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Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way

* Multiple application domains.



Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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* Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data in unsupervised or semi-supervised way.
* Multiple application domains.




Example: Understanding Images

TAGS:

strangers, coworkers, conventioneers,
attendants, patrons

Nearest Neighbor Sentence:

people taking pictures of a crazy person

Model Samples

* a group of people in a crowded area.

* a group of people are walking and talking .

* a group of people, standing around and talking .
* a group of people that are in the outside .



Talk Roadmap

* Learning Deep Undirected Models
— Restricted Boltzmann Machines
— Deep Boltzmann Machines

* Learning Deep Directed Models
* Helmholtz Machines

e Variational & Importance Weighted Autoecnoders
* Stochastic (Hard) Attention Models

* Applications and Some Open Problems



Restricted Boltzmann Machines

Pair-wise Unary
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Image visible variables

RBM is a Markov Random Field with:

e Stochastic binary visible variables v € {0,1}”.
* Stochastic binary hidden variables h € {0,1}*.

* Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Sparse
representations

E 099><i+097><. 082><n

_ Logistic Function: Suitable for
1+eXP( ) modeling binary images

New Image: Pl h? = 1|v)




Model Learning

Hidden units P* (V) 1
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Given a set of i.i.d. training examples
D ={v) v® _ v, wewanttolearn
model parameters = {W, a,b}.

Maximize log-likelihood objective:

N
1
L(0) = N > log Py(vi™)
n=1

Image visible units

Derivative of the log-likelihood:

OL(H) 1 <~ 0 ()T T kT (n) 0
W N; W, log (Zh:exp [V Wh+a h+b'v } _(9W7;j log Z(0)

= Ep,..aVilj] — Ep,|vihy]

Piata(v,1;0) = P(h|v;0)Piaa(V) Difﬁ§ult to. compute: exponentially many
1 () configurations
Pdata(v): NEH:CS(V—V )




Model Learning

hidden variables

‘\\ll‘l\\/ Derivative of the log-likelihood:
v [N
RN L) ‘
Z')', ’/\" OW. — Epdata [vihj]
atll :

Image  visible variables v,h
Easy to /
compute exactly
Difficult to compute:
Piata(v,h;0) = P(h|v;0) Piata(V) exponentially many
1 . .
Prara(V) = — Z 5(v — V(”)) configurations.
N Use MCMC

Approximate maximum likelihood learning



RBMs for Real-valued Data

hidden variables Pair-wise Unary
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Image visible variables i=1

Gaussian-Bernoulli RBM:

* Stochastic real-valued visible variables v € R”,
* Stochastic binary hidden variables h € {0,1}*.

* Bipartite connections.
(Salakhutdinov & Hinton, NIPS 2007; Salakhutdinov & Murray, ICML 2008)



RBMs for Real-valued Data

hidden variables Pair-wise Unary
1 D F Vg D (’Ui . bz)z F
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Pg (V, h) =
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Learned features (out of 10,000)

4 million unlabelled images




RBMs for Real-valued Data

Learned features (out of 10,000)

4 million unlabelled images

o - -l

New Image



RBMs for Word Counts

h OOOO’ Pair-wise Unary
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Replicated Softmax Model: undirected topic model:

e Stochastic 1-of-K visible variables.
* Stochastic binary hidden variables h € {0,1}*".

* Bipartite connections.
(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs for Word Counts
h {OOOOJ Pair-wise Unary
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4% REUTERS )

i AP Associated Press Learned features: topics”
Wik
| russian clinton computer trade stock
Reuters dataset: russia house system country wall
804,414 unlabeled :> moscow | president | product import street
nhewswire stories yeltsin bill software world point
soviet congress develo econom dow
Bag-of-Words g P y




Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h ‘O O O Ol
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Real-valued 1-of-K «—])—>

* |t is easy to infer the states of the hidden variables:

F

D
j=1 j=1 + eXp(_a’j — Zi:l W’ijv’i)



Product of Experts

The joint distribution is given by:
1
PQ(V, h) = 2(9) exp (%: Wij’l}ihj + z@: b;v; + zj: ajhj)
A Product o\f Experts

Py(v) = Z Py(v,h) = % I:exp(bivi) H 6—1— exp(a; + Z Wijvi))

Marginalizing over hidden variables:

2

government | clinton bribery oil stock
auhority house corruption barrel wall
power president | dishonesty [ exxon street
empire bill putin putin point
putin congress fraud drill dow

”n n»n

Topics “government”, “corruption”
and ”oil” can combine to give very high
Putin probability to a word “Putin”.



