of the recurrent network encoder: q = qTQ

.

2.3. Episodic Memory Module

The episodic memory module iterates over representations
outputted by the input module, while updating its internal
episodic memory. In its general form, the episodic memory
module is comprised of an attention mechanism as well as
a recurrent network with which it updates its memory. Dur-
ing each iteration, the attention mechanism attends over the
fact representations c while taking into consideration the
question representation q and the previous memory m
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The episode is then used, alongside the previous mem-
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). The initial state of this GRU is initialized
to the question vector itself: m
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= q. For some tasks, it
is beneficial for episodic memory module to take multiple
passes over the input. After TM passes, the final memory
m

TM is given to the answer module.

Need for Multiple Episodes: The iterative nature of this
module allows it to attend to different inputs during each
pass. It also allows for a type of transitive inference, since
the first pass may uncover the need to retrieve additional
facts. For instance, in the example in Fig. 3, we are asked
Where is the football? In the first iteration, the model ought
attend to sentence 7 (John put down the football.), as the
question asks about the football. Only once the model sees
that John is relevant can it reason that the second iteration
should retrieve where John was. Similarly, a second pass
may help for sentiment analysis as we show in the experi-
ments section below.

Attention Mechanism: In our work, we use a gating func-
tion as our attention mechanism. For each pass i, the
mechanism takes as input a candidate fact ct, a previ-
ous memory m

i�1, and the question q to compute a gate:
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t = G(ct,m
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, q).

The scoring function G takes as input the feature set
z(c,m, q) and produces a scalar score. We first define a
large feature vector that captures a variety of similarities
between input, memory and question vectors: z(c,m, q) =
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where � is the element-wise product. The function
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Task MemNN DMN

1: Single Supporting Fact 100 100
2: Two Supporting Facts 100 98.2
3: Three Supporting Facts 100 95.2
4: Two Argument Relations 100 100
5: Three Argument Relations 98 99.3
6: Yes/No Questions 100 100
7: Counting 85 96.9
8: Lists/Sets 91 96.5
9: Simple Negation 100 100
10: Indefinite Knowledge 98 97.5
11: Basic Coreference 100 99.9
12: Conjunction 100 100
13: Compound Coreference 100 99.8
14: Time Reasoning 99 100
15: Basic Deduction 100 100
16: Basic Induction 100 99.4
17: Positional Reasoning 65 59.6
18: Size Reasoning 95 95.3
19: Path Finding 36 34.5
20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers
taken from Weston et al. (Weston et al., 2015a). The DMN passes
(accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

4.1. Question Answering

The Facebook bAbI dataset is a synthetic dataset for test-
ing a model’s ability to retrieve facts and reason over them.
Each task tests a different skill that a question answering
model ought to have, such as coreference resolution, de-
duction, and induction. Showing an ability exists here is
not sufficient to conclude a model would also exhibit it on
real world text data. It is, however, a necessary condition.

Training on the bAbI dataset uses the following objective
function: J = ↵ECE(Gates) + �ECE(Answers), where
ECE is the standard cross-entropy cost and ↵ and � are hy-
perparameters. In practice, we begin training with ↵ set to
1 and � set to 0, and then later switch � to 1 while keep-
ing ↵ at 1. As described in Section 2.1, the input module
outputs fact representations by taking the encoder hidden
states at time steps corresponding to the end-of-sentence to-
kens. The gate supervision aims to select one sentence per
pass; thus, we also experimented with modifying Eq. 8 to
a simple softmax instead of a GRU. Here, we compute the
final episode vector via: ei =

PT
t=1

softmax(g

i
t)ct, where

softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of

the gate before the sigmoid. This setting achieves better re-
sults, likely because the softmax encourages sparsity and is
better suited to picking one sentence at a time.

Task Binary Fine-grained

MV-RNN 82.9 44.4
RNTN 85.4 45.7
DCNN 86.8 48.5
PVec 87.8 48.7
CNN-MC 88.1 47.4
DRNN 86.6 49.8
CT-LSTM 88.0 51.0

DMN 88.6 52.1

Table 2. Test accuracies for sentiment analysis on the Stanford
Sentiment Treebank. MV-RNN and RNTN: Socher et al. (2013).
DCNN: Kalchbrenner et al. (2014). PVec: Le & Mikolov. (2014).
CNN-MC: Kim (2014). DRNN: Irsoy & Cardie (2015), 2014.
CT-LSTM: Tai et al. (2015)

We list results in Table 1. The DMN does worse than
the Memory Network, which we refer to from here on as
MemNN, on tasks 2 and 3, both tasks with long input se-
quences. We suspect that this is due to the recurrent input
sequence model having trouble modeling very long inputs.
The MemNN does not suffer from this problem as it views
each sentence separately. The power of the episodic mem-
ory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require
the model to iteratively retrieve facts and store them in a
representation that slowly incorporates more of the rele-
vant information of the input sequence. Both models do
poorly on tasks 17 and 19, though the MemNN does better.
We suspect this is due to the MemNN using n-gram vectors
and sequence position features.

4.2. Text Classification: Sentiment Analysis

The Stanford Sentiment Treebank (SST) (Socher et al.,
2013) is a popular dataset for sentiment classification. It
provides phrase-level fine-grained labels, and comes with a
train/development/test split. We present results on two for-
mats: fine-grained root prediction, where all full sentences
(root nodes) of the test set are to be classified as either very
negative, negative, neutral, positive, or very positive, and
binary root prediction, where all non-neutral full sentences
of the test set are to be classified as either positive or neg-
ative. To train the model, we use all full sentences as well
as subsample 50% of phrase-level labels every epoch. Dur-
ing evaluation, the model is only evaluated on the full sen-
tences (root setup). In binary classification, neutral phrases
are removed from the dataset. The DMN achieves state-of-
the-art accuracy on the binary classification task, as well as
on the fine-grained classification task.

