Language Understanding? Modelling?

LANGUAGE UNDERSTANDING

Topics: Natural Language Understanding

- What does it mean that a machine understands natural languages?
- Should we start reading linguistics?
"Every time I fire a linguist, the performance of the recognizer goes up."
- Fred Jelinek (IBM), I988

LANGUAGE UNDERSTANDING

Topics: Natural Language Understanding

- It's all about telling how likely a sentence is..
- How likely is this sentence as an answer to the question?
- Q. "Who is the President of the United States?"
- Likely answer: "Obama is the President of the U.S."
- Unlikely answer:"Tsipras is the President of America."

LANGUAGE UNDERSTANDING

Topics: Natural Language Understanding

- It's all about telling how likely a sentence is..
- How likely is this sentence given this view?
- Likely: "Two dolphins are diving"
- Unlikely: "Two men are flying"

Topics: Natural Language Understanding

It's all about telling how likely a sentence is..

Language Modelling

HOW LIKELY IS THIS SENTENCE?

Topics: Language Modelling

- A sentence $\left(x_{1}, x_{2}, \ldots, x_{T}\right)$
- Ex) ("the", "cat","'is", "eating'","a","sandwich",'"on","'a","'couch'")
- How likely is this sentence?
- In other words, what is the probability of $\left(x_{1}, x_{2}, \ldots, x_{T}\right)$?
- i.e., $p\left(x_{1}, x_{2}, \ldots, x_{T}\right)=$?

HOW LIKELY IS THIS SENTENCE?

Topics: Probability 101 - Conditional Probability

- Joint probability $p(x, y)$
- Conditional probability $p(x \mid y)$
- Marginal probability $p(x)$ and $p(y)$
- They are related by $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

HOW LIKELY IS THIS SENTENCE?

Topics: Language Modelling as a Product of Conditionals

- Rewrite $p\left(x_{1}, x_{2}, \ldots, x_{T}\right)$ into

$$
p\left(x_{1}, x_{2}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)
$$

- Graphically,

STATISTICAL LM
Topics: Statistical Language Modelling

- Maximize the (log-)probabilities of sentences in corpora

$$
\max \mathbb{E}_{D}\left[\log p\left(x_{1}, x_{2}, \ldots, x_{T}\right)\right]
$$

- Obvious to us, but not to everyone:
- "The validity of statistical (information theoretic) approach to MT has indeed been recognized ... as early as 1949. And was universally recognized as mistaken [sic] by 1950.... The crude force of computers is not science."

COMMENTS FOR THE AUTHOR (S) (clearness of presentation, lack of needed material or references to relevant work of other authors, in detail):
The widididy of statistical (inturuturim thenctic) approach t MT huss indeed bee recofrined, as the cutters mention, by Weaver as early as 1949.
And was universally recogniizal as mistaken by 1950.
C of. Hutchins, MT: Post, Present, Future Ell is Horvood, 1956, pp. 30ff. and references therein,
The crude force of computers is not science. The paper is simply beyond the scope of COLING.

n-gram Language Modelling

HOW LIKELY IS THIS SENTENCE?

Topics: Non-parametric Approach — n-gram modelling

- n-th order Markov assumption: why?

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{T}\right) & =\prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right) \\
& \approx \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)
\end{aligned}
$$

- Collect n-gram statistics from a large corpus:

$$
p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)=\frac{\operatorname{count}\left(x_{t-n}, \ldots, x_{t-1}, x_{t}\right)}{\operatorname{count}\left(x_{t-n}, \ldots, x_{t-1}\right)}
$$

HOW LIKELY IS THIS SENTENCE?

Topics: Non-parametric Approach — n-gram modelling

- Ex) $p(\mathrm{i}$, would, like, to $, \ldots, .,\langle/ \mathrm{s}\rangle)$
- Unigram Modelling

$$
p(\mathrm{i}) p(\text { would }) p(\text { like }) \cdots p(\langle/ \mathrm{s}\rangle)
$$

- Bigram Modelling

$$
p(\text { i }) p(\text { would } \mid \text { i }) p(\text { like } \mid \text { would }) \cdots p(\langle/ \mathrm{s}\rangle \mid .)
$$

- Trigram Modelling

$$
p(\mathrm{i}) p(\text { would } \mid \mathrm{i}) p(\text { like } \mid \mathrm{i}, \text { would }) \cdots
$$

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
rapporteur	10.840	7.319	2.763	2.350
on	6.765	4.140	4.150	1.862
his	10.678	7.316	2.367	1.978
work	9.993	4.816	3.498	2.394
.	4.896	3.020	1.785	1.510
$</ \mathrm{s}>$	4.828	0.005	0.000	0.000
average	8.051	4.072	2.634	2.251
perplexity	265.136	16.817	6.206	4.758

HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling - Two closely-related issues

- Data Sparsity
- \# of all possible n-grams: $|V|^{n}$, where $|V|$: size of vocabulary
$p(\mathrm{a}$, tenured, professor, like, drinking, whiskey, . $)=$
$p(\mathrm{a}) p($ tenured $\mid \mathrm{a}) \underbrace{p(\text { professor } \mid \mathrm{a}, \text { tenured })}_{=0}$
$p($ likes \mid tenured, professor $) \cdots p(. \mid$ drinking, whiskey $)$
$=0$

HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling - Two closely-related issues

- Conventional Solutions to Data Sparsity:
- Smoothing:

$$
\begin{array}{r}
\left.p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)=\frac{\operatorname{count}\left(x_{t-n}, \ldots, x_{t-1}, x_{t}\right)+\alpha}{\operatorname{count}\left(x_{t-n}, \ldots,\right.} x_{t-1}\right)+\alpha|V| \\
\quad \text { (add- } \alpha \text { smoothing) }
\end{array}
$$

$$
\begin{aligned}
& \text { - Backoff: } \\
& p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)=\left\{\begin{array}{c}
\alpha_{n}\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right), \\
\text { if } \operatorname{count}_{n}\left(x_{t-n}, \ldots, x_{t}\right)>0 \\
d_{n}\left(x_{t-n}, \ldots, x_{t-1}\right) p\left(x_{t} \mid x_{t-n+1} \ldots, x_{t-1}\right), \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

(α_{n} : adjusted prediction model, d_{n} : discount factor)

HOW LIKELY IS THIS SENTENCE?