Product of Experts

The joint distribution is given by:

Pg (V, h) =

Marginalizing c

government
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Deep Boltzmann Machines

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov & Hinton, Neural Computation 2012)



Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones

Higher-level features:

e =
“/ Combination of edges
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Image

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Model Formulation

1

Py(v,hD h® h®) = exp [VTWu)h(l) L hO ' WOR® L@ GRG)

Z(0) N y
Y
h? Same as RBMs
w3 0 = {W' W2 W=} model parameters

* Dependencies between hidden variables.
W2 * All connections are undirected.

 Bottom-up and Top-down:

1
w ng:1uﬂﬁﬁy:a<§:wﬁm2+§:wﬁﬂ¢0
k m

~ ™

Top-down Bottom-up

Input

* Hidden variables are dependent even when conditioned on
the input.



Mathematical Formulation

P*(v) 1 Trrrlnl 11 1721.2 2T 117/31.3
P = = —— W-h h- W<“h h“ W-h
(V) Z(0) Z(0) hl%;hg exp [V — +

Deep Boltzmann Machine 6 = {W' W= W3} model parameters

* Dependencies between hidden variables.

Maximum likelihood learning:

0log Py(v)

oW1 [Vth] — Ep, [Vth]

— Ep

data

Problem: Both expectations are
intractable!

Learning rule for undirected graphical models:
MRFs, CRFs, Factor graphs.



Approximate Learning

1

Py(v,h™ h® h®) = Z

exp [VTW(l)h(l) L hD W OR® 1 @ ERG)

(Approximate) Maximum Likelihood:

0log Py(Vv) _E,

T T
8W]_ data [Vhl ] o EPQ [Vhl ]

* Both expectations are intractable!

5(V — Vn) Not factorial any more!



Approximate Learning

Py(v.h® 1 h®) = Z?@) oxp [VTWu)h(l) hO T OR@ h<2>TW<3>h<3>]
3 . . L
h (Approximate) Maximum Likelihood:
W3
0log Py(v) 1T 1T
h2< 8W]_ — E data Vh [Vh ]

W2 AR
N © ll
Wl M

Data
Pdata, (V, hl) :data (V)

5(V — Vn) Not factorial any more!




Approximate Learning

1

Po(v, b, 0, 0) = —

exp [VTW(l)h(l) + hW ' r@p© i h(Q)Tw(3)h(3)]

(Approximate) Maximum Likelihood:

Olog Py(v) T
oWt \ePu [V @

Variational Stochastic

Inference Approximation
(v, h!) v) (MCMC-based)
v, — datav

5(V — Vn) Not factorial any more!




Stochastic Approximation

Time t=1 t=2 t=3

h2

Update 64
) — G

Update 65

) — @ )

A%

X1 Tgl (Xl %Xo) Xo v T92 (X2 %Xl) X3 v ng (X3 %Xg)
Update 6, and x; sequentially, where x = {v,h', h?}

* Generate x; ~ Ty, (Xt %Xt_l) by simulating from a Markov chain
that leaves Py, invariant (e.g. Gibbs or M-H sampler)

* Update 6; by replacing intractable Epet [VhT] with a point
estimate [Vth;r]
In practice we simulate several Markov chains in parallel.

Robbins and Monro, Ann. Math. Stats, 1957
L. Younes, Probability Theory 1989



Learning Algorithm

Update rule decomposes:

- - o1 Z (mp(m) !
015—}—1 = Qt + oy Epdata [Vh ] —]Epet [Vh ] + oy ]EPQ h ] v t
\ y, Q y,
Y Y
True gradient Perturbation term €;

Almost sure convergence guarantees as learning rate oy — 0

Problem: High-dimensional data: Markov Chain

the probab!llty landscape is Monte Carlo
highly multimodal. .

Key insight: The transition operator can t
(Salakhutdinov, ICML 2010, NIPS  gny valid transition operator — Tempered

2011, Srivastava et al., NIPS 2012,
Grosse et.al., 2013, Burda et.al., ’Transitions, Parallel/Simulated Tempering

2015);

Connections to the theory of stochastic approximation and adaptive MCMC.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable
distribution @, (h|v):
Py(h, v)

log Py(v logZPghv logZQM h|v) 0.0l
v’

Poster;j ference P (h V)
> (h|v)1
/@\ 2 Qubiv)los 5 s
Mean-Field 1
= Qu(h|v)log P;(h,v) —log Z(0) + Y _ Q,(h[v)log
h w " h Qu(hfv)

E . v W'h! + h!'W?2h? + h?' Wh?