In all experiments, the DMN was trained with GRU se-
quence models. It is easy to replace the GRU sequence
model with any of the models listed above, as well as in-

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the
attention weight is higher.

Figure 4. Attention weights for sentiment examples that were
only labeled correctly by a DMN with two episodes. The y-axis
shows the episode number. This sentence demonstrates a case
where the ability to iterate allows the DMN to sharply focus on
relevant words.

ule to perform multiple passes over the data is beneficial. It
provides significant benefits on harder bAbI tasks, which
require reasoning over several pieces of information or
transitive reasoning. Increasing the number of passes also
slightly improves the performance on sentiment analysis,
though the difference is not as significant. We did not at-
tempt more iterations for sentiment analysis as the model
struggles with overfitting with three passes.

Figure 5. These sentence demonstrate cases where initially posi-
tive words lost their importance after the entire sentence context
became clear either through a contrastive conjunction (”but”) or a
modified action ”best described.”

5. Conclusion
The DMN model is a potentially general architecture for a
variety of NLP applications, including classification, ques-
tion answering and sequence modeling. A single architec-
ture is a first step towards a single joint model for multi-
ple NLP problems. The DMN is trained end-to-end with
one, albeit complex, objective function. Future work will
explore additional tasks, larger multi-task models and mul-
timodal inputs and questions.

bAbI Dataset
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Task MemNN DMN
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4: Two Argument Relations 100 100
5: Three Argument Relations 98 99.3
6: Yes/No Questions 100 100
7: Counting 85 96.9
8: Lists/Sets 91 96.5
9: Simple Negation 100 100
10: Indefinite Knowledge 98 97.5
11: Basic Coreference 100 99.9
12: Conjunction 100 100
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16: Basic Induction 100 99.4
17: Positional Reasoning 65 59.6
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Mean Accuracy (%) 93.3 93.6

Table 1. Test accuracies on the bAbI dataset. MemNN numbers
taken from Weston et al. (Weston et al., 2015a). The DMN passes
(accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

4.1. Question Answering

The Facebook bAbI dataset is a synthetic dataset for test-
ing a model’s ability to retrieve facts and reason over them.
Each task tests a different skill that a question answering
model ought to have, such as coreference resolution, de-
duction, and induction. Showing an ability exists here is
not sufficient to conclude a model would also exhibit it on
real world text data. It is, however, a necessary condition.

Training on the bAbI dataset uses the following objective
function: J = ↵ECE(Gates) + �ECE(Answers), where
ECE is the standard cross-entropy cost and ↵ and � are hy-
perparameters. In practice, we begin training with ↵ set to
1 and � set to 0, and then later switch � to 1 while keep-
ing ↵ at 1. As described in Section 2.1, the input module
outputs fact representations by taking the encoder hidden
states at time steps corresponding to the end-of-sentence to-
kens. The gate supervision aims to select one sentence per
pass; thus, we also experimented with modifying Eq. 8 to
a simple softmax instead of a GRU. Here, we compute the
final episode vector via: ei =
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We list results in Table 1. The DMN does worse than
the Memory Network, which we refer to from here on as
MemNN, on tasks 2 and 3, both tasks with long input se-
quences. We suspect that this is due to the recurrent input
sequence model having trouble modeling very long inputs.
The MemNN does not suffer from this problem as it views
each sentence separately. The power of the episodic mem-
ory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require
the model to iteratively retrieve facts and store them in a
representation that slowly incorporates more of the rele-
vant information of the input sequence. Both models do
poorly on tasks 17 and 19, though the MemNN does better.
We suspect this is due to the MemNN using n-gram vectors
and sequence position features.

4.2. Text Classification: Sentiment Analysis

The Stanford Sentiment Treebank (SST) (Socher et al.,
2013) is a popular dataset for sentiment classification. It
provides phrase-level fine-grained labels, and comes with a
train/development/test split. We present results on two for-
mats: fine-grained root prediction, where all full sentences
(root nodes) of the test set are to be classified as either very
negative, negative, neutral, positive, or very positive, and
binary root prediction, where all non-neutral full sentences
of the test set are to be classified as either positive or neg-
ative. To train the model, we use all full sentences as well
as subsample 50% of phrase-level labels every epoch. Dur-
ing evaluation, the model is only evaluated on the full sen-
tences (root setup). In binary classification, neutral phrases
are removed from the dataset. The DMN achieves state-of-
the-art accuracy on the binary classification task, as well as
on the fine-grained classification task.

In all experiments, the DMN was trained with GRU se-
quence models. It is easy to replace the GRU sequence
model with any of the models listed above, as well as in-

Ask Me Anything: Dynamic Memory Networks for Natural Language Processing

Question: Where was Mary before the Bedroom?
Answer: Cinema.

Facts Episode 1 Episode 2 Episode 3

Yesterday Julie traveled to the school.
Yesterday Marie went to the cinema.
This morning Julie traveled to the kitchen.
Bill went back to the cinema yesterday.
Mary went to the bedroom this morning.
Julie went back to the bedroom this afternoon.
[done reading]

Table 5. An example of what the DMN focuses on during each episode on a real query in the bAbI task. Darker colors mean that the
attention weight is higher.

