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Motivation

Figure : Breakout

Markov Decision Processes (MDPs):

Finding an optimal policy,

One agent maximizing his expected
sum of rewards,
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Figure : Markov Decision Process (MDP)

Find the optimal Q-function Q(s, a),

Act greedily according to the Q-
function.
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Figure : Nash Equilibrium: no player would
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Previous Work & Contributions

Our Goal:
Learning an ε-Nash equilibrium in N -player general-sum Markov Games from
historical data with function approximation.

Previous work:
Learning from historical data:

Fitted-Q iteration on MDPs (Ernst & al [2005], Riedmiller [2005]),

LSPI (Lagoudakis & Parr [2002]),

Approximate dynamic programming on zero-sum two-player MGs (Pérolat & al
[2015,2016]).

Learning in general sum Markov Games:

Stochastic approximation approaches (Prasad & al [2015]). Limited to the online
case or to the model based case.
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Contributions :

Contributions :
• Definition of a new (weak) ε-Nash equilibrium,

• Reduce the problem of learning a Nash equilibrium to the
minimization of a surrogate loss (a sum of Bellman Residuals),

• Empirical evaluation of the method using Neural network.
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Framework

A Markov Game is specified by:
• a number of player N ,

• a state space S,

• an action space per player A1, . . . , AN ,

• a transition kernel p(s′|s, a1, . . . , aN ) = p(s′|s, ai, a−i) = p(s′|s,a),
• a reward signal per player ri(s, a1, . . . , aN ) = ri(s, ai, a−i) = ri(s,a),

• a discount factor γ.

Goal:
• Find a strategy πi(ai|s) a strategy for each player π = (πi, π−i) = (π1, . . . , πN ),
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The Batch Scenario

Online scenario:

Train model update policy

Train model update policy

final policy
∞

Batch scenario:

Train model final policy

Batch 
(Historical data)

Historical data required :

((sj , a
1
j , . . . , a

N
j ), r1j , . . . , r

N
j , s

′
j)j=1,...,k

state-actions tuple (sj , a
1
j , . . . , a

N
j ),

a reward per player r1j , ..., r
N
j ,

the next state s′j ∼ p(.|sj ,aj).
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Q-functions

• Q-functions :

Qiπ(s,a) = E

[ ∞∑
t=0

γtriπ(st)|s0 = s,a0 = a, st+1 ∼ Pπ(.|st)
]
,

where rπ(s) = Ea∼π [r(s,a)] and Pπ(s′|s) = Ea∼π [p(s
′|s,a)],

st=0 st=1 st=2 · · ·
(a

1
0, . . . , a

N
0 ) = a a

i
1 ∼ π

i
(.|st=1) a

i
2 ∼ π

i
(.|st=1)

Figure : Q-function in MGs

• Bellman operator :

BiπQ = ri(s,a) +
∑
s′∈S

p(s′|s,a)Eb∼π [Q(s′,b)],

• Fixed point equation :
BiπQiπ = Qiπ

,
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Best Response

• Best Response of player i:

Q∗i
π−i (s,a) = max

πi
Qi
πi,π−i (s,a),

• Bellman operator :

B∗i
π−iQ = ri(s,a) +

∑
s′∈S

p(s′|s,a)max
bi

[
Eb−i∼π−i [Q(s′, bi, b−i)]

]
,

• Fixed point equation :
B∗i
π−iQ

∗i
π−i = Q∗i

π−i .

,
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Nash equilibrium, weak ε-Nash equilibrium

Nash equilibrium :
A strategy π = (π1, . . . , πN ) is a Nash equilibrium if ∀i:

Q∗i
π−i︸ ︷︷ ︸

best response

= Qiπ︸︷︷︸
policy

Player i has no incentive to modify his current strategy.

A strategy π = (π1, . . . , πN ) is a Nash equilibrium if there exists Q1, . . . , QN such as
∀i:

BiπQi = Qi︸ ︷︷ ︸
Qi = Qiπ

and B∗i
π−iQ

i = Qi︸ ︷︷ ︸
Qi = Q∗i

π−i

12/18



Bellman Residual Approach

Weak ε-Nash equilibrium :
A strategy π = (π1, . . . , πN ) is a weak ε-Nash equilibrium if ∀i:∥∥∥∥∥Q∗iπ−i −Qiπ∥∥µ(s,a),2∥∥∥ρ(i),2 ≤ ε
Player i has no more than an ε incentive to modify his current strategy.

