

NEW YORK UNIVERSITY

Natural Language Understanding Kyunghyun Cho

Language Understanding? Modelling?

Topics: Natural Language Understanding

- What does it mean that a machine understands natural languages?
- Should we start reading *linguistics*?

"Every time I fire a linguist, the performance of the recognizer goes up."

- Fred Jelinek (IBM), 1988

4

Topics: Natural Language Understanding

• It's all about telling how likely a sentence is..

- How likely is this sentence as an answer to the question?
 - Q."Who is the President of the United States?"
 - Likely answer: "Obama is the President of the U.S."
 - Unlikely answer: "Tsipras is the President of America."

Topics: Natural Language Understanding

- It's all about telling how likely a sentence is..
- How likely is this sentence given this view?
 - Likely: "Two dolphins are diving"
 - Unlikely: "Two men are flying"

6

Topics: Natural Language Understanding

It's all about telling how likely a sentence is..

Language Modelling

Topics: Language Modelling

- A sentence (x_1, x_2, \ldots, x_T)
 - Ex) ("the", "cat", "is", "eating", "a", "sandwich", "on", "a", "couch")
- How likely is this sentence?
- In other words, what is the probability of (x_1, x_2, \ldots, x_T) ?

• i.e.,
$$p(x_1, x_2, \dots, x_T) = ?$$

Topics: Probability 101 - Conditional Probability

- Joint probability p(x,y)
- Conditional probability p(x|y)
- Marginal probability p(x) and p(y)
- They are related by p(x,y) = p(x|y)p(y) = p(y|x)p(x)

Topics: Language Modelling as a Product of Conditionals

• Rewrite $p(x_1, x_2, \ldots, x_T)$ into

$$p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t \mid x_1, \dots, x_{t-1})$$

• Graphically,

STATISTICAL LM

Topics: Statistical Language Modelling

- Maximize the (log-)probabilities of sentences in corpora $\max \mathbb{E}_D \left[\log p(x_1, x_2, \dots, x_T) \right]$
- Obvious to us, but not to everyone:
 - "The validity of statistical (information theoretic) approach to MT has indeed been recognized ... as early as 1949. And was universally recognized as mistaken [sic] by 1950.... The crude force of computers is not science."

(Review of Brown et al. (1990))

in detail):

COMMENTS FOR THE AUTHOR(S) (clearness of presentation, lack of needed material or references to relevant work of other authors, language, etc; when rejection, the reasons should be given The validity of statistical (information theoretic) approach to AIT how indeed been Vacaquized, as the authors mention, by Weater as early as 1949. And was universally recognized as mistaken by 1950. Col. Hutchins, MT: Past, Tresent, Future, Ellis Horwood, 1936, pp. soff. and references therein, The crude force of computers is not science. The paper is simply beyond the scope of COLING.

n-gram Language Modelling

(Blunsom, 2015)

Topics: Non-parametric Approach — n-gram modelling

• *n*-th order Markov assumption: why?

$$p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t \mid x_1, \dots, x_{t-1})$$
$$\approx \prod_{t=1}^T p(x_t \mid x_{t-n}, \dots, x_{t-1})$$

• Collect *n*-gram statistics from a *large* corpus:

$$p(x_t | x_{t-n}, \dots, x_{t-1}) = \frac{\operatorname{count}(x_{t-n}, \dots, x_{t-1}, x_t)}{\operatorname{count}(x_{t-n}, \dots, x_{t-1})}$$

Topics: Non-parametric Approach — *n*-gram modelling

- Ex) $p(i, would, like, to, ..., \langle /s \rangle)$
- Unigram Modelling $p(i)p(would)p(like)\cdots p(\langle/s\rangle)$
- Bigram Modelling $p(i)p(would|i)p(like|would) \cdots p(\langle /s \rangle |.)$
- Trigram Modelling $p(i)p(would|i)p(like|i, would) \cdots$

C		\bigcirc			
-	word	unigram	bigram	trigram	4-gram
-	i	6.684	3.197	3.197	3.197
-	would	8.342	2.884	2.791	2.791
-	like	9.129	2.026	1.031	1.290
-	to	5.081	0.402	0.144	0.113
-	commend	15.487	12.335	8.794	8.633
-	the	3.885	1.402	1.084	0.880
-	rapporteur	10.840	7.319	2.763	2.350
-	on	6.765	4.140	4.150	1.862
•	his	10.678	7.316	2.367	1.978
-	work	9.993	4.816	3.498	2.394
-	•	4.896	3.020	1.785	1.510
		4.828	0.005	0.000	0.000
-	average	8.051	4.072	2.634	2.251
-	perplexity	265.136	16.817	6.206	4.758

Topics: *n*-gram modelling — *Two closely-related issues*

- Data Sparsity
 - # of all possible *n*-grams: $|V|^n$, where |V|: size of vocabulary p(a, tenured, professor, like, drinking, whiskey, .) =p(a)p(tenured|a) p(professor|a, tenured) $p(\text{likes}|\text{tenured}, \text{professor}) \cdots p(.|\text{drinking}, \text{whiskey})$ = 0

Topics: *n*-gram modelling — *Two closely-related issues*

Conventional Solutions to Data Sparsity:

• Smoothing:

$$p(x_t | x_{t-n}, \dots, x_{t-1}) = \frac{\operatorname{count}(x_{t-n}, \dots, x_{t-1}, x_t) + \alpha}{\operatorname{count}(x_{t-n}, \dots, x_{t-1}) + \alpha |V|}$$
(add- α smo

• Backoff:

$$p(x_t|x_{t-n},\ldots,x_{t-1}) = \begin{cases} \alpha_n(x_t|x_{t-n},\ldots,x_{t-1}), & \text{if count}_n(x_{t-n},\ldots,x_t) \\ d_n(x_{t-n},\ldots,x_{t-1})p(x_t|x_{t-1}) & \text{otherwise} \end{cases}$$

 $(\alpha_n: adjusted prediction model, d_n: discount factor)$

othing)

> 0 $x_{n+1}\ldots,x_{t-1}),$

Topics: *n*-gram modelling — *Two closely-related issues*

- Lack of Generalization
 - (chases, a, **dog**), (chases, a, **cat**), (chases, a, **rabbit**)
 - (chases, a, **llama**)=?