Figure 4. Attention weights for sentiment examples that were
only labeled correctly by a DMN with two episodes. The y-axis
shows the episode number. This sentence demonstrates a case
where the ability to iterate allows the DMN to sharply focus on
relevant words.

ule to perform multiple passes over the data is beneficial. It
provides significant benefits on harder bAbI tasks, which
require reasoning over several pieces of information or
transitive reasoning. Increasing the number of passes also
slightly improves the performance on sentiment analysis,
though the difference is not as significant. We did not at-
tempt more iterations for sentiment analysis as the model
struggles with overfitting with three passes.

Figure 5. These sentence demonstrate cases where initially posi-
tive words lost their importance after the entire sentence context
became clear either through a contrastive conjunction (”but”) or a
modified action ”best described.”

5. Conclusion
The DMN model is a potentially general architecture for a
variety of NLP applications, including classification, ques-
tion answering and sequence modeling. A single architec-
ture is a first step towards a single joint model for multi-
ple NLP problems. The DMN is trained end-to-end with
one, albeit complex, objective function. Future work will
explore additional tasks, larger multi-task models and mul-
timodal inputs and questions.
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WSJ-PTB Part of Speech Tagging TaskAsk Me Anything: Dynamic Memory Networks for Natural Language Processing

Model Acc (%)

SVMTool 97.15
Sogaard 97.27
Suzuki et al. 97.40
Spoustova et al. 97.44
SCNN 97.50

DMN 97.56
Table 3. Test accuracies on WSJ-PTB

corporate tree structure in the retrieval process.

4.3. Sequence Tagging: Part-of-Speech Tagging

Part-of-speech tagging is traditionally modeled as a se-
quence tagging problem: every word in a sentence is to
be classified into its part-of-speech class (see Fig. 1). We
evaluate on the standard Wall Street Journal dataset (Mar-
cus et al., 1993). We use the standard splits of sections
0-18 for training, 19-21 for development and 22-24 for test
sets (Søgaard, 2011). Since this is a word level tagging
task, DMN memories are classified at each time step corre-
sponding to each word. This is described in detail in Sec-
tion 2.4’s discussion of sequence modeling.

We compare the DMN with the results in (Søgaard, 2011).
The DMN achieves state-of-the-art accuracy with a single
model, reaching a development set accuracy of 97.5. En-
sembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a slightly
higher new state-of-the-art (Table 3).

4.4. Quantitative Analysis of Episodic Memory Module

The main novelty of the DMN architecture is in its episodic
memory module. Hence, we analyze how important the
episodic memory module is for NLP tasks and in particular
how the number of passes over the input affect accuracy.

Table 4 shows the accuracies on a subset of bAbI tasks as
well as on the Stanford Sentiment Treebank. We note that
for several of the hard reasoning tasks, multiple passes over
the inputs are crucial to achieving high performance. For
sentiment the differences are smaller. However, two passes
outperform a single pass or zero passes. In the latter case,
there is no episodic memory at all and outputs are passed
directly from the input module to the answer module. We
note that, especially complicated examples are more of-
ten correctly classified with 2 passes but many examples
in sentiment contain only simple sentiment words and no
negation or misleading expressions. Hence the need to have
a complicated architecture for them is small. The same is
true for POS tagging. Here, differences in accuracy are less
than 0.1 between different numbers of passes.

Next, we show that the additional correct classifications are

Max
passes

task 3
three-facts

task 7
count

task 8
lists/sets

sentiment
(fine grain)

0 pass 0 48.8 33.6 50.0
1 pass 0 48.8 54.0 51.5
2 pass 16.7 49.1 55.6 52.1
3 pass 64.7 83.4 83.4 50.1
5 pass 95.2 96.9 96.5 N/A

Table 4. Effectiveness of episodic memory module across tasks.
Each row shows the final accuracy in term of percentages with
a different maximum limit for the number of passes the episodic
memory module can take. Note that for the 0-pass DMN, the
network essential reduces to the output of the attention module.

hard examples with mixed positive/negative vocabulary.

4.5. Qualitative Analysis of Episodic Memory Module

Apart from a quantitative analysis, we also show qualita-
tively what happens to the attention during multiple passes.
We present specific examples from the experiments to illus-
trate that the iterative nature of the episodic memory mod-
ule enables the model to focus on relevant parts of the input.
For instance, Table 5 shows an example of what the DMN
focuses on during each pass of a three-iteration scan on a
question from the bAbI dataset.

We also evaluate the episodic memory module for senti-
ment analysis. Given that the DMN performs well with
both one iteration and two iterations, we study test exam-
ples where the one-iteration DMN is incorrect and the two-
episode DMN is correct. Looking at the sentences in Fig. 4
and 5, we make the following observations:

1. The attention of the two-iteration DMN is generally
much more focused compared to that of the one-
iteration DMN. We believe this is due to the fact that
with fewer iterations over the input, the hidden states
of the input module encoder have to capture more of
the content of adjacent time steps. Hence, the atten-
tion mechanism cannot only focus on a few key time
steps. Instead, it needs to pass all necessary informa-
tion to the answer module from a single pass.

2. During the second iteration of the two-iteration DMN,
the attention becomes significantly more focused on
relevant key words and less attention is paid to strong
sentiment words that lose their sentiment in context.
This is exemplified by the sentence in Fig. 5 that in-
cludes the very positive word ”best.” In the first iter-
ation, the word ”best” dominates the attention scores
(darker color means larger score). However, once its
context, ”is best described”, is clear, its relevance is
diminished and ”lukewarm” becomes more important.