Topics: n-gram modelling - Two closely-related issues

- Lack of Generalization
- (chases, a, dog), (chases, a, cat), (chases, a, rabbit)
- $($ chases,, , Ilama $)=$?

Neural Language Modelling

LANGUAGE MODELLING

Topics: Neural Language Modelling

- Non parametric estimator \longrightarrow Parametric estimator

$$
\begin{aligned}
p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right) & =\frac{\operatorname{count}\left(x_{t-n}, \ldots, x_{t-1}, x_{t}\right)}{\operatorname{count}\left(x_{t-n}, \ldots, x_{t-1}\right)} \\
& =f_{x_{t}}\left(x_{t-n}, \ldots, x_{t-1}\right)
\end{aligned}
$$

Topics: Neural Language Modelling

$$
p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)=f_{x_{t}}\left(x_{t-n}, \ldots, x_{t-1}\right)
$$

- Building a neural language model (Bengio et al., 2000)
(I) I-of-K encoding of each word $x_{t^{\prime}}$
(2)Continuous space word representation

$$
s_{t^{\prime}}=W^{\top} x_{t^{\prime}}, \text { where } W \in \mathbb{R}^{|V| \times d}
$$

(3)Nonlinear hidden layer

$$
h=\tanh \left(U^{\top}\left[s_{t-1} ; s_{t-2} ; \cdots ; s_{t-n}\right]+b\right)
$$

, where $U \in \mathbb{R}^{n d \times d^{\prime}}$ and $b \in \mathbb{R}^{d^{\prime}}$

LANGUAGE MODELLING
 $p\left(x_{t}=i \mid x_{t-1}, x_{t-2}, x_{t-3}\right)$

Topics: Neural Language Modelling

$$
p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)=f_{x_{t}}\left(x_{t-n}, \ldots, x_{t-1}\right)
$$

- Building a neural language model (Bengio et al., 2000)
(I)Unnormalized probabilities
$y=V h+c$, where $V \in \mathbb{R}^{|V| \times d^{\prime}}$ and $c \in \mathbb{R}^{|V|}$
(2)Softmax normalization

$$
p\left(x_{t}=i \mid x_{t-n}, \ldots, x_{t-1}\right)=\frac{\exp \left(y_{i}\right)}{\sum_{j=1}^{|V|} \exp \left(y_{j}\right)}
$$

LANGUAGE MODELLING

Topics: Neural LM generalizes to unseen n-gram's

- Example sentences
- there are three teams left for the qualification.
- four teams have passed the first round.
- four groups are playing in the field.

- How likely is groups followed by three?
- Why?

LANGUAGE MODELLING

Topics: Continuous-space representation - Embeddings

Q\&A

Non-Markovian Language Modelling

LANGUAGE MODELLING

Topics: Markov Assumption

- Markov Assumption in n-gram modeling

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{T}\right) & =\prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right) \\
& \approx \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-n}, \ldots, x_{t-1}\right)
\end{aligned}
$$

- Issue: Dependency beyond the context window is ignored
- Ex) the same stump which had impaled the car of many a guest in the past thirty years and which he refused to have removed

LANGUAGE MODELLING

Topics: Non-Markovian Language Modelling

- Directly model the original conditional probabilities

$$
p\left(x_{1}, x_{2}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)
$$

- Feature Extraction + Readout
- Feature Extraction: $h_{t}=f\left(x_{1}, x_{2}, \ldots, x_{t-1}\right)$
- Readout: $p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)=g\left(h_{t}\right)$
- How can we let f take variable-length input?

Topics: Language Modelling via Recursion

- Directly model the original conditional probabilities

$$
p\left(x_{1}, x_{2}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)
$$

- Recursive Construction of f
- Initial Condition: $h_{0}=0$
- Recursion: $h_{t}=f\left(x_{t-1}, h_{t-1}\right)$
- We call h_{t} an internal hidden state or memory

- h_{t} summarizes/memorizes the history from x_{1} up to x_{t-1}

Topics: Language Modelling via Recursion

- Example: p (eating|the, cat, is)
(I) Initialization: $h_{0}=0$
(2) Recursion
(।) $h_{1}=f\left(h_{0}\right.$, the $)$
(2) $h_{2}=f\left(h_{1}\right.$, cat $)$
(3) $h_{3}=f\left(h_{2}\right.$, is $)$
(3) Readout: p (eating|the, cat, is) $=g\left(h_{3}\right)$
- It works for any number of context words

RNN Language Modelling

LANGUAGE MODELLING

Topics: Recurrent neural network language model

- Example: p (the, cat, is, eating)
(I) Intialization: $h_{0}=0 \rightarrow p($ the $)=g\left(h_{0}\right)$
(2) Recursion with Readout
(I) $h_{1}=f\left(h_{0}\right.$, the $) \rightarrow p($ cat \mid the $)=g\left(h_{1}\right)$
(2) $h_{2}=f\left(h_{1}\right.$, cat $) \rightarrow p($ is \mid the, cat $)=g\left(h_{2}\right)$
(3) $h_{3}=f\left(h_{2}\right.$, is $) \rightarrow p($ eating \mid the, cat, is $)=g\left(h_{3}\right)$
(3) Combination: p (the, cat, is, eating $)=g\left(h_{0}\right) g\left(h_{1}\right) g\left(h_{2}\right) g\left(h_{3}\right)$
- Read, Update and Predict

LANGUAGE MODELLING

Topics: Recurrent neural network language model

- Example: p(the, cat, is, eating)

- Read, Update and Predict

LANGUAGE MODELLING

Topics: Building an RNN Language Model

- What do we need?
- Transition Function $h_{t}=f\left(h_{t-1}, x_{t-1}\right)$
- Output/Readout Function $p\left(x_{t}=w \mid x_{1}, \ldots, x_{t-1}\right)=g_{w}\left(h_{t}\right)$ p (the) $\quad p($ cat $\mid \ldots) \quad p($ is $\mid \ldots) p($ eating $\mid \ldots)$