Neural Language Modelling

Topics: Neural Language Modelling

• Non-parametric estimator ---- Parametric estimator

$$p(x_t | x_{t-n}, \dots, x_{t-1}) = \frac{count(x_{t-n}, \dots, x_{t-1}, x_t)}{count(x_{t-n}, \dots, x_{t-1})}$$
$$= f_{x_t}(x_{t-n}, \dots, x_{t-1})$$

LANGUAGE MODE

Topics: Neural Language Modelling

 $p(x_t | x_{t-n}, \dots, x_{t-1}) = f_{x_t}(x_{t-n}, \dots, x_{t-1})$

• Building a neural language model (Bengio et al., 2000) **Vord Representation** (1) I-of-K encoding of each word $x_{t'}$ Continuous-space (2)Continuous space word representation $s_{t'} = W^{\top} x_{t'}$, where $W \in \mathbb{R}^{|V| \times d}$

(3)Nonlinear hidden layer

 $h = \tanh(U^{\top}[s_{t-1}; s_{t-2}; \cdots; s_{t-n}] + b)$, where $U \in \mathbb{R}^{nd \times d'}$ and $b \in \mathbb{R}^{d'}$

1-of-K coding

LANGUAGE MODELL $p(x_t = x_t)$

Topics: Neural Language Modelling

$$p(x_t|x_{t-n},\ldots,x_{t-1}) = f_{x_t}(x_{t-n},\ldots,x_{t-1})$$

• Building a neural language model (Bengio et al., 2000)

(1)Unnormalized probabilities

$$y = Vh + c$$
, where $V \in \mathbb{R}^{|V| \times d'}$ and $c \in \mathbb{R}^{|V|}$
(2)Softmax normalization
 $p(x_t = i | x_{t-n}, \dots, x_{t-1}) = \frac{\exp(y_i)}{\sum_{j=1}^{|V|} \exp(y_j)}$

Topics: Neural LM generalizes to *unseen n*-gram's

- Example sentences
 - there are three teams left for the qualification.
 - four teams have passed the first round.
 - four groups are playing in the field.
- How likely is groups followed by three?
- Why?

Topics: Continuous-space representation — Embeddings

Non-Markovian Language Modelling

Topics: Markov Assumption

• Markov Assumption in *n*-gram modeling

$$p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t \mid x_1, \dots, x_{t-1})$$
$$\approx \prod_{t=1}^T p(x_t \mid x_{t-n}, \dots, x_{t-1})$$

- Issue: Dependency beyond the context window is ignored
 - Ex) the same **stump** which had impaled the car of many a guest in the past thirty years and which he refused to have removed

Topics: Non-Markovian Language Modelling

- Directly model the original conditional probabilities $p(x_1, x_2, \dots, x_T) = \prod p(x_t \mid x_1, \dots, x_{t-1})$ t=1
- Feature Extraction + Readout
 - Feature Extraction: $h_t = f(x_1, x_2, \dots, x_{t-1})$
 - Readout: $p(x_t | x_1, ..., x_{t-1}) = g(h_t)$

• How can we let f take variable-length input?

Topics: Language Modelling via Recursion

- Directly model the original conditional probabilities $p(x_1, x_2, \dots, x_T) = \prod p(x_t \mid x_1, \dots, x_{t-1})$ t=1
- Recursive Construction of f
 - Initial Condition: $h_0 = 0$
 - Recursion: $h_t = f(x_{t-1}, h_{t-1})$
- We call h_t an internal hidden state or **memory**
 - h_t summarizes/memorizes the history from x_1 up to x_{t-1}

 h_t

Topics: Language Modelling via Recursion

- Example: p(eating|the, cat, is)
 - (1) Initialization: $h_0 = 0$
 - (2) Recursion

(1)
$$h_1 = f(h_0, \text{the})$$

(2) $h_2 = f(h_1, \text{cat})$
(3) $h_3 = f(h_2, \text{is})$
(3) Readout: $p(\text{eating}|\text{the}, \text{cat}, \text{is}) = g(h_3)$

• It works for any number of context words

RNN Language Modelling

I ANGUAGE MODELING

Topics: Recurrent neural network language model

• Example: p(the, cat, is, eating)(1) Initialization: $h_0 = 0 \longrightarrow p(\text{the}) = g(h_0)$ (2) Recursion with Readout

(1) $h_1 = f(h_0, \text{the}) \rightarrow p(\text{cat}|\text{the}) = g(h_1)$ (2) $h_2 = f(h_1, \operatorname{cat}) \rightarrow p(\operatorname{is}|\operatorname{the}, \operatorname{cat}) = g(h_2)$ (3) $h_3 = f(h_2, is) \rightarrow p(\text{eating}|\text{the, cat, is}) = g(h_3)$ (3) Combination: $p(\text{the, cat, is, eating}) = g(h_0)g(h_1)g(h_2)g(h_3)$

• Read, Update and Predict

Topics: Recurrent neural network language model

• Example: p(the, cat, is, eating)

• Read, Update and Predict

Topics: Building an RNN Language Model

- What do we need?
 - Transition Function $h_t = f(h_{t-1}, x_{t-1})$
 - Output/Readout Function $p(x_t = w | x_1, \dots, x_{t-1}) = g_w(h_t)$