We conclude that the ability of the episodic memory mod-



MemNNs Summary
Models which augments a standard deep 

network with an external readable and writable 
memory 

These memories are learnt and used effectively 
in solving reasoning tasks which require long 

term knowledge 

The architecture is quite flexible in how one 
represents the memories and how they are used 

to solve the final task



MemNNs Shortcomings

While the model is quite rich one significant 
drawback is that it cannot write to memory 

intelligently.  

Given a new statement it simply writes it at the next 
available slot. If the memory is full it will cycle.  

One cannot erase memories 

One cannot compress memories



Neural Turing Machines

Follows the standard architecture of MemNNs 
The primary difference is in the way it writes to the memory

Neural Turing Machines: Graves, Wayne, Danihelka 2015
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NTM: Read Mechanism
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wt: weight vector over N memory locations 
emitted by the read head at time t
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NTM: Write Mechanism
Neural Turing Machines: Graves, Wayne, Danihelka 2015

wt: weight vector over N memory locations 
emitted by the write head at time t

: erase vector et
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Mt(i) M̃t(i) + wt(i)at

: add vector at
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How are the weight vectors computed?  

A combination of content based addressing and 
location based addressing 

Content based is the usual stuff: attention based on 
content 

Location based is different. Allows for single step 
jumps or random location jumps



NTM: Addressing Mechanism
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Content Based

3.3.1 Focusing by Content

For content-addressing, each head (whether employed for reading or writing) first produces
a length M key vector kt that is compared to each vector Mt(i) by a similarity measure
K

⇥
·, ·
⇤
. The content-based system produces a normalised weighting w

c
t based on the sim-

ilarity and a positive key strength, �t, which can amplify or attenuate the precision of the
focus:

w

c
t (i)  �

exp

✓
�tK

⇥
kt,Mt(i)

⇤◆

P
j exp

✓
�tK

⇥
kt,Mt(j)

⇤◆ . (5)

In our current implementation, the similarity measure is cosine similarity:

K

⇥
u,v

⇤
=

u · v
||u|| · ||v|| . (6)

3.3.2 Focusing by Location

The location-based addressing mechanism is designed to facilitate both simple iteration
across the locations of the memory and random-access jumps. It does so by implementing
a rotational shift of a weighting. For example, if the current weighting focuses entirely on
a single location, a rotation of 1 would shift the focus to the next location. A negative shift
would move the weighting in the opposite direction.

Prior to rotation, each head emits a scalar interpolation gate gt in the range (0, 1). The
value of g is used to blend between the weighting wt�1 produced by the head at the previous
time-step and the weighting w

c
t produced by the content system at the current time-step,

yielding the gated weighting w

g
t :

w

g
t  � gtw

c
t + (1� gt)wt�1. (7)

If the gate is zero, then the content weighting is entirely ignored, and the weighting from the
previous time step is used. Conversely, if the gate is one, the weighting from the previous
iteration is ignored, and the system applies content-based addressing.

After interpolation, each head emits a shift weighting st that defines a normalised distri-
bution over the allowed integer shifts. For example, if shifts between -1 and 1 are allowed,
st has three elements corresponding to the degree to which shifts of -1, 0 and 1 are per-
formed. The simplest way to define the shift weightings is to use a softmax layer of the
appropriate size attached to the controller. We also experimented with another technique,
where the controller emits a single scalar that is interpreted as the lower bound of a width
one uniform distribution over shifts. For example, if the shift scalar is 6.7, then st(6) = 0.3,
st(7) = 0.7, and the rest of st is zero.
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Location Based
Step 1: compute an interpolation vector
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Step 2: convolve using the shift vector
If we index the N memory locations from 0 to N � 1, the rotation applied to w

g
t by st

can be expressed as the following circular convolution:

w̃t(i) �
N�1X

j=0

w

g
t (j) st(i� j) (8)

where all index arithmetic is computed modulo N . The convolution operation in Equa-
tion (8) can cause leakage or dispersion of weightings over time if the shift weighting is
not sharp. For example, if shifts of -1, 0 and 1 are given weights of 0.1, 0.8 and 0.1, the
rotation will transform a weighting focused at a single point into one slightly blurred over
three points. To combat this, each head emits one further scalar �t � 1 whose effect is to
sharpen the final weighting as follows:

wt(i) �
w̃t(i)

�t

P
j w̃t(j)

�t
(9)

The combined addressing system of weighting interpolation and content and location-
based addressing can operate in three complementary modes. One, a weighting can be
chosen by the content system without any modification by the location system. Two, a
weighting produced by the content addressing system can be chosen and then shifted. This
allows the focus to jump to a location next to, but not on, an address accessed by content;
in computational terms this allows a head to find a contiguous block of data, then access a
particular element within that block. Three, a weighting from the previous time step can
be rotated without any input from the content-based addressing system. This allows the
weighting to iterate through a sequence of addresses by advancing the same distance at
each time-step.