LANGUAGE MODELLING

Topics: Building an RNN Language Model - Transition Function

- Inputs

- Input $x_{t-1} \in\{0,1\}^{|V|}$: one-hot vector, i.e., $x_{t-1}=w \in\{1, \ldots,|V|\}$
- Hidden state $h_{t-1} \in \mathbb{R}^{d}$

- Parameters

- Input weight matrix $W \in \mathbb{R}^{d \times|V|}$ (often called word embeddings)
- Transition weight matrix $U \in \mathbb{R}^{d \times d}$
- Bias vector $b \in \mathbb{R}^{d}$

Topics: Building an RNN Language Model - Transition Function

- Inputs: $x_{t-1} \in\{0,1\}^{|V|}, h_{t-1} \in \mathbb{R}^{d}$
- Parameters: $W \in \mathbb{R}^{d \times|V|}, U \in \mathbb{R}^{d \times d}, b \in \mathbb{R}^{d}$
- Naive Transition Function

$$
h_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)
$$

(I) Continuous-space Representation of word: $W x_{t-1}$
(2) LinearTransformation of the Previous Hidden State: $U h_{t-1}$
(3) Additive combination of x_{t-1} and h_{t-1} together with b
(4) Point-wise nonlinear transformation

LANGUAGE MODELLING

Topics: Building an RNN Language Model - Readout Function

- Inputs
- (Current) Hidden State $h_{t} \in \mathbb{R}^{d}$

- Parameters

- Output matrix $R \in \mathbb{R}^{|V| \times d}$ (often called target word embeddings)
- Bias vector $c \in \mathbb{R}^{|V|}$

LANGUAGE MODELLING

Topics: Building an RNN Language Model - Readout Function

- Inputs $h_{t} \in \mathbb{R}^{d}$
- Parameters $R \in \mathbb{R}^{|V| \times d}, c \in \mathbb{R}^{|V|}$
- Softmax Readout Function

$$
p\left(x_{t}=w \mid x_{<t}\right)=g_{w}\left(h_{t}\right)=\frac{\exp \left(R_{w}^{\top} h_{t-1}+c_{w}\right)}{\sum_{i=1}^{|V|} \exp \left(R_{i}^{\top} h_{t-1}+c_{i}\right)}
$$

(I) Linear projection of the hidden state for each possible target word

$$
v_{i}=R_{i}^{\top} h_{t-1} \text { for all } i=1, \ldots,|V|
$$

(3) Transform each projected vector v_{i} to be positive $\tilde{p}_{i}=\exp \left(v_{i}\right)$
(4) Normalize \tilde{p}_{i} 's to make them into probabilities of the i-th target words

LANGUAGE MODELLING

Topics: Building an RNN Language Model

- Recursion and Readout:
- Recursion
$h_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)$
- Readout/Output

$$
p\left(x_{t}=w \mid x_{<t}\right)=\frac{\exp \left(R_{w}^{\top} h_{t-1}\right)}{\sum_{i=1}^{|V|} \exp \left(R_{i}^{\top} h_{t-1}\right)}
$$

$$
p\left(x_{t}=w \mid x_{<t}\right)
$$

Training RNN-LM

LANGUAGE MODELLING

Topics: Cost Function $J(\Theta)$

- Log-Probability of a sentence $\left(x_{1}, x_{2}, \ldots, x_{T}\right)$

$$
\log p\left(x_{1}, x_{2}, \ldots, x_{T}\right)=\sum_{t=1}^{T} \log p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)
$$

- Train an RNN LM to maximize the log-prob's of training sentences
- Given a training set of N sentences: $\left\{\left(x_{1}^{1}, \ldots, x_{T_{1}}^{1}\right), \ldots,\left(x_{1}^{N}, \ldots, x_{T_{N}}^{N}\right)\right\}$

$$
\operatorname{maximize}_{\Theta} \frac{1}{N} \sum_{n=1}^{N} \log p\left(x_{1}^{n}, \ldots, x_{T_{n}}^{n}\right)
$$

$$
\Longleftrightarrow \operatorname{minimize}_{\Theta} J(\Theta)=-\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} \log p\left(x_{t}^{n} \mid x_{1}^{n} \ldots, x_{t-1}^{n}\right)
$$

LANGUAGE MODELLING

Topics: Minibatch Stochastic Gradient Descent - Recap
(I)Randomly select a minibatch of N^{\prime} sentences: $D=\left\{x^{1}, \ldots, x^{N^{\prime}}\right\}$
(2)Compute the gradient of per-sample cost w.r.t. $\Theta: \nabla J\left(\Theta, x^{n}\right)$
(3)Compute the minibatch gradient:

$$
\nabla J(\Theta, D)=\frac{1}{N^{\prime}} \sum_{n=1}^{N^{\prime}} \nabla J\left(\Theta, x^{n}\right)
$$

(4)Update the parameters Θ

$$
\Theta \leftarrow \Theta+\eta \nabla J(\Theta, D)
$$

(5)Repeat until convergence

LANGUAGE MODELLING

Topics: Backpropagation through time

- Decomposition of a per-sample cost function $J(\Theta, x)=-\sum_{t=1}^{T} J_{t}\left(\Theta, x_{t}\right)$
- Unrolled Computational Graph

$$
J_{t}(\Theta, \hat{x})=\log p\left(x_{t}=\hat{x}_{t} \mid x_{<t}\right)
$$

LANGUAGE MODELLING

Topics: Backpropagation through time (I)Initialize $\nabla_{R}, \nabla_{U}, \nabla_{W}, \nabla_{b}$ and $t=T$
(I)The per-step cost derivative: $\frac{\partial J_{t}}{\partial g}$
(2)Gradient w.r.t. $R: \frac{\partial J_{t}}{\partial g} \frac{\partial g}{\partial R}$
(3)Gradient w.r.t. $h_{t}: \frac{\partial J_{t}}{\partial g} \frac{\partial g}{\partial h_{t}}+\frac{\partial J_{>t}}{\partial h_{t+1}} \frac{\partial h_{t+1}}{\partial h_{t}}$
(4)Gradient w.r.t. $U: \frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial U}$