Topics: Building an RNN Language Model - Transition Function

- Inputs
 - Input $x_{t-1} \in \{0,1\}^{|V|}$: one-hot vector, i.e., $x_{t-1} = w \in \{1,\ldots,|V|\}$
 - Hidden state $h_{t-1} \in \mathbb{R}^d$

Parameters

- Input weight matrix $W \in \mathbb{R}^{d \times |V|}$ (often called word embeddings)
- Transition weight matrix $U \in \mathbb{R}^{d \times d}$
- Bias vector $b \in \mathbb{R}^d$

I ANGUAGE MODELING

Topics: Building an RNN Language Model - Transition Function

- Inputs: $x_{t-1} \in \{0,1\}^{|V|}$, $h_{t-1} \in \mathbb{R}^d$
- Parameters: $W \in \mathbb{R}^{d imes |V|}$, $U \in \mathbb{R}^{d imes d}$, $b \in \mathbb{R}^d$ h_{t-1}
- Naive Transition Function $h_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$
 - (1) Continuous-space Representation of word: Wx_{t-1}
 - Linear Transformation of the Previous Hidden State: Uh_{t-1}
 - (3) Additive combination of x_{t-1} and h_{t-1} together with b
 - Point-wise nonlinear transformation (4)

Topics: Building an RNN Language Model - Readout Function

- Inputs
 - (Current) Hidden State $h_t \in \mathbb{R}^d$
- Parameters
 - Output matrix $R \in \mathbb{R}^{|V| \times d}$ (often called **target** word embeddings)
 - Bias vector $c \in \mathbb{R}^{|V|}$

LANGUAGE MODELLING

Topics: Building an RNN Language Model - Readout Function

- Inputs $h_t \in \mathbb{R}^d$
- Parameters $R \in \mathbb{R}^{|V| \times d}$, $c \in \mathbb{R}^{|V|}$
- Softmax Readout Function $p(x_t = w | x_{< t}) = g_w(h_t) = \frac{\exp(R_w^\top h_{t-1} + c_w)}{\sum_{i=1}^{|V|} \exp(R_i^\top h_{t-1} + c_i)}$
 - (1) Linear projection of the hidden state for each possible target word $v_i = R_i^{\top} h_{t-1}$ for all i = 1, ..., |V|

(3) Transform each projected vector v_i to be positive $\tilde{p}_i = \exp(v_i)$ (4) Normalize \tilde{p}_i 's to make them into *probabilities* of the i-th target words

I ANGUAGE MODELLING

Topics: Building an RNN Language Model

- Recursion and Readout:
 - Recursion $h_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$
- Readout/Output $p(x_t = w | x_{< t}) = \frac{\exp(R_w^\top h_{t-1})}{\sum_{i=1}^{|V|} \exp(R_i^\top h_{t-1})} \quad U$

Training RNN-LM

LANGUAGE MODELLING

Topics: Cost Function $J(\Theta)$

• Log-Probability of a sentence (x_1, x_2, \ldots, x_T)

$$\log p(x_1, x_2, \dots, x_T) = \sum_{t=1}^T \log p(x_t \mid x_1, \dots, x_{t-1})$$

- Train an RNN LM to maximize the log-prob's of *training* sentences
- Given a training set of N sentences: $\{(x_1^1, \dots, x_{T_1}^1), \dots, (x_1^N, \dots, x_{T_N}^N)\}$

maximize_{$$\Theta$$} $\frac{1}{N} \sum_{n=1}^{N} \log p(x_1^n, \dots, x_{T_n}^n)$

 $\iff \text{minimize}_{\Theta} J(\Theta) = -\frac{1}{N} \sum_{n=1}^{N} \log p(x_t^n | x_1^n \dots$

$$, x_{t-1}^n)$$

I ANGUAGE MODELING

Topics: Minibatch Stochastic Gradient Descent - Recap (1)Randomly select a minibatch of N' sentences: $D = \left\{ x^1, \dots, x^{N'} \right\}$ (2)Compute the gradient of per-sample cost w.r.t. Θ : $\nabla J(\Theta, x^n)$ (3)Compute the minibatch gradient: $\nabla J(\Theta, D) = \frac{1}{N'} \sum_{n=1}^{N'} \nabla J(\Theta, x^n)$

(4) Update the parameters Θ

$$\Theta \leftarrow \Theta + \eta \nabla J(\Theta, D)$$

(5)Repeat until convergence

LANGUAGE MODELLING

Topics: Backpropagation through time

- Decomposition of a per-sample cost function $J(\Theta, x) = -\sum J_t(\Theta, x_t)$
- Unrolled Computational Graph

 $J_t(\Theta, \hat{x}) = \log p(x_t = \hat{x}_t | x_{< t})$ R1.1.1 . . . anh**T**] b x_{t-1}

t=1

LANGUAGE MODELING

Topics: Backpropagation through time (1)Initialize $\nabla_R, \nabla_U, \nabla_W, \nabla_b$ and t = T(1) The per-step cost derivative: $\frac{\partial J_t}{\partial a}$ U (2) Gradient w.r.t. $R: \frac{\partial J_t}{\partial a} \frac{\partial g}{\partial R}$ (3) Gradient w.r.t. $h_t: \frac{\partial J_t}{\partial a} \frac{\partial g}{\partial h_t} + \frac{\partial J_{>t}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_t}$ (4) Gradient w.r.t. $U: \frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial U}$ (5) Gradient w.r.t W and $b: \frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W}$, $\frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial b}$ (2)Update the parameter gradient and repeat until t = 1 $\nabla_R \leftarrow \nabla_R + \frac{\partial J_t}{\partial R}, \nabla_U \leftarrow \nabla_U + \frac{\partial J_{\geq t}}{\partial U}$ $\nabla_W \leftarrow \nabla_W + \frac{\partial J_{\geq t}}{\partial W}, \nabla_b \leftarrow \nabla_b + \frac{\partial J_{\geq t}}{\partial b}$