. . Y
Variational Lower Bound

— log Py(v) — KL(Q,(b[v)|| P(h[v))

J

Q(z)

Pl) dz

KL(QIIP) = [ Q) log

Minimize KL between approximating and true
distributions with respect to variational parameters 1 .

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, Al & Statistics 2010)



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable

distribution @, (h|v): Qx)

Pa) dx

KL(Q||P) = / Q) log

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)z

Y

Posterij ference o
m Variational Lower Bound
' . . .
: Mean-Field: Choose a fully factorized distribution:
Mean-Field
Q. (hlv) = Hq (hj|v) with q(h; = 1|v) = p;
71=1

E Variational Inference: Maximize the lower bound w.r.t.
Variational parameters st .

(1) 1 2 (2)
Nonlinear fixed- (ZW it Z 7kH )
point equations: u@):a(z fku§1)+zwmu§)>

:0(;kaﬂk )




Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable

distribution @, (h|v): Qx)

KL(Q||P) = /Q(az)log P(x)dx

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h\V)z

Posterior Inference L Y
Variational Lower Bound Unconditional Simulation
w & .
ield o o Markov Chain
Mean-Fie 1. Variational Inference: Maximize the lower
. Monte Carlo
bound w.r.t. variational parameters
2. MCMC: Apply stochastic approximation
E to update model parameters

Almost sure convergence guarantees to an asymptotically
stable point.



Variational Inference

Approximate intractable distribution Py(h|v) with simpler, tractable

distribution @, (h|v): Qx)

KL(Q||P) = /Q(w) log Plo) dx

log Pp(v) > 18g Pp(v) — KL(Qp(h|v)| \Pe(h|V)z

Y

Posterior Inference L
Variational Lower Bound Unconditional Simulation

'
Mean-Field

1.V wer Markov Chain
b;,u[ Fast Inference J Monte Carlo

2. . N
w{ Learning can scale to

_ millions of examples |

Almost sure convergence guarantees to an asymptotically
stable point.




Good Generative Model?

Handwritten Characters
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Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters
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Good Generative Model?
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MNIST Handwritten Digit Dataset



Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



Generative Model of 3-D Objects

\ =] £
® ||
|\ |8
X || o
N TR
N £

24,000 examples, 5 object categories, 5 different objects within each
category, 6 lightning conditions, 9 elevations, 18 azimuths.



3-D Object Recognition

Pattern Completion

Learning Algorithm Error & l l
Logistic regression 22.5% 'l
K-NN (LeCun 2004) 18.92% -
SVM (Bengio & LeCun 2007) 11.6% ﬁ \ﬂ ®

Deep Belief Net (Nair & 9.0%

Hinton 2009) W H ﬁ\

DBM 7.2%

Permutation-invariant version.



Learning Hierarchical Representations

Deep Boltzmann Machines:

Learning Hierarchical Structure - | foream
in Features: edges, combination il
of edges. “

* Performs well in many application domains
* Fast Inference: fraction of a second
* Learning scales to millions of examples



Talk Roadmap

* Learning Deep Undirected Models
— Restricted Boltzmann Machines
— Deep Boltzmann Machines

* Learning Deep Directed Models
* Helmholtz Machines

e Variational & Importance Weighted Autoecnoders
* Stochastic (Hard) Attention Models

* Applications and Some Open Problems



Helmholtz Machines
* Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

* Kingma & Welling, 2014

A - (h3) Generative

pproximate P Process .

Inference . Rezende, Mohamed, Daan, 2014

2113
Q(hBhQ)T PMIDT) s Mnih & Gregor, 2014
h? * Bornschein & Bengio, 2015
P(h'h?) 8o
211.1

Q(h7[h") . * Tang & Salakhutdinov, 2013

P(x|h')

Input data



Various Deep Generative Models

Helmholtz Deep Boltzmann Deep Belief
Machine Machine Network

Input data Input data Input data



Motivating Example

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

* Can we generate images from natural language descriptions?