$$
J_{t}(\Theta, \hat{x})=\log p\left(x_{t}=\hat{x}_{t} \mid x_{<t}\right)
$$

(5) Gradient w.r.t W and $b: \frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W}, \frac{\partial J_{\geq t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial b}$
(2) Update the parameter gradient and repeat until $t=1$

$$
\begin{gathered}
\nabla_{R} \leftarrow \nabla_{R}+\frac{\partial J_{t}}{\partial R}, \nabla_{U} \leftarrow \nabla_{U}+\frac{\partial J_{\geq t}}{\partial U} \\
\nabla_{W} \leftarrow \nabla_{W}+\frac{\partial J_{\geq t}}{\partial W}, \nabla_{b} \leftarrow \nabla_{b}+\frac{\partial J_{\geq t}}{\partial b}
\end{gathered}
$$

Code: https://github.com/nyu-dl/d/4mt-tutorial/tree/master/session0

Gated Recurrent Units

GATED RECURRENT UNITS

Topics: Temporal Dependency and Vanishing Gradient

- How much influence does h_{t} have on $\log p\left(x_{t+n} \mid x_{<t+n}\right)$?

$$
\frac{\partial J_{t+n}}{\partial h_{t}}=\frac{\partial J_{t+n}}{\partial g} \frac{\partial g}{\partial h_{t+N}} \frac{\partial h_{t+N}}{\partial h_{t+N-1}} \cdots \frac{\partial h_{t+1}}{\partial h_{t}}
$$

-With the naive transition function?

$$
\frac{\partial h_{t+1}}{\partial h_{t}}=U^{\top} \frac{\partial \tanh (a)}{\partial a}, \text { where } a=W x_{t}+U h_{t}+b
$$

- Let's rewrite it

$$
\frac{\partial J_{t+n}}{\partial h_{t}}=\frac{\partial J_{t+n}}{\partial g} \frac{\partial g}{\partial h_{t+N}} \underbrace{\prod_{n=1}^{N} U^{\top} \operatorname{diag}\left(\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}}\right)}
$$

GATED RECURRENT UNITS

Topics: Temporal Dependency and Vanishing Gradient

- Upper bound on the norm of the gradient w.r.t. h_{t} ?

$$
\left\|\prod_{n=1}^{N} U^{\top} \operatorname{diag}\left(\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}}\right)\right\| \leq \prod_{n=1}^{N}\left\|U^{\top}\right\| \prod_{n=1}^{N}\left\|\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}}\right\|
$$

- Observations

(I) Vanishing gradient when $\lambda_{\max }(U)<1: \prod_{n=1}^{N}\left\|U^{\top}\right\| \rightarrow 0$
(2) Vanishing gradient when the units are saturated: $\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}} \rightarrow 0$
(3) Potentially, exploding gradient when $\lambda_{\max }(U)>1$

- Problem: It's likely that there's no learning signal!

GATED RECURRENT UNITS

Topics: Exploding gradient is less problematic

- "when gradients explode so does the curvature along v, leading to a wall in the error surface"
- Solution: Gradient Clipping
(I)Gradient norm clipping

$$
\tilde{\nabla} \leftarrow \begin{cases}\frac{c}{\|\nabla\|} \nabla & \text {,if }\|\nabla\| \geq c \\ \nabla & , \text { otherwise }\end{cases}
$$

(2)Element-wise gradient clipping
$\nabla_{i} \leftarrow \min \left(c, \nabla_{i}\right)$, for all $i \in\{1, \ldots, \operatorname{dim} \nabla\}$

GATED RECURRENT UNITS

Topics: But, vanishing gradient is very problematic
-Why does the gradient vanish?

$$
\left\|\frac{\partial h_{t+N}}{\partial h_{t}}\right\|=\left\|\prod_{n=1}^{N} U^{\top} \operatorname{diag}\left(\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}}\right)\right\| \rightarrow 0
$$

- Can we simply "maximize" $\left\|\frac{\partial h_{t+N}}{\partial h_{t}}\right\|$?
- "we need to force the network to increase the norm of $\frac{\partial h_{t+N}}{\partial h_{t}}$ at the expense of larger errors"
- Pascanu et al. (20|3)

$$
\left(\frac{\left\|\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{k+1}} \frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k}}\right\|}{\left\|\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{k+1}}\right\|}-1\right)^{2}
$$

GATED RECURRENT UNITS

Topics: But, vanishing gradient is very problematic
-Why does the gradient vanish?

$$
\left\|\frac{\partial h_{t+N}}{\partial h_{t}}\right\|=\left\|\prod_{n=1}^{N} U^{\top} \operatorname{diag}\left(\frac{\partial \tanh \left(a_{t+n}\right)}{\partial a_{t+n}}\right)\right\| \rightarrow 0
$$

- Perhaps, it is a problem with the naive transition function...

$$
h_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)
$$

- Error is backpropagated through every intermediate node

GATED RECURRENT UNITS

Topics: But, vanishing gradient is very problematic

- Perhaps, it is a problem with the naive transition function...

$$
h_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)
$$

- Error is backpropagated through every intermediate node

- Temporal shortcut connections

GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU)

- Temporal shortcut connections

- Adaptive Leaky integration

$$
h_{t}=\left(1-u_{t}\right) \odot h_{t-1}+u_{t} \odot \tilde{h}_{t}
$$

- Update gate $u_{t}=\sigma\left(W_{u} x_{t-1}+U_{u} h_{t-1}+b_{u}\right)$
- Candidate state $\tilde{h}_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)$

GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU)

- Pruning connections: avoids the diffusion of signal

- Adaptive Reset

$$
\tilde{h}_{t}=\tanh \left(W x_{t-1}+U\left(r_{t} \odot h_{t-1}\right)+b\right)
$$

- Reset gate

$$
r_{t}=\sigma\left(W_{r} x_{t-1}+U_{r} h_{t-1}+b_{r}\right)
$$

GATED RECURRENT UNITS

Topics: Gated Recurrent Units (GRU)