The idea :
What if we can find π = (π1, . . . , πN ) and Q1, . . . , QN such as ∀i:

BiπQi ' Qi︸ ︷︷ ︸
Qi ' Qiπ

and B∗i
π−iQ

i ' Qi︸ ︷︷ ︸
Qi ' Q∗iπ

∀i,
∥∥BiπQi −Qi∥∥ν,2 ' 0 and

∥∥B∗i
π−iQ

i −Qi
∥∥
ν,2
' 0

∀i,
∥∥BiπQi −Qi∥∥ν,2 +

∥∥B∗i
π−iQ

i −Qi
∥∥
ν,2
' 0

N∑
i=1

(∥∥BiπQi −Qi∥∥ν,2 +
∥∥B∗i

π−iQ
i −Qi

∥∥
ν,2

)
' 0
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What can we guarantee?

∥∥∥∥∥Qiπ −Q∗iπ ∥∥µ(s,a),2∥∥∥i,2︸ ︷︷ ︸
Weak ε-Nash equilibrium

≤
C(µ, ν)

1− γ

[
N∑
i=1

(∥∥BiπQi −Qi∥∥2ν,2 +
∥∥B∗i

π−iQ
i −Qi

∥∥2
ν,2

)] 1
2

︸ ︷︷ ︸
Sum of Bellman Residuals

,

The approach to learn from batch data:

Minimize an empirical estimate of the sum of Bellman Residuals with parametrized
strategies πi

θi
and parametrized Q-function Qi

θ
′i (meaning we use function

approximation).

14/18



What can we guarantee?

∥∥∥∥∥Qiπ −Q∗iπ ∥∥µ(s,a),2∥∥∥i,2︸ ︷︷ ︸
Weak ε-Nash equilibrium

≤
C(µ, ν)

1− γ

[
N∑
i=1

(∥∥BiπQi −Qi∥∥2ν,2 +
∥∥B∗i

π−iQ
i −Qi

∥∥2
ν,2

)] 1
2

︸ ︷︷ ︸
Sum of Bellman Residuals

,

The approach to learn from batch data:

Minimize an empirical estimate of the sum of Bellman Residuals with parametrized
strategies πi

θi
and parametrized Q-function Qi

θ
′i (meaning we use function

approximation).

14/18



Estimators :

Estimation of the sum of Bellman Residuals :

N∑
i=1

(∥∥BiπQi −Qi∥∥2ν,2 +
∥∥B∗i

π−iQ
i −Qi

∥∥2
ν,2

)
With our batch dataset,

((sj , a
1
j , . . . , a

N
j ), r1j , . . . , r

N
j , s

′
j)j=1,...,k

For each tuple ((sj ,aj), r
1
j , . . . , r

N
j , s

′
j):

∣∣BiπQi(sj ,aj)−Qi(sj ,aj)∣∣2 =

∣∣∣∣∣∣∣∣ r
i
j︸︷︷︸

target

+ γEb∼π [Q
i(s′j ,b)]−Qi(sj ,aj)︸ ︷︷ ︸

estimator

∣∣∣∣∣∣∣∣
2

∣∣B∗i
π−iQ

i(sj ,aj)−Qi(sj ,aj)
∣∣2 =

∣∣∣∣∣∣∣∣∣ r
i
j︸︷︷︸

target

+ γmax
bi

[
Eb−i∼π−i [Q

i(s′j , b
i, b−i)]

]
−Qi(sj ,aj)︸ ︷︷ ︸

estimator

∣∣∣∣∣∣∣∣∣
2
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Learning Process and Experiment:

Learning Process :
Loss function with a parametric representation of the strategy πi

θi
and Q-function Qi

θ
′i

is:

k∑
j=1

ψj(θ,θ
′)︸ ︷︷ ︸

estimator of the sum of Bellman residuals

To learn parameters θ and θ′, we use stochastic gradient descent.

Type of parametrization :
linear,

neural network.
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Learning Process and Experiment:

Experiment on randomly generated turn-based MGs :

0.0

0.1

0.2

0.3

0.4

0.5

0.6
5 Players - Ns:100 Na:5

Network policy
Random policy

0 250 500 750 1000 1250 1500 1750
epoch

Figure : Error value of policy vs value of the best response for each player.
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Conclusion

Contribution
New definition of an ε-Nash equilibrium,

Novel approach to learn Nash equilibrium from batch data based on Bellman
residuals,

Empirical evaluation using neural network.

Future work
Extension of the experimental part on simultaneous games or multi-player large
scale games,

Additional optimization methods could be studied,

We could study other class of function approximation such as trees.

http://arxiv.org/abs/1606.08718
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