3.4 Controller Network

The NTM architecture architecture described above has several free parameters, including
the size of the memory, the number of read and write heads, and the range of allowed lo-
cation shifts. But perhaps the most significant architectural choice is the type of neural
network used as the controller. In particular, one has to decide whether to use a recurrent
or feedforward network. A recurrent controller such as LSTM has its own internal memory
that can complement the larger memory in the matrix. If one compares the controller to
the central processing unit in a digital computer (albeit with adaptive rather than predefined
instructions) and the memory matrix to RAM, then the hidden activations of the recurrent
controller are akin to the registers in the processor. They allow the controller to mix infor-
mation across multiple time steps of operation. On the other hand a feedforward controller
can mimic a recurrent network by reading and writing at the same location in memory at
every step. Furthermore, feedforward controllers often confer greater transparency to the
network’s operation because the pattern of reading from and writing to the memory matrix
is usually easier to interpret than the internal state of an RNN. However, one limitation of
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Location Based
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network’s operation because the pattern of reading from and writing to the memory matrix
is usually easier to interpret than the internal state of an RNN. However, one limitation of
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Location Based
Step 1: compute an interpolation vector

3.3.1 Focusing by Content

For content-addressing, each head (whether employed for reading or writing) first produces
a length M key vector kt that is compared to each vector Mt(i) by a similarity measure
K
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·, ·
⇤
. The content-based system produces a normalised weighting w
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t based on the sim-

ilarity and a positive key strength, �t, which can amplify or attenuate the precision of the
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In our current implementation, the similarity measure is cosine similarity:
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||u|| · ||v|| . (6)

3.3.2 Focusing by Location

The location-based addressing mechanism is designed to facilitate both simple iteration
across the locations of the memory and random-access jumps. It does so by implementing
a rotational shift of a weighting. For example, if the current weighting focuses entirely on
a single location, a rotation of 1 would shift the focus to the next location. A negative shift
would move the weighting in the opposite direction.

Prior to rotation, each head emits a scalar interpolation gate gt in the range (0, 1). The
value of g is used to blend between the weighting wt�1 produced by the head at the previous
time-step and the weighting w

c
t produced by the content system at the current time-step,

yielding the gated weighting w

g
t :

w

g
t  � gtw

c
t + (1� gt)wt�1. (7)

If the gate is zero, then the content weighting is entirely ignored, and the weighting from the
previous time step is used. Conversely, if the gate is one, the weighting from the previous
iteration is ignored, and the system applies content-based addressing.

After interpolation, each head emits a shift weighting st that defines a normalised distri-
bution over the allowed integer shifts. For example, if shifts between -1 and 1 are allowed,
st has three elements corresponding to the degree to which shifts of -1, 0 and 1 are per-
formed. The simplest way to define the shift weightings is to use a softmax layer of the
appropriate size attached to the controller. We also experimented with another technique,
where the controller emits a single scalar that is interpreted as the lower bound of a width
one uniform distribution over shifts. For example, if the shift scalar is 6.7, then st(6) = 0.3,
st(7) = 0.7, and the rest of st is zero.
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Step 2: convolve using the shift vector
If we index the N memory locations from 0 to N � 1, the rotation applied to w

g
t by st

can be expressed as the following circular convolution:

w̃t(i) �
N�1X

j=0

w

g
t (j) st(i� j) (8)

where all index arithmetic is computed modulo N . The convolution operation in Equa-
tion (8) can cause leakage or dispersion of weightings over time if the shift weighting is
not sharp. For example, if shifts of -1, 0 and 1 are given weights of 0.1, 0.8 and 0.1, the
rotation will transform a weighting focused at a single point into one slightly blurred over
three points. To combat this, each head emits one further scalar �t � 1 whose effect is to
sharpen the final weighting as follows:

wt(i) �
w̃t(i)

�t

P
j w̃t(j)

�t
(9)

The combined addressing system of weighting interpolation and content and location-
based addressing can operate in three complementary modes. One, a weighting can be
chosen by the content system without any modification by the location system. Two, a
weighting produced by the content addressing system can be chosen and then shifted. This
allows the focus to jump to a location next to, but not on, an address accessed by content;
in computational terms this allows a head to find a contiguous block of data, then access a
particular element within that block. Three, a weighting from the previous time step can
be rotated without any input from the content-based addressing system. This allows the
weighting to iterate through a sequence of addresses by advancing the same distance at
each time-step.

3.4 Controller Network

The NTM architecture architecture described above has several free parameters, including
the size of the memory, the number of read and write heads, and the range of allowed lo-
cation shifts. But perhaps the most significant architectural choice is the type of neural
network used as the controller. In particular, one has to decide whether to use a recurrent
or feedforward network. A recurrent controller such as LSTM has its own internal memory
that can complement the larger memory in the matrix. If one compares the controller to
the central processing unit in a digital computer (albeit with adaptive rather than predefined
instructions) and the memory matrix to RAM, then the hidden activations of the recurrent
controller are akin to the registers in the processor. They allow the controller to mix infor-
mation across multiple time steps of operation. On the other hand a feedforward controller
can mimic a recurrent network by reading and writing at the same location in memory at
every step. Furthermore, feedforward controllers often confer greater transparency to the
network’s operation because the pattern of reading from and writing to the memory matrix
is usually easier to interpret than the internal state of an RNN. However, one limitation of
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Figure 3: Copy Learning Curves.

rather than quantitative, difference in the way the two models solve the problem.
We also studied the ability of the networks to generalise to longer sequences than seen

during training (that they can generalise to novel vectors is clear from the training error).
Figures 4 and 5 demonstrate that the behaviour of LSTM and NTM in this regime is rad-
ically different. NTM continues to copy as the length increases2, while LSTM rapidly
degrades beyond length 20.