- Update and Reset gates

$$
\begin{aligned}
& u_{t}=\sigma\left(W_{u} x_{t-1}+U_{u} h_{t-1}+b_{u}\right) \\
& r_{t}=\sigma\left(W_{r} x_{t-1}+U_{r} h_{t-1}+b_{r}\right)
\end{aligned}
$$

- Candidate hidden state

$$
\tilde{h}_{t}=\tanh \left(W x_{t-1}+U\left(r_{t} \odot h_{t-1}\right)+b\right)
$$

- Adaptive Leaky Integration

$$
h_{t}=\left(1-u_{t}\right) \odot h_{t-1}+u_{t} \odot \tilde{h}_{t}
$$

GATED RECURRENT UNITS

Topics: Long Short-Term Memory (LSTM)

- Input, Forget and Output gates

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} x_{t-1}+U_{i} h_{t-1}+b_{i}\right) \\
f_{t} & =\sigma\left(W_{f} x_{t-1}+U_{f} h_{t-1}+b_{f}\right) \\
o_{t} & =\sigma\left(W_{o} x_{t-1}+U_{o} h_{t-1}+b_{o}\right)
\end{aligned}
$$

- Candidate memory cell state

$$
\tilde{c}_{t}=\tanh \left(W x_{t-1}+U h_{t-1}+b\right)
$$

- Adaptive Leaky Integration

$$
c_{t}=f_{t} \odot c_{t-1}+i_{t} \odot \tilde{c}_{t}
$$

Hochreiter\&Schmidhuber (I 999), Gers et al. (200 I)

- Output

$$
h_{t}=o_{t} \odot \tanh \left(c_{t}\right)
$$

Q\&A

Machine Translation

NEURAL MACHINETRANSLATION

Topics: Statistical Machine Translation

- $\log p(f \mid e)=\log p(e \mid f)+\log p(f)$
- Translation model: $\log p(e \mid f)$
- Fit it with parallel corpora
- Language model: $\log p(f)$
- Fit it with monolingual corpora
$f=(\mathrm{La}$, croissance, économique, s'est, ralentie, ces, dernières, années, .)

$\boldsymbol{e}=($ Economic, growth, has, slowed, down, in, recent, years, . $)$
- The whole task $\log p(f \mid e)$ is conditional language modelling.

NEURAL MACHINETRANSLATION

Topics: Statistical Machine Translation - In Reality

- $\log p(f \mid e) \approx \sum_{n=1}^{N} f_{n}(e, f)+C$
- Log-linear model
- Feature function $f_{n}(e, f)$
- Steps:
(I) Experts engineer useful features

(2) Use a simple log-linear model
(3) Use a strong, external language model

NEURAL MACHINE TRANSLATION

(Chrisman, 199।; Forcada\&Ñeco, I 997; Castaño\&Casacuberta, 1997; Kalchbrenner\&Blunsom, 2013; Sutskever et al., 2014; Cho et al., 20|4)

NEURAL MACHINE TRANSLATION

Topics: Sequence-to-Sequence Learning - Encoder

- Encoder
(I)I-of-K coding of source words
(2)Continuous-space representation $s_{t^{\prime}}=W^{\top} x_{t^{\prime}}$, where $W \in \mathbb{R}^{|V| \times d}$
(3)Recursively read words $h_{t}=f\left(h_{t-1}, s_{t}\right)$, for $t=1, \ldots, T$

NEURAL MACHINE TRANSLATION

Topics: Sequence-to-Sequence Learning - Decoder

- Decoder
(I)Recursively update the memory

$$
z_{t^{\prime}}=f\left(z_{t^{\prime}-1}, u_{t^{\prime}-1}, h_{T}\right)
$$

(2)Compute the next word prob. $p\left(u_{t^{\prime}} \mid u_{<t^{\prime}}\right) \propto \exp \left(R_{u_{t^{\prime}}}^{\top} z_{t^{\prime}}+b_{u_{t^{\prime}}}\right)$
(3)Sample a next word

- Beam search is a good idea

$\boldsymbol{e}=($ Economic, growth, has, slowed, down, in, recent, years, .)

NEURAL MACHINE TRANSLATION

Topics: Sequence-to-Sequence Learning - Issue

- This is quite an unrealistic model.
-Why?
"You can't cram the meaning of a whole \%\&!\$\# sentence into a single \$\&!\#* vector!"

Ray Mooney

NEURAL MACHINETRANSLATION

Topics: Attention-based Model

- Encoder: Bidirectional RNN
- A set of annotation vectors

$$
\left\{h_{1}, h_{2}, \ldots, h_{T}\right\}
$$

- Attention-based Decoder
(I)Compute attention weights

$$
\alpha_{t^{\prime}, t} \propto \exp \left(e\left(z_{t^{\prime}-1}, u_{t^{\prime}-1}, h_{t}\right)\right)
$$

$\boldsymbol{f}=(\mathrm{La}$, croissance, économique, s'est, ralentie, ces, dernières, années, .)

$\boldsymbol{e}=($ Economic, growth, has, slowed, down, in, recent, years, . $)$
(2) Weighted-sum of the annotation vectors

$$
c_{t^{\prime}}=\sum_{t=1}^{T} \alpha_{t^{\prime}, t} h_{t}
$$

(3) Use $c_{t^{\prime}}$ instead of h_{T}

NEURAL MACHINETRANSLATION

Topics: Attention-based Model

- Encoder: Bidirectional RNN
- A set of annotation vectors

$$
\left\{h_{1}, h_{2}, \ldots, h_{T}\right\}
$$

- Attention-based Decoder

(I)Compute attention weights

$$
\alpha_{t^{\prime}, t} \propto \exp \left(e\left(z_{t^{\prime}-1}, u_{t^{\prime}-1}, h_{t}\right)\right)
$$

English-French

La croissance économique s' est ralentie ces dernières années

English-German

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt
(2)Weighted-sum of the annotation vectors $c_{t^{\prime}}=\sum_{t=1}^{T} \alpha_{t^{\prime}, t} h_{t}$
(3) Use $c_{t^{\prime}}$ instead of h_{T}

Deep Natural Language Processing

Deep Natural Language Processing (I) Character-level Modelling

Note: Translation is horrible, not because of me, but because data is :(

(Luong et al., 2016; Sennrich et al., 2016; Chung et al., 2016; Jean et al., 2016)

Note: Translation is horrible, not because of me, but because data is :(

But, there are still too much explicit structures here...

