Learning Nash Equilibrium for General-Sum Markov Games from Batch Data

Julien Pérolat^(a), Florian Strub^(a), Bilal Piot^(a), Olivier Pietquin^(a,b,c)

(a) Univ. Lille, CNRS, Centrale Lille, Inria UMR 9189 - CRIStAL, F-59000 Lille, France (b) Institut Universitaire de France (IUF), France, ^(C) now at DeepMind.

August 7, 2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Figure : Breakout

Markov Decision Processes (MDPs):

Finding an optimal policy, One agent maximizing his expected sum of rewards,



Figure : Breakout

*a*¹ *r*^t *s*^t

Figure : Markov Decision Process (MDP)

Markov Decision Processes (MDPs):

Finding an optimal policy,

One agent maximizing his expected sum of rewards,

Find the optimal Q-function Q(s, a),

Act greedily according to the *Q*-function.

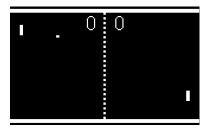


Figure : Pong

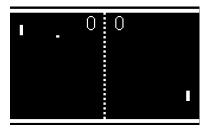


Figure : Pong

Zero-Sum Two-Player Markov Games:

Both player receive the same reward signal,

Finding a minimax policy.

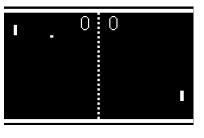
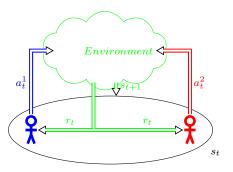


Figure : Pong



Zero-Sum Two-Player Markov Games:

Both player receive the same reward signal,

Finding a minimax policy.

Figure : Zero-Sum Two-Player Markov Game

Find an optimal Q-function $(Q(s, a^1, a^2))$,

Act greedily according to the $\ensuremath{\mathcal{Q}}\xspace$ function.

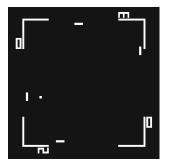
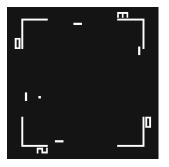


Figure : Pong

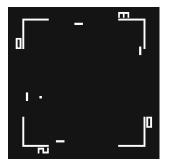


N-Player General-sum Markov Games:

Each player receives his own reward signal,

Finding a Nash equilibrium.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



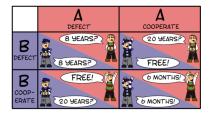
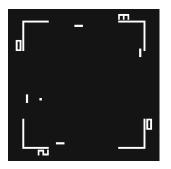


Figure : Nash Equilibrium: no player would benefit from modifying their current strategy.

N-Player General-sum Markov Games:

Each player receives his own reward signal,

Finding a Nash equilibrium.



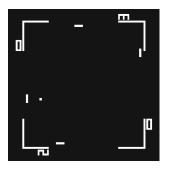
Can we only work on Q-functions?

N-Player General-sum Markov Games:

Each player receives his own reward signal,

Finding a Nash equilibrium.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Can we only work on *Q*-functions? **No!**

N-Player General-sum Markov Games:

Each player receives his own reward signal,

Finding a Nash equilibrium.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

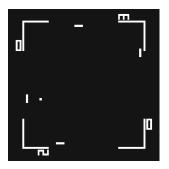


Figure : Pong

N-Player General-sum Markov Games:

Each player receives his own reward signal,

Finding a Nash equilibrium.

Can we only work on *Q*-functions? **No!**

Problem:

Batch Reinforcement Learning algorithms are only based on the Q-Function.

Previous Work & Contributions

Our Goal:

Learning an ϵ -Nash equilibrium in N-player general-sum Markov Games from historical data with function approximation.

Previous work:

Learning from historical data:

Fitted-Q iteration on MDPs (Ernst & al [2005], Riedmiller [2005]),

LSPI (Lagoudakis & Parr [2002]),

Approximate dynamic programming on zero-sum two-player MGs (Pérolat & al [2015,2016]).

Learning in general sum Markov Games:

Stochastic approximation approaches (Prasad & al [2015]). Limited to the online case or to the model based case.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Contributions :

Contributions :

- Definition of a new (weak) ϵ -Nash equilibrium,
- Reduce the problem of learning a Nash equilibrium to the minimization of a surrogate loss (a sum of Bellman Residuals),
- Empirical evaluation of the method using Neural network.