A stop sign is flying in

blue skies

A herd of elephants is
flying in blue skies

A pale yellow school bus
is flying in blue skies

=+ BE~
===

A large commercial airplane
is flying in blue skies

@




Overall Model

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)
1 Co g

- ) Twrite Twrite Twrite
T AT T

_| Generative Generative Generative _
i i iy iy oo i RNN, ;.- RNN, ;.- RNN .. Generative (P)
<« <« ||« < <« y w— * j\ ;
h1 h2 h3 h4 h5 hG .
Latent (2) L Latent (z) | L_’ Latent (2) Stochastic
3'11,'21] E pf_.Zq zZ E M.Z'.I' le.l 1) Layer
' M ot o " :. - r------@- ------- ; ....... @ ................. e _____ _—
:?::F’::?::_’E:?::—’E . H ; . : :
R RN H RN he !| Inference | i [ Inference + | Inference |:
RNN,,... ] BNN_.| 7 BNN,.|:
' - L) 2ty

T read T read Inference (Q)

I

(I Y N N L
a person sking down a mountain I'

Y un Y2 Y3 Ya Ys Ve

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

* Recognition Model: Deterministic Recurrent Network.
Gregor et. al. NIPS, 2015



Flipping Colors

A yellow school bus parked A red school bus parked in
in the parking lot the parking lot

=== e=L7
Q=== BT - =

A green school bus parked in A blue school bus parked in
the parklng Iot the parking lot

- |!
]
|- \ |




Flipping Backgrounds

A very large commercial
plane flying in clear skies.

mEE—
-~

A herd of elephants walking
across a dry grass field.

A very large commercial
plane flying in rainy skies.

o
-‘Llﬁi.

A herd of elephants walking
across a green grass field.

V-




Flipping Objects

The decadent chocolate A bowl of bananas is on
desert is on the table. the table..

I 1. i ) — !
SedS LD
T w = 7N
S8 -C ALVES
A vintage photo of a cat. A vintage photo of a dog.
=8y Ly iF
= R &¢
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Qualitative Comparison

A group of people walk on a beach with surf boards

Our Model LAPGAN (Denton et. al. 2015)

el G

<4 e

==l EﬂEE
Conv-Deconv VAE Fully Connected VAE

At 4 ETHS




Variational Lower-Bound

* We can estimate the variational lower-bound on the average
test log-probabilities.

Model Training Test

Our Model -1792,15 -1791,53
Skipthought-Draw -1794,29 -1791,37
noAlignDraw -1792,14 -1791,15

* At least we can see that we do not overfit to the training data,
unlike many other approaches.



Novel Scene Compositions

A toilet seat sits open in the A toilet seat sits open in the
bathroom grass field

spEs BEOD
WHUF OOnD

Bloomberg News

Ask Google? |
il Pol il Ruslan Salakhutdinov, an
e~ — .
— T assistant professor at the
— University of Toronto who
B A very large commercial plane flying in worked on the toilet project,
rainy skies. Source: University of Toront

said this research had a side
benefit of helping them

learn more about how neural networks work. "We can better



Overall Model

o,
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Focus on Variational Autoecnoders (Kingma & Welling, 2014).



Variational Autoencoders (VAESs)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x[0)= > p(h*@)p(h*~'[h",8)-- p(x|h',6)

ht,... hLl S~
Generative Each term may denote a
3 1 M . .
P(h?) Process complicated nonlinear relationship

« 0 denotes parameters
of VAE.

e [ is the number of
stochastic layers.

* Sampling and probability
evaluation is tractable for
each p(h*|/h*t1) .

Input data



VAE: Example

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x|8) = »  p(h®|6)p(h'[h* )p(x|/h',6)

h! h?2 ~
This term denotes a one-layer
neural net.
h?2 Stochastic Layer
Y « 0 denotes parameters
y Deterministic of VAE.
Layer
| e [ isthe number of
hl Stochastic Layer stochastic layers.
l * Sampling and probability
X evaluation is tractable for

each p(hf/h¢t1) .



Recognition Network

* The recognition model is defined in terms of an analogous
factorization:

g(hlx,0) = q(h'|x,0)q(h*h",0)---g(h"|h"~', 0)
S~

Approximate 3 Generative Each term may denote a
Inference P(h7) Process complicated nonlinear relationship
h3
Q(h3h2)T P(h?|h?) * We assume that
L
. hl ~ N(0,1)
111.2
Q(h2h1)T P(h[h%) * The conditionals:
h! p(h‘| h*H1)
Lt l—1
1 q(h*[h"™)
Q(h1X)T Plxh) o
X are Gaussians with

Input data diagonal covariances



Variational Bound

e The VAE is trained to maximize the variational lower bound:

X, h X, h
o) = log By | A | > B 08 25| = £09

L(x) = log p(x) — Dkr, (¢(h[x))[|p(h|x))

* Trading off the data log-likelihood and the KL divergence
from the true posterior.