(Luong et al., 2016; Sennrich et al., 2016; Chung et al., 2016; Jean et al., 2016)

Note: Translation is horrible, not because of me, but because data is :(

Why the hell are we using a sequence of words?

Sequential Processing";

Sequential Processing

There are legitimate reasons... sorta...

1. We strongly believe that a word (lexeme) is a basic unit of meaning.
2. We have an inherent fear of data sparsity.

- The size of state space grows exponentially w.r.t. the length.
- A sentence is longer when counted in letters than in words.

3. We are worried that we cannot train a recurrent neural net.

But, are they really legit reasons?

1. We strongly believe that a word (lexeme) is a basic unit of meaning.

2. We have an inherent fear of data sparsity.

- The size of state space grows exponentially w.r.t. the length.
- A sentence is longer when counted in letters than in words.

3. We are worried that we cannot train a recurrent neural net.

"In the proposed model, it will so generalize because "similar" words are expected to have a similar feature vector, and because the probability function is a smooth function of these feature values, a small change in the features will induce a small change in the probability" - Bengio et al. (2003)

But, are they really legit reasons?

1. We strongly believe that a word (lexeme) is a basic unit of meaning.
2. We have an inherent fear of data sparsity.

- The size of state space grows exponentially w.r.t. the length.
- A sentence is longer when counted in letters than in words.

3. We are worried that we cannot train a recurrent neural net.
"So, given a powerful learning system like an MRNN, the convenience of using characters may outweigh the extra work of having to learn the words. All our experiments show that an MRNN finds it very easy to learn words." - Sutskever et al. (2011)
(Sutskever et al., 2011; Mikolov, 2012; Graves, 2013)

T

But, are they really legit reasons?

1. We strongly believe that a word (lexeme) is a basic unit of meaning.
2. We have an inherent fear of data sparsity.

- The size of state space grows exponentially w.r.t. the length.
- A sentence is longer when counted in letters than in words.

3. We are worried that we cannot train a recurrent neural net.

"Training a recurrent network to learn long range input/output dependencies is a hard problem."

- Bengio et al. (1994)
(Bengio et al., 1994; Hochreither et al., 2001)

(Hochreither \& Schmidhuber, 1999; Gers et al., 2001; Cho et al., 2014)

There are legitimate reasons... sorta...

1. We strongly believe that a word (lexeme) is a basic unit of meaning.
2. We have an inherent fear of data sparsity.

- The size of state space grows exponentially w.r.t. the length.
- A sentence is longer when counted in letters than in words.

3. We are worried that we cannot train a recurrent neural net.

Note: Translation is horrible, not because of me, but because data is :(

Problems with treating each and every token separately

1. Inefficient handling of various morphological variants

- Sub-optimal segmentation/tokenization
- "run", "runs", "ran", "running": one lexeme "run", but four independent vectors.

2. Lack of generalization to novel/rare morphological variants

- For instance, ولمركبته in Arabic => "and to his vehicle"

3. One vector for compound words?

B оценке влияния на развитие рака витамина D также нет полной ясности

- "kolmi/vaihe/kilo/watti/tunti/mittari" => one vector?
- "kolme" => one vector?

Sequential Processing`;
$\$$
Sequential Protessing

Note: Translation is horrible, not because of me, but because data is :(

Obviously I'm not the first one to ask this question...

Note: Translation is horrible, not because of me, but because data is :(

Soft-Alignment

Addresses

1．Inefficient handling of various morphological variants
－Sub－optimal segmentation／tokenization
－＂run＂，＂runs＂，＂ran＂，＂running＂：one lexeme＂run＂，but four independent vectors．
2．Lack of generalization to novel／rare morphological variants
－For instance，ولمركبته in Arabic＝＞＂and to his vehicle＂

Does not address

3．One vector for compound words？
－＂kolmi／vaihe／kilo／watti／tunti／mittari＂＝＞one vector？
－＂kolme＂＝＞one vector？

B ошенке влияния на развитие дака витамина $\mathrm{D} \xrightarrow{\text { также нет полной ясности }}$ Sequential Processing

Still relies on
4．Good segmentation／tokenization

Sequential Protessing

So, we decided to answer this question ourselves...

1. Source side: a sequence of BPE-based character n-grams
2. Target side: an unbroken sequence of characters

BPE symbols

| Also the effect of vitam- in in D on cancer is not clear |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (Sennrich et al., 2015) |

Absolutely the same model we have been using so far...
For a better recurrent decoder for character sequences, stay tuned for ACL'16. JY will tell us more about it.

So, we decided to answer this question ourselves...

1. Large-scale experiments: we want a convincing answer!
2. Multiple languages: $\mathrm{En} \rightarrow\{\mathrm{Cz}, \mathrm{De}, \mathrm{Ru}, \mathrm{Fi}\}$

Sequential Processing ;

。

Sequential Processing

For a better recurrent decoder for character sequences, stay tuned for ACL'16. JY will tell us more about it.