The preceding analysis suggests that NTM, unlike LSTM, has learned some form of
copy algorithm. To determine what this algorithm is, we examined the interaction between
the controller and the memory (Figure 6). We believe that the sequence of operations per-
formed by the network can be summarised by the following pseudocode:

initialise: move head to start location
while input delimiter not seen do

receive input vector
write input to head location
increment head location by 1

end while

return head to start location
while true do

read output vector from head location
emit output
increment head location by 1

end while

This is essentially how a human programmer would perform the same task in a low-
2The limiting factor was the size of the memory (128 locations), after which the cyclical shifts wrapped

around and previous writes were overwritten.
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Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with
high confidence and very few mistakes. The longest one has a few more local errors and one
global error: at the point indicated by the red arrow at the bottom, a single vector is duplicated,
pushing all subsequent vectors one step back. Despite being subjectively close to a correct copy,
this leads to a high loss.

level programming language. In terms of data structures, we could say that NTM has
learned how to create and iterate through arrays. Note that the algorithm combines both
content-based addressing (to jump to start of the sequence) and location-based address-
ing (to move along the sequence). Also note that the iteration would not generalise to
long sequences without the ability to use relative shifts from the previous read and write
weightings (Equation 7), and that without the focus-sharpening mechanism (Equation 9)
the weightings would probably lose precision over time.

4.2 Repeat Copy

The repeat copy task extends copy by requiring the network to output the copied sequence a
specified number of times and then emit an end-of-sequence marker. The main motivation
was to see if the NTM could learn a simple nested function. Ideally, we would like it to be
able to execute a “for loop” containing any subroutine it has already learned.

The network receives random-length sequences of random binary vectors, followed by
a scalar value indicating the desired number of copies, which appears on a separate input
channel. To emit the end marker at the correct time the network must be both able to
interpret the extra input and keep count of the number of copies it has performed so far.
As with the copy task, no inputs are provided to the network after the initial sequence and
repeat number. The networks were trained to reproduce sequences of size eight random
binary vectors, where both the sequence length and the number of repetitions were chosen
randomly from one to ten. The input representing the repeat number was normalised to
have mean zero and variance one.
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Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.

Figure 6: NTM Memory Use During the Copy Task. The plots in the left column depict
the inputs to the network (top), the vectors added to memory (middle) and the corresponding
write weightings (bottom) during a single test sequence for the copy task. The plots on the right
show the outputs from the network (top), the vectors read from memory (middle) and the read
weightings (bottom). Only a subset of memory locations are shown. Notice the sharp focus of
all the weightings on a single location in memory (black is weight zero, white is weight one).
Also note the translation of the focal point over time, reflects the network’s use of iterative
shifts for location-based addressing, as described in Section 3.3.2. Lastly, observe that the read
locations exactly match the write locations, and the read vectors match the add vectors. This
suggests that the network writes each input vector in turn to a specific memory location during
the input phase, then reads from the same location sequence during the output phase.
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all the weightings on a single location in memory (black is weight zero, white is weight one).
Also note the translation of the focal point over time, reflects the network’s use of iterative
shifts for location-based addressing, as described in Section 3.3.2. Lastly, observe that the read
locations exactly match the write locations, and the read vectors match the add vectors. This
suggests that the network writes each input vector in turn to a specific memory location during
the input phase, then reads from the same location sequence during the output phase.
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Figure 7: Repeat Copy Learning Curves.

Figure 7 shows that NTM learns the task much faster than LSTM, but both were able to
solve it perfectly.3 The difference between the two architectures only becomes clear when
they are asked to generalise beyond the training data. In this case we were interested in
generalisation along two dimensions: sequence length and number of repetitions. Figure 8
illustrates the effect of doubling first one, then the other, for both LSTM and NTM. Whereas
LSTM fails both tests, NTM succeeds with longer sequences and is able to perform more
than ten repetitions; however it is unable to keep count of of how many repeats it has
completed, and does not predict the end marker correctly. This is probably a consequence
of representing the number of repetitions numerically, which does not easily generalise
beyond a fixed range.

Figure 9 suggests that NTM learns a simple extension of the copy algorithm in the
previous section, where the sequential read is repeated as many times as necessary.

4.3 Associative Recall

The previous tasks show that the NTM can apply algorithms to relatively simple, linear data
structures. The next order of complexity in organising data arises from “indirection”—that
is, when one data item points to another. We test the NTM’s capability for learning an
instance of this more interesting class by constructing a list of items so that querying with
one of the items demands that the network return the subsequent item. More specifically,
we define an item as a sequence of binary vectors that is bounded on the left and right
by delimiter symbols. After several items have been propagated to the network, we query
by showing a random item, and we ask the network to produce the next item. In our
experiments, each item consisted of three six-bit binary vectors (giving a total of 18 bits

3It surprised us that LSTM performed better here than on the copy problem. The likely reasons are that the
sequences were shorter (up to length 10 instead of up to 20), and the LSTM network was larger and therefore
had more memory capacity.
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Figure 8: NTM and LSTM Generalisation for the Repeat Copy Task. NTM generalises
almost perfectly to longer sequences than seen during training. When the number of repeats is
increased it is able to continue duplicating the input sequence fairly accurately; but it is unable
to predict when the sequence will end, emitting the end marker after the end of every repetition
beyond the eleventh. LSTM struggles with both increased length and number, rapidly diverging
from the input sequence in both cases.

per item). During training, we used a minimum of 2 items and a maximum of 6 items in a
single episode.