* Hard to optimize the variational bound
with respect to the recognition network
(high-variance).

* Key idea of Kingma and Welling is to use
reparameterization trick.

Input data



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h"~",8) = N (u(h"',0), 2(h"", 0))

with mean and covariance computed from the state of the hidden
units at the previous layer.

* Alternatively, we can express this in term of auxiliary variable:
e ~N(0,1)
hE (66, hE—l’ 9) _ E(he_l, 0)1/265 4 “(h€—1’ 9)



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h"~",8) = N (u(h"',0), 2(h"", 0))

* Or
e ~N(0,1)
hE (€£7h€—1’9) _ Z(hé—l’g)l/Qeﬁ 4 u,(hﬁ—ljg)

* The recognition distribution ¢(h*|h®~!,8) can be expressed in
terms of a deterministic mapping:

h(e,x,0), with €= (e!,...,e")

(& J (& J
Y Y

Deterministic Distribution of €
Encoder does not depend on 6




Computing the Gradients

* The gradient w.r.t the parameters: both recognition and
generative:

p(x,h|0)]
E ]
VO athl [ " q(bfx.0).

p(x,h(e, x,0)|6) |
q(h(e,x,0)[x,0) |
p( )
(h )

= Volle1 . e n(0,T) 1Og

x, h(e, x,0)|0) |
:El L 1
€l ..., el ~N(0,I) [V@ qu (6 X,H)‘Xag i

7 AN

Gradients can be The mapping h is a deterministic
computed by backprop neural net for fixed €.




Computing the Gradients

 The gradient w.r.t the parameters: recognition and generative:

p(x, hye)] p(x; h(e, x,6)|6)
Vol x ] — Eel el ~ l
60=h~q(h|x,0) [ 08 q(h|X, 9) """ N(0.T) ve °5 Q(h((f, X, 9)|X7 0)

* Approximate expectation by generating k samples from €:

k
1
- Z Vg logw (x,h(e;,x,0),0)

1=1
where we defined unnormalized importance weights:

UJ(X, h,@) — p(X,h’B)/q(h‘X,H)

 VAE update: Low variance as it uses the log-likelihood gradients
with respect to the latent variables.



VAE: Assumptions
Remember the variational bound:

L(x) = logp(x) — Dk (¢(h[x))|[p(h[x))

The variational assumptions must be approximately satisfied.

The posterior distribution must be approximately factorial
(common practice) and predictable with a feed-forward net.

We can relax these assumptions using a tighter lower bound on
marginal log-likelihood.



Importance Weighted Autoencoders

* Consider the following k-sample importance weighting of the

log-likelihood:
1 p(x,h )-
Li(x) =Ey h,~q(h|x) |l0g — —
15050 CJ(\)_ k;CI(hi‘X)_
_ . L i}
— Ehl,...,hkwq(h|x) log A Z Wi
_ 1=1 i
\ unnormalized
importance weights
where hq,..., h; are sampled

from the recognition network.

* Mnih and Rezende, ICML 2016, further study these
Input data k-sample bounds with discrete latent variables.

(Burda, Grosse, Salakhutdinov, ICLR 2016)



Importance Weighted Autoencoders

* Consider the following k-sample importance weighting of the
log-likelihood:

* Thisis a lower bound on the marginal log-likelihood:

i L - - -
1 1
Li(x) =E [log - Z w; | < logE - Z w; | = log p(x)
i i=1 V=1

e Special Case of k=1: Same as standard VAE objective.

* Using more samples = Improves the tightness of the bound.

(Burda, Grosse, Salakhutdinov, ICLR 2016)



Tighter Lower Bound

e Using more samples can only improve the tightness of the
bound.

* For all k, the lower bounds satisfy:

log p(x) > Li11(x) > Li(x)
* Moreover if p(h,x)/q(h|x) is bounded, then:

Li(x) — logp(x), as k — oo



Computing the Gradients

* We can use the unbiased estimate of the gradient using
reparameterization trick:

k
1
VoLr(x) = VeEn,,  hy~qhx) [10?; — Z wz':|

1=1

k
= Ee, ... | Volog - Z x, h(€;,%x,0),0)

- ]
= Ee, .. e, Zﬂ?@Vg logw(x, h(€;,x,0),0)

=1

where we define normalized importance weights:

p(x, h;)

UAJ/?L = wi/Zwi, where w; — q(hz‘X)

