

David Krueger*, Tegan Maharaj*, Janos Kramar*, Mohammad Pezeshki, Nicolas Ballas, Rosemary Nan Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, Chris Pal

* equal authors

- The basic idea
 RNNs/LSTMs
 How/why it works
- 4. It works!

- The basic idea
 RNNs/LSTMs
- 3. How/why it works4. It works!

The basic idea RNNs/LSTMs How/why it works It works!

The basic idea RNNs/LSTMs How/why it works It works!

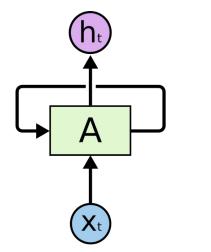
Have a random probability of keeping your hidden state (stochastically introduce identity connections between timesteps)

Have a random probability of keeping your hidden state (stochastically introduce identity connections between timesteps)

Have a random probability of keeping your hidden state (stochastically introduce identity connections between timesteps)

Have a random probability of keeping your hidden state (stochastically introduce identity connections between timesteps)

Recurrent neural networks



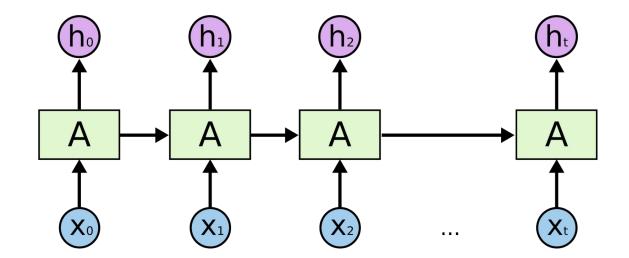


diagram from Chris Olah

₿MILA

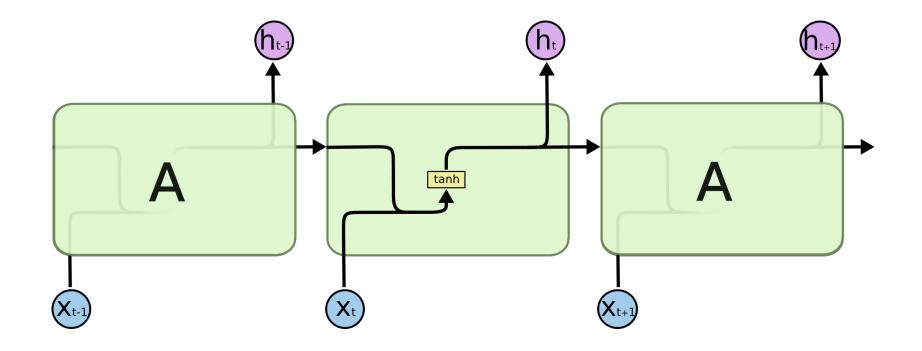
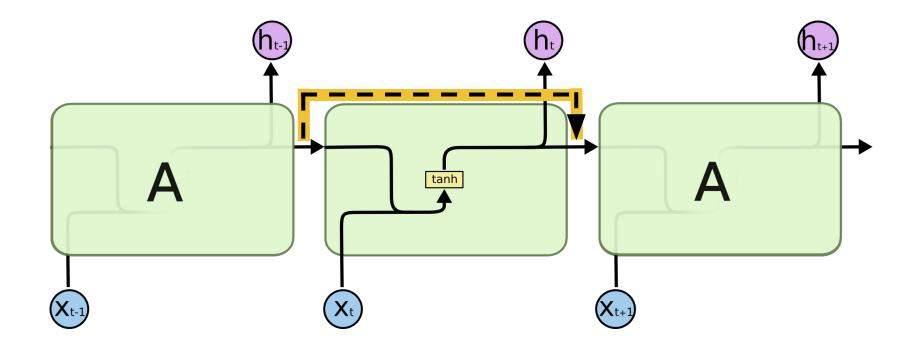