		号	Trgt	$0^{e^{2}}$	Attention		5^{20}	Development		Test $_{1}$		Test $_{2}$	
					\mathbf{h}^{1}	h^{2}		Single	Ens	Single	Ens	Single	Ens
$\begin{aligned} & \text { İ } \\ & \text { ì } \end{aligned}$	（a）	$\stackrel{\mu}{\infty}$	BPE	1	\checkmark		Base	20.78	－	19.98	－	21.72	－
	（b）			2	\checkmark	\checkmark		$21.26_{20.62}^{21.45}$	23.49	$20.47_{19.30}^{20.88}$	23.10	$22.02_{21.35}^{22.21}$	24.83
	（c）		Char	2		\checkmark	Base	$21.57_{20.88}^{21.88}$	23.14	$21.33_{19.82}^{21.56}$	$\underline{23.11}$	23．45 ${ }_{21.72}^{23.91}$	25.24
	（d）			2	\checkmark	\checkmark		20.31	－	19.70	－	21.30	－
	（e）			2		\checkmark	Bi－S	$21.29_{21.13}^{21.43}$	23.05	$21.25_{20.62}^{21.47}$	23.04	$23.06_{22.85}^{23.47}$	25.44
	（f）			2	\checkmark	\checkmark		20.78	－	20.19	－	22.26	－
	（g）			2	\checkmark			20.08	－	19.39	－	20.94	－
	State－of－the－art Non－Neural Approach＊							－		$20.60{ }^{(1)}$		$24.00^{(2)}$	
$\begin{aligned} & \text { un } \\ & \text { 1 } \end{aligned}$	（h）	$\stackrel{\text { m }}{\stackrel{\mu}{m}}$	BPE	2	\checkmark	\checkmark	Base	$16.12_{15.96}^{16.96}$	19.21	$17.16_{16.38}^{17.68}$	20.79	$14.63_{14.26}^{15.29}$	17.61
	（i）		Char	2		\checkmark	Base	$17.68_{17.39}^{17.78}$	19.52	$19.25_{18.89}^{19.55}$	21.95	16．98 ${ }_{16.81}^{17.17}$	18.92
	（j）			2		\checkmark	Bi－S	$17.622_{17.43}^{17.93}$	19.83	19．27 ${ }_{19.15}^{19.53}$	$\underline{22.15}$	$16.86_{16.68}^{17.10}$	$\underline{18.93}$
	State－of－the－art Non－Neural Approach＊							17．43		$21.00^{(3)}$		$18.20{ }^{(4)}$	
		$\stackrel{\text { M }}{\stackrel{\sim}{\sim}}$	BPE	2	\checkmark	\checkmark	Base	$18.56{ }_{18.26}^{18.70}$	21.17	$25.30_{24.95}^{25.40}$	29.26	19．72 ${ }_{19.02}^{20.29}$	22.96
	（1）		Char	2		\checkmark	Base	$18.56_{18.39}^{18.87}$	20.53	$\mathbf{2 6 . 0 0}{ }_{25.04}^{26.07}$	$\underline{29.37}$	21．10 ${ }_{20.14}^{21.24}$	23.51
	（m）			2		\checkmark	Bi－S	$18.30_{17.88}^{18.54}$	20.53	$25.59_{24.57}^{25.76}$	29.26	$20.73_{19.97}^{21.02}$	$\underline{\underline{23.75}}$
	State－of－the－art Non－Neural Approach＊							－		$28.70^{(5)}$		$24.30^{(6)}$	
$\begin{aligned} & \text { 学 } \\ & \text { 岦 } \end{aligned}$		$\stackrel{\text { Ma }}{\stackrel{\sim}{n}}$	BPE	2	\checkmark	\checkmark	Base	9．619．24 ${ }_{\text {10．02 }}$	11.92	－	－	$8.97{ }_{8.88}^{9.17}$	11.73
	(o)		Char	2		\checkmark	Base	$11.19_{11.09}^{11.55}$	13.72	－	－	10．93 ${ }_{10.11}^{11.56}$	13.48
				2		\checkmark	Bi－S	$10.73_{10.40}^{11.04}$	13.39	－	－	$10.24{ }_{9.71}^{10.63}$	13.32
	State－of－the－art Non－Neural Approach＊							－		－		$12.70^{(7)}$	

The decoder implicitly learned word-like units automatically.

What have we learned?

1. Neural MT works with character sequences.

- At least on the target side (though, it works also on the source side ;))

2. A recurrent network implicitly segments a character sequence automatically.
3. We should've asked this question at the very beginning..

Deep Natural Language Processing (2) Multilingual Modelling

Multilingual Translation

Multilingual Translation: Benefits

1. Positive language transfer across many language pairs/directions

- Solution to low/zero-resource machine translation

2. \# of parameters grows linearly w.r.t. the \# of languages

- as opposed to the quadratic explosion when training many single-pair models.

3. Multi-source translation without requiring any multi-way parallel text

- inspired by but contrary to Zoph \& Knight (2016)

4. Super fun and cool!

- Most important reason..

DONG ET AL. (ACL 20I5)

LUONG ET AL. (ICLR, NOV 2015)

Many-to-Many Sequence-to-Sequence Learning

1. No attention: a single vector space shared across source and target languages/tasks.
2. Limited set of languages tested: English, German + many other tasks

CHALLENGES

1. We have a strong belief that (soft-)alignment is specific to a language pair.
2. Even if not, there's a gigantic model space. How can we design a network?
3. 6 languages (En, Cs, De, Fi, Fr, Ru)

- 60+ million bilingual sentence pairs for training
- The entire model does not fit on one GPU

MULTI-WAY, MULTILINGUAL TRANSLATION

1. 10 language pair—directions from WMT'15

- En \rightarrow \{Cs, De, Fi, Fr, Ru\}, \{Cs, De, Fi, Fr, Ru\} \rightarrow En

2. One alignment model for all the ten pair—directions.
3. Trained with bilingual parallel pairs only
4. The model was distributed over two GPU's

MULTI-WAY, MULTILINGUALTRANSLATION

Dir			Fr (39m)		Cs (12m)		De (4.2m)		$\mathrm{Ru}(2.3 \mathrm{~m})$		$\mathrm{Fi}(2 \mathrm{~m})$	
			\rightarrow En	En \rightarrow	\rightarrow En	$\mathrm{En} \rightarrow$	\rightarrow En	$\mathrm{En} \rightarrow$	\rightarrow En	$\mathrm{En} \rightarrow$	\rightarrow En	En \rightarrow
	-	Single	27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
		Multi	26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
	$$	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
		Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
-	入	Single	-50.53	-53.38	-60.69	-69.56	-54.76	-61.21	-60.19	-65.81	-88.44	-91.75
		Multi	-50.6	-56.55	-54.46	-70.76	-54.14	-62.34	-54.09	-63.75	-74.84	-88.02
	$$	Single	-43.34	-45.07	-60.03	-64.34	-57.81	-59.55	-60.65	-60.29	-88.66	-94.23
		Multi	-42.22	-46.29	-54.66	-64.80	-53.85	-60.23	-54.49	-58.63	-71.26	-88.09

For details, find this guy!