 $J_t(\Theta, \hat{x}) = \log p(x_t = \hat{x}_t | x_{< t})$

44

Code: <u>https://github.com/nyu-dl/dl4mt-tutorial/tree/master/session0</u>

Gated Recurrent Units

46 GATED RECURRENT UNITS Note: I'm abusing math a lot here!!

Topics: Temporal Dependency and Vanishing Gradient

• How much influence does h_t have on $\log p(x_{t+n}|x_{< t+n})$?

$$\frac{\partial J_{t+n}}{\partial h_t} = \frac{\partial J_{t+n}}{\partial g} \frac{\partial g}{\partial h_{t+N}} \frac{\partial g}{\partial h_{t+N-1}} \cdots \frac{\partial h_{t+1}}{\partial h_t}$$

- With the naive transition function? $\frac{\partial h_{t+1}}{\partial h_t} = U^\top \frac{\partial \tanh(a)}{\partial a} \text{, where } a = W x_t + U h_t + b$
- Let's rewrite it

$$\frac{\partial J_{t+n}}{\partial h_t} = \frac{\partial J_{t+n}}{\partial g} \frac{\partial g}{\partial h_{t+N}} \underbrace{\prod_{n=1}^{N} U^{\top} \operatorname{diag} \left(\frac{\partial \tanh(a_{t+n})}{\partial a_{t+n}} \right)}_{\partial a_{t+n}}$$

Problematic! Bengio et al. (1994)

FI) RECURRENT UNITS

Topics: Temporal Dependency and Vanishing Gradient

- Upper bound on the **norm of the gradient** w.r.t. h_t ? $\left\|\prod_{n=1}^{N} U^{\mathsf{T}} \operatorname{diag}\left(\frac{\partial \tanh(a_{t+n})}{\partial a_{t+n}}\right)\right\| \leq \prod_{n=1}^{N} \left\|U^{\mathsf{T}}\right\| \prod_{n=1}^{N} \left\|\frac{\partial \tanh(a_{t+n})}{\partial a_{t+n}}\right\| \leq \frac{1}{2} \left\|\frac{\partial \ln(a_{t+n})}{\partial a_{t+n}}\right\| \leq \frac{1}{2} \left\|\frac{\partial \ln(a_{t+n}$
- Observations

(1) Vanishing gradient when $\lambda_{\max}(U) < 1 : \prod_{n=1}^{N} \|U^{\top}\|$ (2) Vanishing gradient when the units are saturated: $\frac{\partial \tanh}{\partial a}$ (3) Potentially, exploding gradient when $\lambda_{\max}(U) > 1$

• **Problem**: It's likely that there's no learning signal!

$$\frac{h(a_{t+n})}{a_{t+n}}$$

Topics: Exploding gradient is less problematic

- "when gradients explode so does the curvature along v, leading to a wall in the error surface"
- **Solution**: Gradient Clipping (1)Gradient norm clipping
 - $\tilde{\nabla} \leftarrow \begin{cases} \frac{c}{\|\nabla\|} \nabla & \text{,if } \|\nabla\| \ge c\\ \nabla & \text{,otherwise} \end{cases}$

(2)Element-wise gradient clipping

 $\nabla_i \leftarrow \min(c, \nabla_i)$, for all $i \in \{1, \ldots, \dim \nabla\}$

0.35 0.30 0.25 0.20 0.15 0.10 0.05

Pascanu et al. (2013)

Topics: But, vanishing gradient is very problematic

• Why does the gradient vanish?

$$\left\|\frac{\partial h_{t+N}}{\partial h_t}\right\| = \left\|\prod_{n=1}^N U^{\mathsf{T}} \operatorname{diag}\left(\frac{\partial \tanh(a_{t+n})}{\partial a_{t+n}}\right)\right\| \to 0$$

• Can we simply "maximize" $\left\|\frac{\partial h_{t+N}}{\partial h_t}\right\|$?

• "we need to force the network to increase the norm of $\frac{\partial h}{\partial t}$ the expense of larger errors"

• Pascanu et al. (2013)
• Regularize
$$\Omega = \sum_{k} \Omega_{k} = \sum_{k} \left(\frac{\left\| \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{k+1}} \frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k}} \right\|}{\left\| \frac{\partial \mathcal{E}}{\partial \mathbf{x}_{k+1}} \right\|} - 1 \right)$$

$$rac{h_{t+N}}{\partial h_t}$$
 at

 $\mathbf{2}$

Topics: But, vanishing gradient is very problematic

• Why does the gradient vanish?

$$\left\|\frac{\partial h_{t+N}}{\partial h_t}\right\| = \left\|\prod_{n=1}^N U^{\top} \operatorname{diag}\left(\frac{\partial \tanh(a_{t+n})}{\partial a_{t+n}}\right)\right\| \to 0$$

- Perhaps, it is a problem with the naive transition function... $h_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$
- Error is backpropagated through every intermediate node

$$\begin{pmatrix} h_t \end{pmatrix} \stackrel{U^{\top}}{\longrightarrow} U \stackrel{U^{\top}}{\longrightarrow} U \stackrel{U^{\top}}{\longrightarrow} U \stackrel{U^{\top}}{\longrightarrow} U \stackrel{U^{\top}}{\longrightarrow} U \stackrel{U^{\top}}{\longrightarrow} h_{t+N}$$