diagram from Chris Olah

1-layer RNN with zoneout



modified from Chris Olah

1-layer LSTM

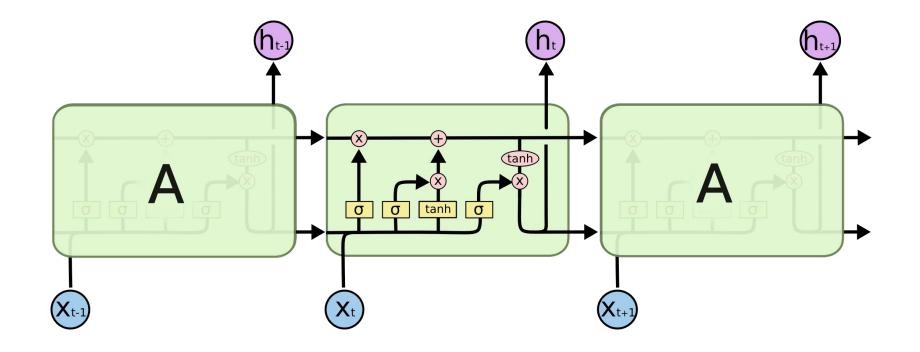
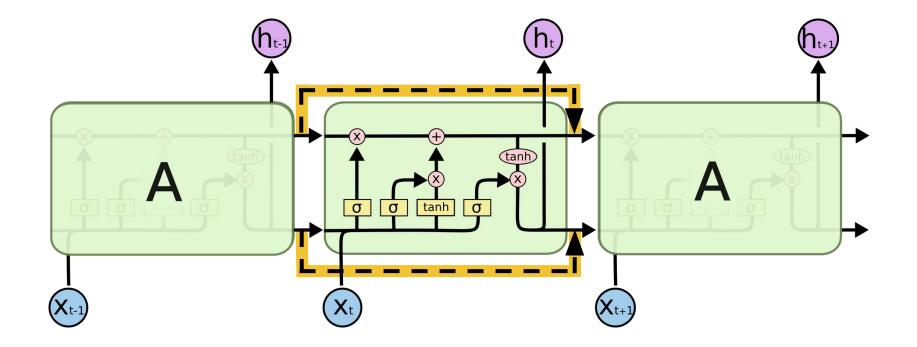


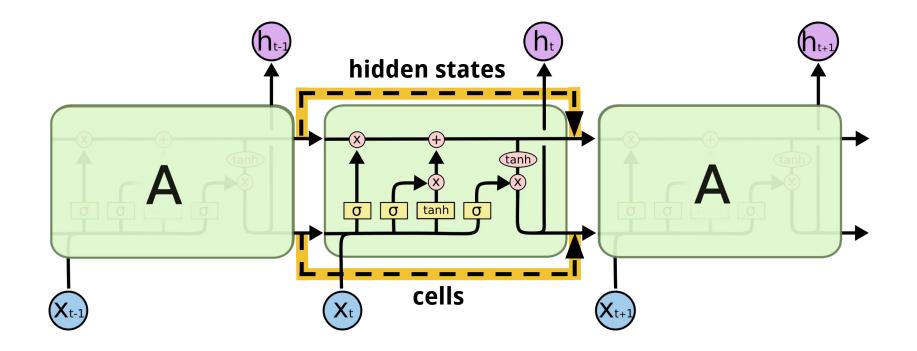
diagram from Chris Olah

1-layer LSTM with zoneout



modified from Chris Olah

1-layer LSTM with zoneout



modified from Chris Olah

Dropout: $\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot 0$

Zoneout: $\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot 1$

Dropout:

$$\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot \mathbf{0}$$

Zoneout: $\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot 1$

Dropout: $\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot 0$ Zoneout: $\mathcal{T}_t = d_t \odot \tilde{\mathcal{T}}_t + (1 - d_t) \odot \mathbf{1}$

8/22 Zoneout

- h = h_prev * zoneouts_states + (1 zoneouts_states) * h
- c = c_prev * zoneouts_cells + (1 zoneouts_cells) * c

- h = h_prev * zoneouts_states + (1 zoneouts_states) * h
- c = c_prev * zoneouts_cells + (1 zoneouts_cells) * c

- h = h_prev * zoneouts_states + (1 zoneouts_states) * h
- c = c_prev * zoneouts_cells + (1 zoneouts_cells) * c

- h = h_prev * zoneouts_states + (1 zoneouts_states) * h
- c = c_prev * zoneouts_cells + (1 zoneouts_cells) * c

inside step function of LSTM after computing h and c
h = h_prev * zoneouts_states + (1 - zoneouts_states) * h
c = c_prev * zoneouts_cells + (1 - zoneouts_cells) * c

Zoneout trains a pseudo-ensemble

Pseudo-ensemble: a (possibly infinite) collection of *child models* spawned from a *parent model* by perturbing it according to some noise process.

Philip Bachman, Ouais Alsharif, Doina Precup. NIPS 2014

Zoneout as per-unit stochastic depth

Stochastic depth: per minibatch, randomly drop a subset of layers and replace with identity

Gao Huang*, Yu Sun*, Zhuang Liu, Daniel Sedra, Kilian Weinberger. CVPR 2016

Tegan Maharaj

11/22 Zoneout

Zoneout as per-unit stochastic depth

Stochastic depth: per minibatch, randomly drop a subset of layers and replace with identity