SETTINGS

1. Target language pairs

- Uzbek \rightarrow English, Turkish \rightarrow English

2. Auxiliary language pairs

- French \leftrightarrow English, Spanish \leftrightarrow English

	\# Symbols		\# Sentence		
	\# En	Other	Train	Dev	Test
En-Uz	1.361 m	1.186 m	73.66k	948	882
C* En-Tr	13.17m	12.43m	784.65k	862	940
- En-Es	908.1 m	924.9 m	34.71 m	3003	3000
+i+ +i+ En-Fr	1.837b	1.911b	65.77 m	3003	3000

TURKISH-TO-ENGLISH

1. Tr-En: 14.21/17.28
2. Tr-En+Es-En: 16.00/17.75
3. Tr-En+Es-En+Fr-En: 16.18/18.13
4. Tr-En+Es-En+Fr-En+En-Es: 16.28/18.66
5. Ensemble: 20.00/22.56

- 3x Tr-En+Es-En+Fr-En
- $3 \times$ Tr-En+Es-En+Fr-En+En-Es

UZBEK-TO-ENGLISH

1. Uz-En: 6.63/6.45
2. Uz-En+Tr-En: 8.68/9.34
3. Uz-En+Tr-En+Es-En: 9.55/10.34
4. Uz-En+Tr-En+Es-En+En-Tr: 8.93/9.41
5. Ensemble: 12.17/12.99

- 3x Uz-En+Tr-En+Es-En

- 3x Uz-En+Tr-En+Es-En+En-Tr
(Firat et al., 2016b; under review)
Work done in collaboration with IBM

1. Three languages: English, Spanish and French

- $\{E n$, Es, Fr$\} \longleftrightarrow\{E n, \mathrm{Es}, \mathrm{Fr}\}$

2. Bilingual corpora only during training: En $\rightarrow\{$ Es, Fr\}, $\{$ Es, Fr\} \cdots En
3. Multi-language source during test time

\# Sents	Train	Dev †	Test ‡
En-Es	34.71 m	3003	3000
En-Fr	65.77 m	3003	3000

(Firat et al., EMNLP 2016c)

MULTI-SOURCETRANSLATION?

1. $(E s, F r) \longrightarrow E n$
2. Two translation strategies

Early Averaging*

* (Zoph \& Knight, 2016)
(Firat et al., EMNLP 2016c)
Work done in collaboration with IBM Watson R\&D

MULTI-SOURCETRANSLATION? - YES

Single-source translation

			Multi		Single	
	Src	Trgt	Dev	Test	Dev	Test
(a)	Es	En	30.73	28.32	29.74	27.48
(b)	Fr	En	26.93	27.93	26.00	27.21
(c)	En	Es	30.63	28.41	31.31	28.90
(d)	En	Fr	22.68	23.41	22.80	24.05

Multi-source translation

	Multi		Single		
		Dev	Test	Dev	Test
(a)	Early	31.89	31.35	-	-
(b)	Late	32.04	31.57	32.00	31.46
(c)	E+L	32.61	31.88	-	-

But, single-pair models can apparently do multi-source translation..

Deep Natural Language Processing (3) Larger-Context Modelling

Context matters

- What does context tell us?
- Theme/Topic of a document
- What does context tell us in practice?
- What are the words that are more likely to appear in this document?

Context

While it's not flawless, some motivations and scenarios remain somewhat underdeveloped or questionable; Ex Machina is a stunning Sci-Fi vision that is also a fully formed thinking man's thriller.

Following Sentence

With a jaw droopingly good turn from the soon to be megastar Vikander, \qquad ? \qquad is another excellent example of what makes the ? ? ?

Larger-Context Language Modelling

- Language modelling as "document modelling" instead of "sentence modelling" (Wang \& Cho, arXiv 2015; Ji et al., arXiv 2015)

$$
P(D) \approx P\left(S_{1}\right) P\left(S_{2}\right) \cdots P\left(S_{N}\right) \text { vs. } P(D) \approx P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) \cdots P\left(S_{N} \mid S_{N-n}, \ldots, S_{N-1}\right)
$$

- Simplest approach (Wang \& Cho, arXiv 2015)
- Bag of all the words from the previousn sentences
- RNN Language model conditioned on this bag-of-words

$$
\left(S_{l-n}, S_{l-n+1}, \ldots, S_{l-1}\right)
$$

Larger-Context Language Modelling

- Late Fusion of LSTM (Wang \& Cho, arXiv 2015)
- Let the memory cell C model intra-sentence dependencies
- Let the inter-sentence dependencies be fused in later

Early Fusion

Larger-Context Language Modelling

- It helps obviously (Wang \& Cho, arXiv 2015)
- Especially with the late fusion of context

Larger-Context Language Modelling

- "What are the words that are more likely to appear in this document?"
- Open-class words: nouns, adjectives, verbs and adverbs

PTB

Larger-Context Machine Translation

- Toward Larger-Context Machine Translation (Jean \& Cho, Work in Progress*)
- How to represent the source and target contexts?
-Which is conditioned on the context, encoder, decoder or both?

$$
\langle\mathrm{s}\rangle \quad y_{1} \quad y
$$

$$
\left.\left(X^{l-n}, X^{l-n+1}, \ldots, X^{l-1}\right) \quad f_{\text {summary }}^{l-n}, Y^{l-n+1}, \ldots, Y^{l-1}\right)
$$

Dialogue-level Machine Translation

- Hierarchical Model for Dialogue Modelling (Serban et al., 2015; Sordoni et al., 2015) Utterance-level RNN + Dialogue-level RNN

World-Context Machine Translation

- Beyond Document-Level Language Processing
- How do we blend intra-document context and world knowledge?

Thank You!