Topics: But, vanishing gradient is very problematic

• Perhaps, it is a problem with the naive transition function...

$$h_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$$

• Error is backpropagated through every intermediate node

• Temporal shortcut connections

Topics: Gated Recurrent Units (GRU)

• Temporal shortcut connections

Adaptive Leaky integration

$$h_t = (1 - u_t) \odot h_{t-1} + u_t \odot \tilde{h}_t$$

- Update gate $u_t = \sigma(W_u x_{t-1} + U_u h_{t-1} + b_u)$
- Candidate state $\tilde{h}_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$

Topics: Gated Recurrent Units (GRU)

• Pruning connections: avoids the diffusion of signal

$$h_t$$
 h_{t+N}

Adaptive Reset

$$\tilde{h}_t = \tanh(Wx_{t-1} + U(r_t \odot h_{t-1}) + b)$$

• Reset gate

$$r_t = \sigma(W_r x_{t-1} + U_r h_{t-1} + b_r)$$

Topics: Gated Recurrent Units (GRU)

• Update and Reset gates

$$u_{t} = \sigma(W_{u}x_{t-1} + U_{u}h_{t-1} + b_{u})$$

$$r_t = \sigma(W_r x_{t-1} + U_r h_{t-1} + b_r)$$

• Candidate hidden state

$$\tilde{h}_t = \tanh(Wx_{t-1} + U(r_t \odot h_{t-1}) + b)$$

Adaptive Leaky Integration

$$h_t = (1 - u_t) \odot h_{t-1} + u_t \odot \tilde{h}_t$$

Cho et al. (2014)

Topics: Long Short-Term Memory (LSTM)

• Input, Forget and Output gates

$$i_t = \sigma(W_i x_{t-1} + U_i h_{t-1} + b_i)$$

 $f_t = \sigma(W_f x_{t-1} + U_f h_{t-1} + b_f)$
 $o_t = \sigma(W_o x_{t-1} + U_o h_{t-1} + b_o)$
• Candidate memory cell state

$$\tilde{c}_t = \tanh(Wx_{t-1} + Uh_{t-1} + b)$$

Adaptive Leaky Integration

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

Hochreiter&Schmidhuber (1999), Gers et al. (2001)

• Output

 $h_t = o_t \odot \tanh(c_t)$

Machine Translation

Topics: Statistical Machine Translation

- $\log p(f|e) = \log p(e|f) + \log p(f)$
 - Translation model: $\log p(e|f)$
 - Fit it with parallel corpora
 - Language model: $\log p(f)$
 - Fit it with monolingual corpora

• The whole task $\log p(f|e)$ is **conditional language modelling**.

Topics: Statistical Machine Translation - In Reality

•
$$\log p(f|e) \approx \sum_{n=1}^{N} f_n(e, f) + C$$

• Log-linear model

- Feature function $f_n(e, f)$
- Steps:

(1) Experts engineer useful features
(2) Use a simple log-linear model
(3) Use a strong, external language model

(Chrisman, 1991; Forcada&Ñeco, 1997; Castaño&Casacuberta, 1997; Kalchbrenner&Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014)

Topics: Sequence-to-Sequence Learning — Encoder

Encoder
(1) I-of-K coding of source words
(2)Continuous-space representation
s_{t'} = W^Tx_{t'}, where W ∈ ℝ^{|V|×d}
(3)Recursively read words
h_t = f(h_{t-1}, s_t), for t = 1,...,T

Topics: Sequence-to-Sequence Learning — Decoder

• Decoder

(1)Recursively update the memory

$$z_{t'} = f(z_{t'-1}, u_{t'-1}, h_T)$$

(2)Compute the next word prob. $p(u_{t'}|u_{< t'}) \propto \exp(R_{u_{t'}}^{\top} z_{t'} + b_{u_{t'}})$

(3)Sample a next word

•Beam search is a good idea

Topics: Sequence-to-Sequence Learning — Issue

- This is quite an unrealistic model.
- Why?

"You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!" Ray Mooney

Topics: Attention-based Model

- Encoder: Bidirectional RNN
 - A set of annotation vectors
 - $\{h_1, h_2, \ldots, h_T\}$
- Attention-based Decoder Annotation Vectors (1)Compute attention weights \mathbf{h}_i $\alpha_{t',t} \propto \exp(e(z_{t'-1}, u_{t'-1}, h_t))$ (2) Weighted-sum of the annotation vectors $c_{t'} = \sum_{t=1}^{T} \alpha_{t',t} h_t$
 - (3) Use $c_{t'}$ instead of h_T

Topics: Attention-based Model

- Encoder: Bidirectional RNN
 - A set of annotation vectors
 - $\{h_1, h_2, \ldots, h_T\}$
- Attention-based Decoder (1)Compute attention weights $\alpha_{t',t} \propto \exp(e(z_{t'-1}, u_{t'-1}, h_t))$ (2)Weighted-sum of the annotation vectors $c_{t'} = \sum_{t=1}^{T} \alpha_{t',t} h_t$

(3)Use $c_{t'}$ instead of h_T

Deep Natural Language Processing

Deep Natural Language Processing (1) Character-level Modelling

Note: Translation is horrible, not because of me, but because data is :(

(Luong et al., 2016; Sennrich et al., 2016; Chung et al., 2016; Jean et al., 2016)

Note: Translation is horrible, not because of me, but because data is :(

But, there are still too much explicit structures here...

(Luong et al., 2016; Sennrich et al., 2016; Chung et al., 2016; Jean et al., 2016)

Note: Translation is horrible, not because of me, but because data is :(

Why the hell are we using a sequence of words?

There are legitimate reasons... sorta...