1=1




IWAES vs. VAESs

* Draw k-samples form the recognition network ¢(h|x)
— or k-sets of auxiliary variables €.

e Obtain the foIIowing Monte Carlo estimate of the gradient:

VoLl (x ZwﬂVQ log w(x, h(e;; x,0),0)

1= 1



IWAE: Intuition

* The gradient of the log weights decomposes:
Vo log w(Xa h(eia X, 9)7 9)
= Vg log p(x, h(e;,x,0)|0) — log g(h(e;, x,0)[x,0)
\ J
e Y

Deterministic Deterministic

decoder Encoder

First term:
— Decoder: encourages the generative model to
assign high probability to each h'|h‘*,

— Encoder: encourages the recognition net to
adjust its latent states h so that the
generative network makes better predictions.

Input data



IWAE: Intuition

* The gradient of the log weights decomposes:
Vo log w(Xa h(eia X, 9)7 9)
= Vg log p(x, h(e;,x,0)|0) — log g(h(e;, x,0)[x,0)
\ J
e Y

Deterministic Deterministic

decoder Encoder

Second term:
— Encoder: encourages the recognition network
to have a spread-out distribution over
predictions.

Input data



Computation with IWAEs

Dominant cost: Requires forward and backward pass for each
sample:

Ve logp(x, h(e;, x, 0)|6)

In practice: the samples are processed in parallel by replicating
each training example k times within a mini-batch.

Only forward pass is need to compute importance weights.

k
Volg(x) ~ Z&?@-VQ logw(x,h(e;,x,0),0)
i=1
The sum can be approximated by sampling ; ~ w;.

This requires k forward passes and 1 backward pass.



Two Architectures

* For the MNIST experiments, we
considered two architectures: /'

Stochastic Layers

1-stochastic layer

hl

50

/

200

Deterministic
> Layers

2-stochastic layers

h2

50

>Deterministic
Layers

\

hl

>Deterministic
Layers




Key Observation

e Recognition network has a
stochastic layer.

 The approximate marginal
posterior can be multimodal:

g(h'|x) =

Zq h', h?|x)

2-stochastic layers

h2

50

>Deterministic
Layers

>Deterministic
Layers




MNIST Results

MNIST

VAE IWAE

# stoch. active active
layers k£  NLL units NLL  units

86.76 19 86.76 19
5 8647 20 85.54 22
50 86.35 20 84.78 25

[—

1



MNIST Results

MNIST
VAE IWAE
# stoch. active active
layers k£  NLL units NLL  units
1 1 86.76 19 86.76 19
5 86.47 20 85.54 22
50 86.35 20 84.78 25
2 1 85.33 16+5 85.33 1645
S 8501 _ 17+5_ _83.89 _ 21+5_
'50 84.78 17+5 8290 26+7 !




IWAES vs. VAESs

First stage

trained as NLL active units

VAE 86.76 19

IWAE, £ =50 84.78 25




IWAES vs. VAESs

First stage

trained as NLL active units
VAE 86.76 19
IWAE, £k =50 &4.78 25

Second stage

trained as NLL active units

IWAE, £k =50 84.88 22

VAE 86.02 23




Talk Roadmap

* Learning Deep Undirected Models
— Restricted Boltzmann Machines
— Deep Boltzmann Machines

* Learning Deep Directed Models
* Helmholtz Machines

e Variational & Importance Weighted Autoecnoders
e Stochastic (Hard) Attention Models

* Applications and Some Open Problems



Caption Generation

Satat a wooden table and chairs
a car is parked in arranged in a room .
the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .

(Kiros, Salakhutdinov, Zemel, TACL 2015)



Encode-Decode Framework

Multimodal space SC-NLM Decoder

' content

1
- 5

. structure

: Steam  ship at the dock |

CNN - LSTM Encoder

..........................................

* Encoder: CNN and Recurrent Neural Net for a joint image-
sentence embedding.

* Decoder: A neural language model for generating a sequence
of words.

(Kiros, Salakhutdinov, Zemel, TACL 2015)



Caption Generation

\ . S5 "l-. N »
S T\ B el
S -

the two birQs are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .

(can't count) (hallucination) (contradiction)



———

D |

the two birds are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .
(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
in a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Caption Generation with
Visual Attention

A(0.99) man(0.40) riding(0.26)

horse(0.24)

(0.28)

field(0.43)

A man riding a horse
in a field.

(Xu et.al., ICML 2015)



Visual Attention

* Consider performing action recognition in a video:

* Instead of processing each frame, we can process only a small
piece of each frame.