Figure 10 shows that NTM learns this task significantly faster than LSTM, terminating
at near zero cost within approximately 30, 000 episodes, whereas LSTM does not reach
zero cost after a million episodes. Additionally, NTM with a feedforward controller learns
faster than NTM with an LSTM controller. These two results suggest that NTM’s external
memory is a more effective way of maintaining the data structure than LSTM’s internal
state. NTM also generalises much better to longer sequences than LSTM, as can be seen
in Figure 11. NTM with a feedforward controller is nearly perfect for sequences of up to
12 items (twice the maximum length used in training), and still has an average cost below
1 bit per sequence for sequences of 15 items.

In Figure 12, we show the operation of the NTM memory, controlled by an LSTM
with one head, on a single test episode. In “Inputs,” we see that the input denotes item
delimiters as single bits in row 7. After the sequence of items has been propagated, a
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Figure 9: NTM Memory Use During the Repeat Copy Task. As with the copy task the
network first writes the input vectors to memory using iterative shifts. It then reads through
the sequence to replicate the input as many times as necessary (six in this case). The white dot
at the bottom of the read weightings seems to correspond to an intermediate location used to
redirect the head to the start of the sequence (The NTM equivalent of a goto statement).
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Figure 10: Associative Recall Learning Curves for NTM and LSTM.
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Sort a collection of vectors according to their given priority

Figure 16: Example Input and Target Sequence for the Priority Sort Task. The input
sequence contains random binary vectors and random scalar priorities. The target sequence is a
subset of the input vectors sorted by the priorities.

Write Weightings Read WeightingsHypothesised Locations

Time Time Time

Lo
ca

ti
o
b
n

Figure 17: NTM Memory Use During the Priority Sort Task. Left: Write locations
returned by fitting a linear function of the priorities to the observed write locations. Middle:
Observed write locations. Right: Read locations.

memory use led us to hypothesise that it uses the priorities to determine the relative location
of each write. To test this hypothesis we fitted a linear function of the priority to the
observed write locations. Figure 17 shows that the locations returned by the linear function
closely match the observed write locations. It also shows that the network reads from the
memory locations in increasing order, thereby traversing the sorted sequence.

The learning curves in Figure 18 demonstrate that NTM with both feedforward and
LSTM controllers substantially outperform LSTM on this task. Note that eight parallel
read and write heads were needed for best performance with a feedforward controller on
this task; this may reflect the difficulty of sorting vectors using only unary vector operations
(see Section 3.4).

4.6 Experimental Details

For all experiments, the RMSProp algorithm was used for training in the form described
in (Graves, 2013) with momentum of 0.9. Tables 1 to 3 give details about the network
configurations and learning rates used in the experiments. All LSTM networks had three
stacked hidden layers. Note that the number of LSTM parameters grows quadratically with
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Figure 18: Priority Sort Learning Curves.

Task #Heads Controller Size Memory Size Learning Rate #Parameters

Copy 1 100 128 ⇥ 20 10�4 17, 162
Repeat Copy 1 100 128 ⇥ 20 10�4 16, 712
Associative 4 256 128 ⇥ 20 10�4 146, 845
N-Grams 1 100 128 ⇥ 20 3⇥ 10�5 14, 656
Priority Sort 8 512 128 ⇥ 20 3⇥ 10�5 508, 305

Table 1: NTM with Feedforward Controller Experimental Settings

the number of hidden units (due to the recurrent connections in the hidden layers). This
contrasts with NTM, where the number of parameters does not increase with the number of
memory locations. During the training backward pass, all gradient components are clipped
elementwise to the range (-10, 10).

5 Conclusion

We have introduced the Neural Turing Machine, a neural network architecture that takes
inspiration from both models of biological working memory and the design of digital com-
puters. Like conventional neural networks, the architecture is differentiable end-to-end and
can be trained with gradient descent. Our experiments demonstrate that it is capable of
learning simple algorithms from example data and of using these algorithms to generalise
well outside its training regime.
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Stack Augmented RNNs

So far we’ve dealt with memories which are like tapes 

For MemNNs the tapes are write-once read-multiple 

For NTM tapes are write-multiple read multiple 
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Stack Augmented RNNs
A number of people have worked on such architectures 
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(a) (b)
Figure 1: (a) Neural network extended with push-down stack and a controlling mechanism that
learns what action (among PUSH, POP and NO-OP) to perform. (b) The same model extended with
a doubly-linked list with actions INSERT, LEFT, RIGHT and NO-OP.

4.2 Pushdown network

In this section, we describe a simple structured memory inspired by pushdown automaton, i.e., an
automaton which employs a stack. We train our network to learn how to operate this memory with
standard optimization tools.

A stack is a type of persistent memory which can be only accessed through its topmost element.
Three basic operations can be performed with a stack: POP removes the top element, PUSH adds
a new element on top of the stack and NO-OP does nothing. For simplicity, we first consider a
simplified version where the model can only choose between a PUSH or a POP at each time step.
We suppose that this decision is made by a 2-dimensional variable at which depends on the state of
the hidden variable ht:

at = f (Aht) , (3)
where A is a 2⇥m matrix (m is the size of the hidden layer) and f is a softmax function. We denote
by at[PUSH], the probability of the PUSH action, and by at[POP] the probability of the POP action.
We suppose that the stack is stored at time t in a vector st of size p. Note that p could be increased
on demand and does not have to be fixed which allows the capacity of the model to grow. The top
element is stored at position 0, with value st[0]:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1], (4)

where D is 1 ⇥m matrix. If at[POP] is equal to 1, the top element is replaced by the value below
(all values are moved by one position up in the stack structure). If at[PUSH] is equal to 1, we move
all values down in the stack and add a value on top of the stack. Similarly, for an element stored at
a depth i > 0 in the stack, we have the following update rule:

st[i] = at[PUSH]st�1[i� 1] + at[POP]st�1[i+ 1]. (5)

We use the stack to carry information to the hidden layer at the next time step. When the stack is
empty, st is set to �1. The hidden layer ht is now updated as:

ht = �

�
Uxt +Rht�1 + Ps

k
t�1

�
, (6)

where P is a m⇥ k recurrent matrix and s

k
t�1 are the k top-most element of the stack at time t� 1.