- We strongly believe that a word (lexeme) is a basic unit of meaning. 1.
- 2. We have an inherent fear of data sparsity.
 - The size of state space grows exponentially w.r.t. the length.
 - A sentence is longer when counted in letters than in words.
- We are worried that we cannot train a recurrent neural net. 3.

		Carl Carl Contractor	an in a shirt of a latio
оценке	влияния	на 1	развитие
		Sequ	ential P
COLUMN STREET,			
Also the	effect of	vita	min in
	and the second se	COLUMN TWO IS NOT	A REAL PROPERTY AND A REAL PROPERTY OF A REAL PROPE

But, are they really legit reasons?

- 1. We strongly believe that a word (lexeme) is a basic unit of meaning.
- 2. We have an inherent fear of data sparsity.
 - The size of state space grows exponentially w.r.t. the length.
 - A sentence is longer when counted in letters than in words.
- 3. We are worried that we cannot train a recurrent neural net.

"In the proposed model, it will so generalize because "similar" words are expected to have a similar feature vector, and because the probability function is a *smooth* function of these feature values, a small change in the features will induce a small change in the probability" - Bengio et al. (2003)

(Bengio et al., 2003; Xu & Rudnicky, 2000)

But, are they really legit reasons?

- We strongly believe that a word (lexeme) is a basic unit of meaning. 1.
- 2. We have an inherent fear of data sparsity.
 - The size of state space grows exponentially w.r.t. the length.
 - A sentence is longer when counted in letters than in words. ${\color{black}\bullet}$
- We are worried that we cannot train a recurrent neural net. 3.

"So, given a powerful learning system like an MRNN, the convenience of using characters may outweigh the extra work of having to learn the words. All our experiments show that an MRNN finds it very easy to learn words." - Sutskever et al. (2011)

(Sutskever et al., 2011; Mikolov, 2012; Graves, 2013)

But, are they really legit reasons?

- We strongly believe that a word (lexeme) is a basic unit of meaning. 1.
- 2. We have an inherent fear of data sparsity.
 - The size of state space grows exponentially w.r.t. the length. lacksquare
 - A sentence is longer when counted in letters than in words.
- We are worried that we cannot train a recurrent neural net. 3.

"Training a recurrent network to learn *long range* input/output dependencies is a hard problem."

- Bengio et al. (1994)

(Bengio et al., 1994; Hochreither et al., 2001)

There are legitimate reasons... sorta...

- We strongly believe that a word (lexeme) is a basic unit of meaning.
- We have an inherent fear of data sparsity. 2.
 - The size of state space grows exponentially w.r.t. the length.
 - A sentence is longer when counted in letters than in words.
- 3. We are worried that we cannot train a recurrent neural net.

Note: Translation is horrible, not because of me, but because data is :(

Problems with treating each and every token separately

- Inefficient handling of various morphological variants 1.
 - Sub-optimal segmentation/tokenization
 - "run", "runs", "ran", "running": one lexeme "run", but four independent vectors.
- Lack of generalization to novel/rare morphological variants 2.
 - For instance, ولركبته in Arabic => "and to his vehicle"
- One vector for compound words? 3.
 - "**kolmi**/vaihe/kilo/watti/tunti/mittari" => one vector?
 - "**kolme**" => one vector?

(Chung et al., 2016; Almahairi et al., 2016; Both & Blunsom, 2014)

Note: Translation is horrible, not because of me, but because data is :(

Obviously I'm not the first one to ask this question...

Note: Translation is horrible, not because of me, but because data is :(

Addresses

- Inefficient handling of various morphological variants 1.
 - Sub-optimal segmentation/tokenization
 - "run", "runs", "ran", "running": one lexeme "run", but four independent vectors.
- Lack of generalization to novel/rare morphological variants 2.
 - For instance, ولركبته in Arabic => "and to his vehicle"

Does not address

- One vector for compound words? 3.
 - "**kolmi**/vaihe/kilo/watti/tunti/mittari" => one vector?
 - "kolme" => one vector?

Still relies on

Good segmentation/tokenization

So, we decided to answer this question ourselves...

- Source side: a sequence of BPE-based character n-grams
- Target side: an unbroken sequence of characters 2.

For a better recurrent decoder for character sequences, stay tuned for ACL'16. JY will tell us more about it.

So, we decided to answer this question ourselves...

- Large-scale experiments: we want a convincing answer!
- Multiple languages: $En \rightarrow \{Cz, De, Ru, Fi\}$ 2.

For a better recurrent decoder for character sequences, stay tuned for ACL'16. JY will tell us more about it.

(Sennrich et al., 2015)