Framework

A Markov Game is specified by:

- a number of player N,
- a state space S,
- an action space per player A^1, \ldots, A^N ,
- a transition kernel $p(s'|s, a^1, \dots, a^N) = p(s'|s, a^i, a^{-i}) = p(s'|s, a),$
- a reward signal per player $r^i(s,a^1,\ldots,a^N)=r^i(s,a^i,a^{-i})=r^i(s,a),$
- a discount factor γ .

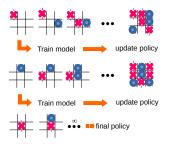
Goal:

• Find a strategy $\pi^i(a^i|s)$ a strategy for each player $\boldsymbol{\pi} = (\pi^i, \pi^{-i}) = (\pi^1, \dots, \pi^N)$,

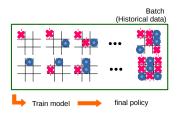
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

The Batch Scenario

Online scenario:



Batch scenario:



Historical data required :

$$\begin{split} ((s_j,a_j^1,\ldots,a_j^N),r_j^1,\ldots,r_j^N,s_j')_{j=1,\ldots,k} \\ \text{state-actions tuple } (s_j,a_j^1,\ldots,a_j^N), \\ \text{a reward per player } r_j^1,\ldots,r_j^N, \\ \text{the next state } s_j' \sim p(.|s_j,a_j). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Q-functions

• Q-functions :

$$Q_{\pi}^{i}(s,\mathbf{a}) = E\left[\sum_{t=0}^{\infty} \gamma^{t} r_{\pi}^{i}(s_{t}) | s_{0} = s, \mathbf{a}_{0} = \mathbf{a}, \ s_{t+1} \sim P_{\pi}(.|s_{t})\right],$$

where $r_{\pi}(s) = E_{a \sim \pi}[r(s, a)]$ and $P_{\pi}(s'|s) = E_{a \sim \pi}[p(s'|s, a)]$,

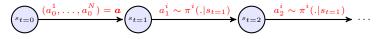


Figure : Q-function in MGs

• Bellman operator :

$$\mathcal{B}^{i}_{\boldsymbol{\pi}}Q = r^{i}(s, \mathbf{a}) + \sum_{s' \in S} p(s'|s, \mathbf{a}) E_{\mathbf{b} \sim \boldsymbol{\pi}}[Q(s', \mathbf{b})],$$

• Fixed point equation :

,

$$\mathcal{B}^i_{m{\pi}}Q^i_{m{\pi}}=Q^i_{m{\pi}}$$

イロト 不得 トイヨト イヨト 二日

Best Response

• Best Response of player i:

$$Q_{\pi^{-i}}^{*i}(s, \mathbf{a}) = \max_{\pi^{i}} Q_{\pi^{i}, \pi^{-i}}^{i}(s, \mathbf{a}),$$

• Bellman operator :

$$\mathcal{B}_{\pi^{-i}}^{*i}Q = r^i(s, \mathbf{a}) + \sum_{s' \in S} p(s'|s, \mathbf{a}) \max_{b^i} \left[E_{\mathbf{b}^{-i} \sim \pi^{-i}}[Q(s', b^i, b^{-i})] \right],$$

• Fixed point equation :

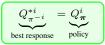
,

$$\mathcal{B}_{\pi^{-i}}^{*i} Q_{\pi^{-i}}^{*i} = Q_{\pi^{-i}}^{*i}.$$

<ロト

Nash equilibrium, weak ϵ -Nash equilibrium

Nash equilibrium : A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a Nash equilibrium if $\forall i$:



Player *i* has no incentive to modify his current strategy.

A strategy $\pi = (\pi^1, \dots, \pi^N)$ is a Nash equilibrium if there exists Q^1, \dots, Q^N such as $\forall i$:

$$\overbrace{\begin{array}{c} \mathcal{B}^{i}_{\pi}Q^{i}=Q^{i} \\ Q^{i}=Q^{i}_{\pi} \end{array}}^{\mathcal{B}^{i}_{\pi}} \operatorname{and} \underbrace{\begin{array}{c} \mathcal{B}^{*i}_{\pi^{-i}}Q^{i}=Q^{i} \\ Q^{i}=Q^{*i}_{\pi^{-i}} \end{array}}_{Q^{i}=Q^{*i}_{\pi^{-i}}}$$

Weak ϵ -Nash equilibrium :

A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a weak ϵ -Nash equilibrium if $\forall i$:

$$\left\| \left\| Q_{\pi^{-i}}^{*i} - Q_{\pi}^{i} \right\|_{\mu(s,\boldsymbol{a}),2} \right\|_{\rho(i),2} \le \epsilon$$

Player i has no more than an ϵ incentive to modify his current strategy.