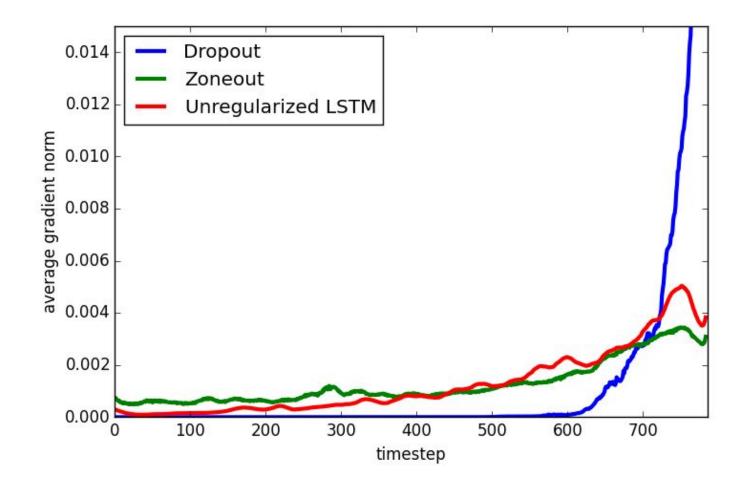
Gao Huang*, Yu Sun*, Zhuang Liu, Daniel Sedra, Kilian Weinberger. CVPR 2016

Zoneout: in RNNs, layer = whole timestep. Per-unit works better.

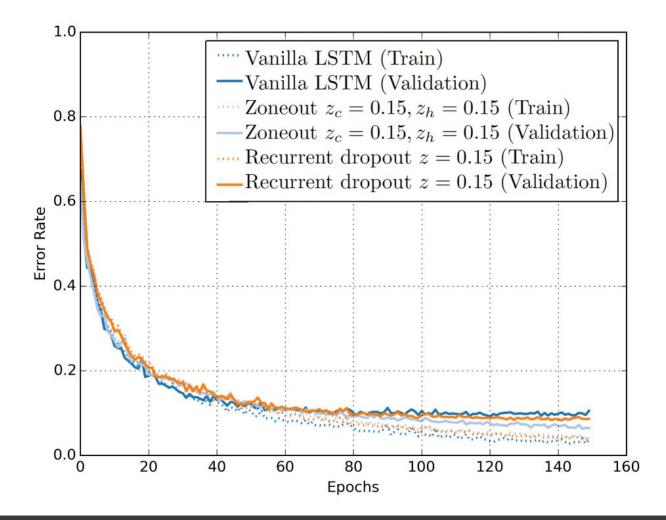
Other related work

Dropout - Hinton et al. 2013 Fast dropout in RNNs - Bayer et al. 2013; Wang & Manning 2013 Dropout on non-recurrent connections in RNNs - Pham et al. 2013; Zaremba et al. 2014 Variational RNN (drop columns of weights) - Gal 2015 rnnDrop (same mask at every timestep) - Moon et al. 2015 Recurrent dropout (on input gate) - Semeniuta et al. 2016 Residual networks (add identity skip connections in feedforward nets) -He et al. 2015

Zoneout helps propagate gradients



Permuted sequential MNIST



14/22 Zoneout

Permuted sequential MNIST

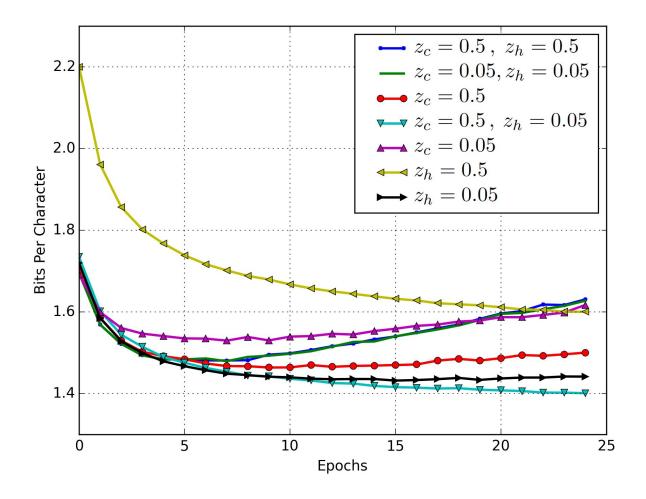
Model	% Error rate
Unregularized LSTM	10
Recurrent batch normalization*	4.6
Zoneout (cells=states=0.15)	6.9
Zoneout + recurrent batch normalization*	4.1