		2		Ŋ	Atte	ntion	2	Development		$Test_1$		$Test_2$									
		Src	Trgt	Q. Martin Martin	\mathbf{h}^{1}	\mathbf{h}^2	Model	Single	Ens	Single	Ens	Single	Ens								
	(a)		BPE	1	 Image: A start of the start of		Base	20.78	_	19.98	_	21.72	_								
	(b)			2	 Image: A start of the start of	\checkmark	Dase	$21.26^{21.45}_{20.62}$	23.49	$20.47^{20.88}_{19.30}$	23.10	$22.02^{22.21}_{21.35}$	24.83								
	(c)			2		~	Base	$21.57^{21.88}_{20.88}$	23.14	$21.33_{19.82}^{21.56}$	23.11	$23.45_{21.72}^{23.91}$	25.24								
En-De	(d)	BPE		2	✓	\checkmark	Duse	20.31	_	19.70	_	21.30	_								
En	(e)	B	Char	2		 ✓ 		$21.29^{21.43}_{21.13}$	23.05	$21.25^{21.47}_{20.62}$	23.04	$23.06^{23.47}_{22.85}$	25.44								
	(f)			2	 Image: A second s	 ✓ 	Bi-S	20.78	_	20.19	_	22.26	_								
	(g)			2	 Image: A start of the start of			20.08	_	19.39	_	20.94	_								
	State-of-the-art Non-Neural Approach*					—		20.60 ⁽¹⁾		$24.00^{(2)}$											
	(h) (i)	[1]	BPE	2	 Image: A start of the start of	~	Base	$16.12^{16.96}_{15.96}$	19.21	$17.16^{17.68}_{16.38}$	20.79	$14.63^{15.09}_{14.26}$	17.61								
En-Cs		BPE	Char	2		~	Base	$17.68^{17.78}_{17.39}$	19.52	$19.25^{19.55}_{18.89}$	21.95	$16.98_{16.81}^{17.17}$	18.92								
En	(j)		Chai	2		\	Bi-S	$17.62^{17.93}_{17.43}$	19.83	$19.27_{19.15}^{19.53}$	<u>22.15</u>	$16.86^{17.10}_{16.68}$	<u>18.93</u>								
State-of-the-art Non-Ne				t Non-Ne	eural A	pproa	ch*	-		21.00 ⁽³⁾		18.20(4	.)								
_	(k) (l) (m) Hereine He	BPE	BPE	2	 Image: A start of the start of	~	Base	$18.56^{18.70}_{18.26}$	21.17	$25.30^{25.40}_{24.95}$	29.26	$19.72_{19.02}^{20.29}$	22.96								
En-Ru			BPF	BPI	BPI	BPI	BPF	BPI	BPI	BPI	Char	2		~	Base	$18.56^{18.87}_{18.39}$	20.53	$26.00_{25.04}^{26.07}$	29.37	$21.10_{20.14}^{21.24}$	23.51
En					Chai	2		 ✓ 	Bi-S	$18.30^{18.54}_{17.88}$	20.53	$25.59^{25.76}_{24.57}$	29.26	$20.73^{21.02}_{19.97}$	23.75						
	State-of-the-art Non-Neural Approach*				_		28.70 ⁽⁵⁾		24.30 ⁽⁶⁾												
	(n)	[7]	BPE	2	 Image: A start of the start of	~	Base	$9.61^{10.02}_{9.24}$	11.92	_	_	$8.97^{9.17}_{8.88}$	11.73								
En-Fi	(0)	BPE	Char	2		~	Base	$11.19^{11.55}_{11.09}$	13.72	_	_	$10.93_{10.11}^{11.56}$	13.48								
En	(p)		Chai	2		✓	Bi-S	$10.73^{11.04}_{10.40}$	13.39	_	_	$10.24^{10.63}_{9.71}$	13.32								
	State-of-the-art Non-Neural Approach*					-		-		12.70 ⁽⁷	·)										

The decoder implicitly learned word-like units automatically.

What have we learned?

- Neural MT works with character sequences. 1.
 - At least on the target side (though, it works also on the source side ;))
- A recurrent network implicitly segments a character sequence automatically. 2.
- We should've asked this question at the very beginning... 3.

Deep Natural Language Processing (2) Multilingual Modelling

Multilingual Translation: Benefits

- 1. Positive language transfer across many language pairs/directions
 - Solution to low/zero-resource machine translation
- 2. # of parameters grows linearly w.r.t. the # of languages • as opposed to the quadratic explosion when training many single-pair models.
- Multi-source translation without requiring any multi-way parallel text 3.
 - inspired by but contrary to Zoph & Knight (2016)

Super fun and cool!

Most important reason..

DONG ET AL. (ACL 2015) Decoder (French) Decoder (Czech) B В оценке влияния на развитие развитие оценке влияния на Alignment (Fr) Alignment (C Encoder (English) effect of vitamin in D Also ||the| on

One-to-Many Neural MT

- Separate attention mechanism for each target
- No support for many source languages 2.
- Tested on rather small corpora (Europarl v7) З.

LUONG ET AL. (ICLR, NOV 2015)

Many-to-Many Sequence-to-Sequence Learning

- 1. No attention: a single vector space shared across source and target languages/tasks.
- 2. Limited set of languages tested: English, German + many other tasks

e and target languages/tasks. **ny other tasks**

CHALLENGES

- 1. We have a strong belief that (soft-)alignment is specific to a language pair.
- 2. Even if not, there's a gigantic model space. How can we design a network?
- 3. 6 languages (En, Cs, De, Fi, Fr, Ru)
 - 60+ million bilingual sentence pairs for training
 - The entire model does not fit on one GPU

ecific to a language pair. can we design a network?

MULTI-WAY, MULTILINGUAL TRANSLATION

1. 10 language pair—directions from WMT'15

- En→ {Cs, De, Fi, Fr, Ru}, {Cs, De, Fi, Fr, Ru} → En
- 2. One alignment model for all the ten pair—directions.
- 3. Trained with bilingual parallel pairs only
- 4. The model was distributed over two GPU's

→En tions.

For details, find this guy!