Weak ϵ -Nash equilibrium :

A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a weak ϵ -Nash equilibrium if $\forall i$:

$$\left\| \left\| Q_{\pi^{-i}}^{*i} - Q_{\pi}^{i} \right\|_{\mu(s,\boldsymbol{a}),2} \right\|_{\rho(i),2} \le \epsilon$$

Player i has no more than an ϵ incentive to modify his current strategy.

The idea :

What if we can find $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ and Q^1, \dots, Q^N such as $\forall i$:

$$\underbrace{\mathcal{B}^{i}_{\boldsymbol{\pi}}Q^{i} \simeq Q^{i}_{\boldsymbol{\pi}}}_{Q^{i} \simeq Q^{i}_{\boldsymbol{\pi}}} \operatorname{and} \underbrace{\mathcal{B}^{*i}_{\boldsymbol{\pi}^{-i}}Q^{i} \simeq Q^{i}_{\boldsymbol{\pi}}}_{Q^{i} \simeq Q^{*i}_{\boldsymbol{\pi}}}$$

Weak ϵ -Nash equilibrium :

A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a weak ϵ -Nash equilibrium if $\forall i$:

$$\left\| \left\| Q_{\pi^{-i}}^{*i} - Q_{\pi}^{i} \right\|_{\mu(s,\boldsymbol{a}),2} \right\|_{\rho(i),2} \le \epsilon$$

Player i has no more than an ϵ incentive to modify his current strategy.

The idea :

What if we can find $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ and Q^1, \dots, Q^N such as $\forall i$:

$$\begin{split} \underbrace{ \begin{array}{c} \underbrace{\mathcal{B}_{\pi}^{i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{i}} \text{ and } \underbrace{\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{*i}} \\ \\ \hline \\ \forall i, \ \left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \text{ and } \left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \end{split}} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Weak ϵ -Nash equilibrium :

A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a weak ϵ -Nash equilibrium if $\forall i$:

$$\left\| \left\| Q_{\pi^{-i}}^{*i} - Q_{\pi}^{i} \right\|_{\mu(s,\boldsymbol{a}),2} \right\|_{\rho(i),2} \le \epsilon$$

Player i has no more than an ϵ incentive to modify his current strategy.

The idea :

What if we can find $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ and Q^1, \dots, Q^N such as $\forall i$:

$$\begin{split} \underbrace{ \begin{array}{c} \underbrace{\mathcal{B}_{\pi}^{i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{i}} \text{ and } \underbrace{\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{*i}} \\ \\ \hline \forall i, \ \left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \text{ and } \left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \\ \\ \hline \forall i, \ \left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}+\left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \end{split} \end{split}$$

Weak ϵ -Nash equilibrium :

A strategy $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ is a weak ϵ -Nash equilibrium if $\forall i$:

$$\left\| \left\| Q_{\pi^{-i}}^{*i} - Q_{\pi}^{i} \right\|_{\mu(s,\boldsymbol{a}),2} \right\|_{\rho(i),2} \le \epsilon$$

Player i has no more than an ϵ incentive to modify his current strategy.

The idea :

What if we can find $\boldsymbol{\pi} = (\pi^1, \dots, \pi^N)$ and Q^1, \dots, Q^N such as $\forall i$:

$$\begin{split} \underbrace{ \begin{array}{l} \underbrace{\mathcal{B}_{\pi}^{i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{i}} & \text{and} \underbrace{\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}\simeq Q^{i}}_{Q^{i}\simeq Q_{\pi}^{*i}} \\ \\ \forall i, & \left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \text{ and} & \left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \\ \\ \hline \forall i, & \left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}+\left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\simeq 0 \\ \\ \hline \sum_{i=1}^{N} \left(\left\|\mathcal{B}_{\pi}^{i}Q^{i}-Q^{i}\right\|_{\nu,2}+\left\|\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}-Q^{i}\right\|_{\nu,2}\right)\simeq 0 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What can we guarantee?