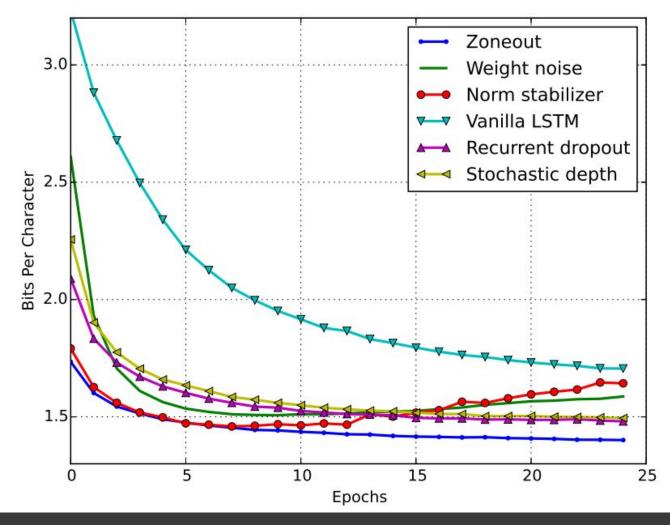
*Cooijmans et al. 2016

Permuted sequential MNIST

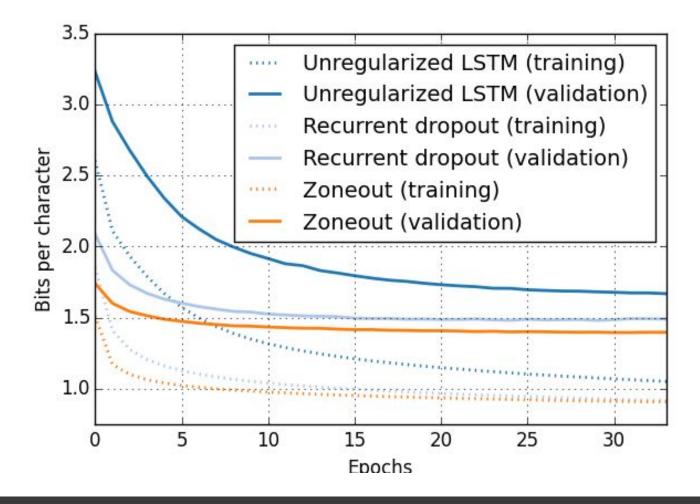
Model	% Error rate
Unregularized LSTM	10
Recurrent batch normalization*	4.6
Zoneout (cells=states=0.15)	6.9
Zoneout + recurrent batch normalization*	<mark>4.1</mark>

*Cooijmans et al. 2016





17/22 Zoneout



18/22 Zoneout

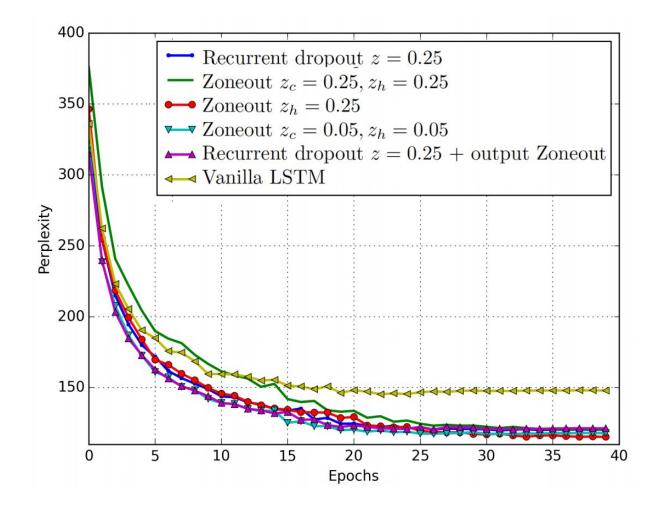
Model	BPC (entropy)
Unregularized LSTM	1.36
Stochastic depth	1.343
Weight noise	1.344
Norm stabilizer	1.352
Recurrent dropout	1.334
Recurrent batch norm	1.32
Zoneout	1.29

Model	BPC (entropy)
Unregularized LSTM	1.36
Stochastic depth	1.343
Weight noise	1.344
Norm stabilizer	1.352
Recurrent dropout	1.334
Recurrent batch norm	1.32
Zoneout	<mark>1.29</mark>

Model	BPC (entropy)
Unregularized LSTM	1.36
Stochastic depth	1.343
Weight noise	1.344
Norm stabilizer	1.352
Recurrent dropout	1.334
Recurrent batch norm	1.32
Zoneout	<mark>1.27</mark>

Trained on overlapping input data (after Cooijmans et al. 2016)

Word-level Penn Treebank



Word-level Penn Treebank

Model	Validation Perplexity
Unregularized LSTM	145.4
Stochastic depth	129.9
Weight noise	172.0
Norm stabilizer	141.8
Recurrent dropout	119.9
Zoneout	115.2

Thank you!

Questions?

David Krueger*, Tegan Maharaj*, Janos Kramar*, Mohammad Pezeshki, Nicolas Ballas, Rosemary Nan Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, Chris Pal

arxiv.org/pdf/1606.01305v2.pdf

github.com/teganmaharaj/zoneout