91

(Firat et al., 2016a)

MULTI-WAY, MULTILINGUAL TRANSLATION

			Fr (?	39m)	Cs (1	12m)	De (4	4.2m)	Ru (2	2.3m)	Fi (2	2m)
		Dir	\rightarrow En	$En \rightarrow$	$\rightarrow En$	$En \rightarrow$	\rightarrow En	$En \rightarrow$	\rightarrow En	$En \rightarrow$	\rightarrow En	$En \rightarrow$
D	SV SV	Single	27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
BLEU	Dev	Multi	26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
) B	st	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
(a)	Test	Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
	N	Single	-50.53	-53.38	-60.69	-69.56	-54.76	-61.21	-60.19	-65.81	-88.44	-91.75
LL LL	Dev	Multi	-50.6	-56.55	-54.46	-70.76	-54.14	-62.34	-54.09	-63.75	-74.84	-88.02
(q)	st	Single	-43.34	-45.07	-60.03	-64.34	-57.81	-59.55	-60.65	-60.29	-88.66	-94.23
	Test	Multi	-42.22	-46.29	-54.66	-64.80	-53.85	-60.23	-54.49	-58.63	-71.26	-88.09

92

SETTINGS

- Target language pairs 1.
 - Uzbek English, Turkish English
- 2. Auxiliary language pairs
 - French English, Spanish English

		# Syr	nbols	# Sentence			
_		#En Other		Train Dev		Test	
C.::::	En-Uz	1.361m	1.186m	73.66k	948	882	
C*	En-Tr	13.17m	12.43m	784.65k	862	940	
	En-Es	908.1m	924.9m	34.71m	3003	3000	
* * * *	En-Fr	1.837b	1.911b	65.77m	3003	3000	

(Firat et al., 2016b; under review) Work done in collaboration with IBM

TURKISH-TO-ENGLISH

- 1. Tr-En: 14.21/17.28
- 2. Tr-En+Es-En: 16.00/**17.75**
- Tr-En+Es-En+Fr-En: 16.18/18.13 3.
- 4. Tr-En+Es-En+Fr-En+En-Es: 16.28/**18.66**
- 5. Ensemble: 20.00/**22.56**
 - 3x Tr-En+Es-En+Fr-En
 - 3x Tr-En+Es-En+Fr-En+En-Es

(Firat et al., 2016b; under review) Work done in collaboration with IBM

UZBEK-TO-ENGLISH

- 1. Uz-En: 6.63/6.45
- 2. Uz-En+Tr-En: 8.68/9.34
- 3. Uz-En+Tr-En+Es-En: 9.55/10.34
- 4. Uz-En+Tr-En+Es-En+En-Tr: 8.93/9.41
- 5. Ensemble: 12.17/12.99
 - 3x Uz-En+Tr-En+Es-En
 - 3x Uz-En+Tr-En+Es-En+En-Tr

(Firat et al., 2016b; under review) Work done in collaboration with IBM

SETTINGS

1. Three languages: English, Spanish and French

- {En, Es, Fr} ← {En, Es, Fr}
- Bilingual corpora only during training: $En \longrightarrow \{Es, Fr\}, \{Es, Fr\} \longrightarrow En$ 2.
- Multi-language source during test time 3.

# Sents	Train	Dev [†]	Test [‡]
En-Es	34.71m	3003	3000
En-Fr	65.77m	3003	3000

(Firat et al., EMNLP 2016c) Work done in collaboration with IBM

MULTI-SOURCETRANSLATION?

- 1. (Es, Fr) → En
- 2. Two translation strategies Late Averaging

Early Averaging*

* (Zoph & Knight, 2016) (Firat et al., EMNLP 2016c) Work done in collaboration with IBM Watson R&D

MULTI-SOURCETRANSLATION? - YES

Single-source translation

Single Multi Trgt Test Src Dev Test Dev 28.32 29.74 27.48 En 30.73 (a) Es Early (a) 27.93 26.93 26.00 27.21 (b) En Fr (b) Late 30.63 28.41 31.31 28.90 (c) En Es E+L (c) 22.80 (d) Fr 22.68 23.41 24.05 En

But, single-pair models can apparently do multi-source translation..

(Firat et al., EMNLP 2016c) Work done in collaboration with IBM Watson R&D

Multi-source translation

Mu	ılti	Single			
Dev	Test	Dev	Test		
31.89	31.35	_	_		
32.04	31.57	32.00	31.46		
32.61	31.88	_	_		

Deep Natural Language Processing (3) Larger-Context Modelling

Context matters

- What does context tell us?
 - **Theme/Topic** of a document
- What does context tell us in practice?
 - What are the words that are more likely to appear in this document?

Context

While it's not flawless, some motivations and scenarios remain somewhat underdeveloped or questionable; <u>Ex_Machina</u> is a stunning <u>Sci-Fi</u> vision that is also a fully formed thinking man's thriller.

With a jaw droopingly good turn from the soon to be megastar Vikander, _____ is another excellent example of what makes the

Following Sentence

Language modelling as "document modelling" instead of "sentence modelling" (Wang & Cho, arXiv 2015; Ji et al., arXiv 2015)

 $P(D) \approx P(S_1)P(S_2) \cdots P(S_N) \text{ vs. } P(D) \approx P(S_1)P(S_2|S_1) \cdots P(S_N|S_{N-n}, \dots, S_{N-1})$

- Simplest approach (Wang & Cho, arXiv 2015)
 - Bag of all the words from the previous n sentences
 - RNN Language model conditioned on this bag-of-words

- Late Fusion of LSTM (Wang & Cho, arXiv 2015)
 - Let the memory cell *c* model *intra-sentence* dependencies
 - Let the *inter-sentence* dependencies be fused in **later**

- It helps obviously (Wang & Cho, arXiv 2015)
 - Especially with the *late fusion* of context

- "What are the words that are more likely to appear in this document?"
 - Open-class words: nouns, adjectives, verbs and adverbs

Larger-Context Machine Translation

- Toward Larger-Context Machine Translation (Jean & Cho, Work in Progress*)
 - How to represent the source and target contexts?
 - Which is conditioned on the context, encoder, decoder or both?

Dialogue-level Machine Translation

• Hierarchical Model for Dialogue Modelling (Serban et al., 2015; Sordoni et al., 2015) **Utterance-level RNN + Dialogue-level RNN**

i feel like i ' m going to pass out . </s>

World-Context Machine Translation

- Beyond Document-Level Language Processing
 - How do we blend intra-document context and world knowledge?

Thank You!

108