$$\underbrace{\left\| \left\| Q_{\pi}^{i} - Q_{\pi}^{*i} \right\|_{\mu(s,a),2} \right\|_{i,2}}_{\text{Weak ϵ-Nash equilibrium}} \leq \frac{C(\mu,\nu)}{1-\gamma} \underbrace{\left[\sum_{i=1}^{N} \left(\left\| \mathcal{B}_{\pi}^{i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} + \left\| \mathcal{B}_{\pi^{-i}}^{*i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} \right) \right]^{\frac{1}{2}}}_{\text{Sum of Bellman Residuals}},$$

What can we guarantee?

$$\underbrace{\left\| \left\| Q_{\pi}^{i} - Q_{\pi}^{*i} \right\|_{\mu(s,a),2} \right\|_{i,2}}_{\text{Weak ϵ-Nash equilibrium}} \leq \frac{C(\mu,\nu)}{1-\gamma} \underbrace{\left[\sum_{i=1}^{N} \left(\left\| \mathcal{B}_{\pi}^{i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} + \left\| \mathcal{B}_{\pi^{-i}}^{*i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} \right) \right]^{\frac{1}{2}}}_{\text{Sum of Bellman Residuals}},$$

The approach to learn from batch data:

Minimize an **empirical estimate** of the **sum of Bellman Residuals** with parametrized strategies $\pi_{\theta^i}^i$ and parametrized *Q*-function $Q_{\theta'i}^i$ (meaning we use **function approximation**).

Estimators :

Estimation of the sum of Bellman Residuals :

$$\sum_{i=1}^{N} \left(\left\| \mathcal{B}_{\pi}^{i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} + \left\| \mathcal{B}_{\pi^{-i}}^{*i} Q^{i} - Q^{i} \right\|_{\nu,2}^{2} \right)$$

With our batch dataset,

$$((s_j, a_j^1, \dots, a_j^N), r_j^1, \dots, r_j^N, s_j')_{j=1,\dots,k}$$

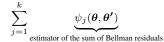
For each tuple $((s_j, a_j), r_j^1, \dots, r_j^N, s_j')$:

$$\left|\mathcal{B}_{\pi}^{i}Q^{i}(s_{j},\mathbf{a}_{j})-Q^{i}(s_{j},\mathbf{a}_{j})\right|^{2} = \left|\underbrace{r_{j}^{i}}_{\text{target}} + \underbrace{\gamma E_{\mathbf{b}\sim\pi}[Q^{i}(s_{j}',\mathbf{b})]-Q^{i}(s_{j},\mathbf{a}_{j})}_{\text{estimator}}\right|^{2}$$
$$\mathcal{B}_{\pi^{-i}}^{*i}Q^{i}(s_{j},\mathbf{a}_{j})-Q^{i}(s_{j},\mathbf{a}_{j})\right|^{2} = \left|\underbrace{r_{j}^{i}}_{\text{target}} + \underbrace{\gamma \max_{b^{i}}\left[E_{b^{-i}\sim\pi^{-i}}[Q^{i}(s_{j}',b^{i},b^{-i})]\right]-Q^{i}(s_{j},\mathbf{a}_{j})}_{\text{estimator}}\right|^{2}$$

Learning Process and Experiment:

Learning Process :

Loss function with a parametric representation of the strategy $\pi^i_{\theta^i}$ and Q-function $Q^i_{\theta'^i}$ is:



To learn parameters θ and θ' , we use stochastic gradient descent.

Type of parametrization :

linear,

neural network.

Learning Process and Experiment:

Experiment on randomly generated turn-based MGs :

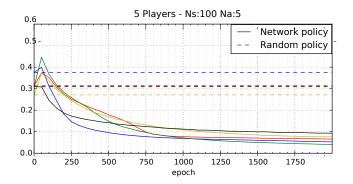


Figure : Error value of policy vs value of the best response for each player.

Conclusion

Contribution

New definition of an ϵ -Nash equilibrium,

Novel approach to learn Nash equilibrium from batch data based on Bellman residuals,

Empirical evaluation using neural network.

Future work

Extension of the experimental part on simultaneous games or multi-player large scale games,

Additional optimization methods could be studied,

We could study other class of function approximation such as trees.

http://arxiv.org/abs/1606.08718

(日)