In our experiments, we set k to 2. We call this model Stack RNN, and show it in Figure 1-a without
the recurrent matrix R for clarity.

Stack with a no-operation. Adding the NO-OP action allows the stack to keep the same value on
top by a minor change of the stack update rule. Eq. (4) is replaced by:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1] + at[NO-OP]st�1[0].

Extension to multiple stacks. Using a single stack has serious limitations, especially considering
that at each time step, only one action can be performed. We increase capacity of the model by
using multiple stacks in parallel. The stacks can interact through the hidden layer allowing them to
process more challenging patterns.
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Stack Augmented RNNs
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets, Joulin and 

Mikolov, 2015
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RNN 25% 23.3% 13.3% 23.3% 33.3%

LSTM 100% 100% 68.3% 75% 100%

List RNN 40+5 100% 33.3% 100% 100% 100%

Stack RNN 40+10 100% 100% 100% 100% 43.3%

Stack RNN 40+10 + rounding 100% 100% 100% 100% 100%

Table 2: Comparison with RNN and LSTM on sequences generated by counting algorithms. The
sequences seen during training are such that n < 20 (and n +m < 20), and we test on sequences
up to n = 60. We report the percent of n for which the model was able to correctly predict the
sequences. Performance above 33.3% means it is able to generalize to never seen sequence lengths.

Doubly-linked lists. While in this paper we mostly focus on an infinite memory based on stacks, it
is straightforward to extend the model to another forms of infinite memory, for example, the doubly-
linked list. A list is a one dimensional memory where each node is connected to its left and right
neighbors. There is a read/write head associated with the list. The head can move between nearby
nodes and insert a new node at its current position. More precisely, we consider three different
actions: INSERT, which inserts an element at the current position of the head, LEFT, which moves
the head to the left, and RIGHT which moves it to the right. Given a list L and a fixed head position
HEAD, the updates are:

Lt[i] =

(
at[RIGHT]Lt�1[i+ 1] + at[LEFT]Lt�1[i� 1] + at[INSERT]�(Dht) if i = HEAD,
at[RIGHT]Lt�1[i+ 1] + at[LEFT]Lt�1[i� 1] + at[INSERT]Lt�1[i+ 1] if i < HEAD,
at[RIGHT]Lt�1[i+ 1] + at[LEFT]Lt�1[i� 1] + at[INSERT]Lt�1[i] if i > HEAD.

Note that we can add a NO-OP operation as well. We call this model List RNN, and show it in
Figure 1-b without the recurrent matrix R for clarity.

Optimization. The models presented above are continuous and can thus be trained with stochastic
gradient descent (SGD) method and back-propagation through time [31, 33, 36]. As patterns be-
comes more complex, more complex memory controller must be learned. In practice we observe
that this is often too hard to learn only with SGD. We thus use a search based procedure on top of
SGD for the more complex tasks. While in this paper we only use a simple search based on random
restarts, other search based approaches are discussed in the supplementary material. They seem to
be more robust and can give better convergence rates.

Rounding. Continuous operators on stacks introduce small imprecisions leading to numerical
issues on very long sequences. Discretizing the controllers at test time partially solves this problem.

5 Experiments and results

First, we consider various sequences generated by simple algorithms, where the goal is to learn their
generation rule [3, 13, 30]. We hope to understand the scope of algorithmic patterns each model can
capture. We also evaluate the models on a standard language modeling dataset, Penn Treebank.

Implementation details. Stack and List RNNs are trained with SGD and backpropagation through
time with 50 steps [33], a hard clipping of 15 to prevent gradient explosions [24], and an initial
learning rate of 0.1. The learning rate is divided by 2 each time the entropy on the validation set is
not decreasing. The depth k defined in Eq. (6) is set to 2. The free parameters are the number of
hidden units, stacks and the use of NO-OP. The baselines are RNNs with 40, 100 and 500 units, and
LSTMs with 1 and 2 layers with 50, 100 and 200 units. The hyper-parameters of the baselines are
selected on the validation sets.

5.1 Learning simple algorithmic patterns

Given an algorithm with short description length, we generate sequences and concatenate them into
longer sequences. This is an unsupervised task, since the boundaries of each generated sequences
are not known. We study patterns related to counting and memorization as shown in Table 1. To
evaluate if a model has the capacity to understand the generation rule used to produce the sequences,
it is tested on sequences it has not seen during training. Our experimental setting is the following:
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Wrapping Up
We discussed the importance of having a persistent 

memory in models for a number of problems 

Memory Networks — Neural Turing Machines — 
Stack Augmenting RNNs 

Attention Mechanism (soft/hard) seems to be one 
fundamental way of implementing things 

Quite a bit lacking still



Wrapping Up
How to decide what to write and what not to write 

How to decide which type of memory to use and when?  

How to represent knowledge stored in memory 

How to incorporate forgetting/compression of information 

How to build hierarchical memories: multi scale 
attention?  

How to build hierarchical reasoning: composition of 
functions? 



Thank You!