* Degree of interpretability: examine what signals the algorithm
is using by seeing where it is looking.

(Sharma, Kiros, Salakhutdinov, 2015)



Improving Action Recognition

Soccer juggling Horse back riding

(Sharma, Kiros, Salakhutdinov, 2015)



Recurrent Attention Model

Sample action:

ar ~p(a1|X)  az ~ plaz|X)

Recurrent Neural
Network

VIAVTV T
Coarse \ \ \ \

Image \ \ \ \
\ b —h —— pYla, X)
* Hard Attention: Sample \ \ \ \_ Classification
action (latent gaze location) \\ T \\ T \\ T \\I
« Soft Attention: Take v v v v

expectation instead of ” n n m

sampling (XI, al) (X2, az) (x5, a3) (Xm, au)



Recurrent Attention Model

O O O  Bahdanau et.al., ICLR 2015
I\\ _\\ 1\\ - e Mnih et.al., NIPS 2014

A A  Baet.al., NIPS 2015, ICLR 2015
\ I \ I * Yao et.al.,, ICCV 2015

\
} | N | * Xuet. al, ICML 2015
\ \ \ \_ .
* Larochelle and Hinton, 2010
T WAl

* Hard Attention: Sample
action (latent gaze location)

* Soft Attention: Take
expectation instead of
sampling



Model Definition

 We aim to maximize the probability of correct class by
marginalizing over the actions (or latent gaze locations):

LL =logp(y|X, W) =log» p(a|X, W)p(yla, X, W).

where
— W is the set of parameters of the recurrent network.
— ais a set of actions (latent gaze locations, scale).
— X:is the input (e.g. image, video frame).

For clarity of presentation, | will sometimes omit conditioning on W or X. It should be obvious
from the context.



Variational Learning

* A number of approaches use variational lower bound:

LL=1log» p(alX,W)p(yla, X, W) >

> qlaly, X)logp(y,a| X, W) + Hq] = F.

* Here q(aly, X) is some approximation to posterior over the
gaze locations.

* In the case where q is the prior, q(aly, X) = p(a| X, W), the
variational bound becomes:

JF = ZP a\X W) logp(y|a X, W) Ba et.al., ICLR 2015

Mnih et.al., NIPS 2014



Variational Learning

F = Zp(a|X, W) logp(y|aa Xa W)

* Derivatives w.r.t model parameters:

OF dlogp(yla, X, W)
S = Soplalxw) | B i
¢ logp(al X, W
| X. W .
\ogp(yla, , )) e
4 ~ )

Very bad term as it is unbounded.

Introduces high variance in the estimator.
\. y,

* Need to introduce heuristics (e.g. replacing this term with
a 0/1 discrete indicator function, which leads to

REINFORCE algorithm of Williams, 1992). E:n‘?;'Z't"a'ICLEIi?ZSOlZl
ih et.al.,



Variational Learning

F=> pla|X,W)logp(yla, X, W).
* Derivatives w.r.t model parameters:

OF 0logp(yla, X, W)
g = S_plalx, w) | FEL

log p(y|a, X, W)

0logp(alX, W)
ow '

* The stochastic estimator of the gradient is given by:

OF 1 Z [dlogp(yla™, X, W)
oW M oW

m=1
log p(yla™, X, W)

dlogp(a™|X, W)
oW '

where we draw M samples from the prior: ™ ~ p(a|X, W).



Sampling from the Prior

 Generate M samples from the prior @™ ~ p(a|X, W).

OF 1 i [810gp(y|&m,X,W)

~ M
WM oW 8 log p(@™| X, W)

log p(yla™, X, W) ST
Run the network forward:

>
p(ar|X) plaz|X) plas|X) plas|X)

1 11

> > > > >
t.(
Coarse image T T T T

= = = > P(y‘aaX)

I R

(Xl, Cll) (x;,' az) (X3, a3) (XM, aM)




Key Observation

* We can maximize the marginal class log-probability directly
without adhering to the variational lower bound:

LL =logp(y|X, W) =log» p(alX,W)p(y|a, X, W).

oLL 1 Ologp(yla, X, W

g = 7 Pl Wp(ula, X, W) e %)
- 1 Ologp(al X, W

hore [Posterior: plaly, X, W) ) gpa(ulf )

= 2 . p(a| X, W)p(yl|a, X, W)

* We can use importance sampling to estimate required

expectations.
(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)



Maximizing Marginal Likelihood

e Need to estimate:

OLL 1 ] | Ologp(yla, X, W)  Ologp(a|X,W)
— = — p(al X, Wp(yla, X, W L S :
oW Z Z p(alX, W)p(yla, X, W) [ oW u oW

* Let g(aly, X) be some approximation to the posterior:
q(aly, X) =~ p(aly, X, W).
* Using Importance Sampling, we obtain:

pa™| X, Wip(yla™, X, W)
= . ., a ~qlaly, X).
g(a™ly, X) S

 The stochastic estimator of the gradient is given by:

~m

ocL 1 i gm | Qlogpwla™ X, W) | dlogp(a™ X, W)
oW 7~ oW oW ’
where Z — Zm w™.

(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)



Comparing the Two Estimators

* Variational bound v.s.-MaranaI likelihood:

—_——~

Blogp(yl X W) 610gp(&m|X7 W) ]
] X, W
aW M mzj N T .
———————— - Very Ir:aa term, as it
aememmes sl onnunboune

7 N 7

.. oW SN oW Lt

-~
~ ’/ \\ -

-_— e ==

ocL 1 % m {mogp(y\&m,X, W)\)+(8logp(&m!X, W)]
7

-~
o e o -

* The performance gain from importance sampling heavily relies
on an appropriate choice of the proposal proposal distribution g!

When approximate posterior q is equal to the prior, this approach is equivalent to Tang
and Salakhutdinov for learning generative networks (NIPS 2013). It is also similar to the
Reweighted Wake-Sleep of Bornschein and Bengio (ICLR 2015).



Another Key Observation

* Using finite number of samples M, our importance sampling
estimator can be viewed as the gradient ascent on the following

objective: i 1 M 7
E |log i mzzjl w

* Using Jensen’s inequality we obtain:

i M ] M
1 1
_ m=1 | L =

m=1

* Hence in expectation, we are optimizing a lower bound on the
marginal likelihood (although the variance can be high).

* The bound becomes tighter as we increase M.

(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)



Another Key Observation

* Using finite number of samples M, our importance sampling
estimator can be viewed as the gradient ascent on the following

objective:

E

1 M
_ m=1 i

* Using Jensen’s inequality we obtain:

E

_ . M
N m=1

< logkK

= logE |w

™ = Lf

* However, our proposed bound is at least as accurate as the
variational bound:

F =E|logw

"

=K

log —

Z




Relationship To Helmholtz Machines

* Goal: Maximize the probability of correct class (sequence of words)
by marginalizing over the actions (or latent gaze locations):

LL =logp(y|X, W) =1log» pla|lX,W)p(yla, X, W).

_’ Units with stochastic and
deterministic units.

) Deterministic
> Units

T i >
> > > >©

T T T T “plyla, X)

(Xl, Cll) (X2: az) (X3, a3) (X, aM)




Relationship To Helmholtz Machines

 View this model as a conditional Helmholtz Machine with

stochastic and deterministic units.

* Can use Wake-Sleep, Re-weighted Wake Sleep, variational
autoencoders, and their variants to learns good attention policy!

Coarse image

-

_————_-——-
- —
—

(Xl, Cll) (ij az) (Xs, as) (xXm, am)

-

Deterministic
Units

“p(yla, X)

Helmholtz Machine

Input data



The Wake-Sleep Recurrent
Attention Model

* We can learn both: generative model P and recognition model Q.

o g g g g N
Q Network
iinference >
: network
J
— A

—— F—pyla, X)

b W &k m P Wetwork

(X1, al) (X2: Clz) (X3, a3) (XM, aM)




Training Inference Network

* We train an inference network to predict glimpses, given the
observations as well as the class label, where the network should
look to correctly predict that class.

N
Q(a|ana 0) — H Q(an |ana 97 al:n—l)~

n=1

_ * This distribution is analogous

nerence  tO the prior, except that each

: network . . .

% decision also takes into
account the class label y.

~p(y\a, X)

~

(X1, a1) (xzf az) (X3, a3) (XM, aM)



Training Inference Network

* To train q network we optimize:

ODkr(Pll9) _ o 0logq(aly, X, 0)
89 p(a | anaW) 89

* Using importance sampling, we get the following stochastic
estimate of the gradient:

it (plla) , 1 5~ ;m Ologa(@” |y, X, 0)
00 Z 00

m

1

* In fact we can reuse the importance weights computed for the
attention model update.



Training Error

MNIST Example

B
=}

| — VAR

—  VAR+cC
—  WS-RAM

| —  WS-RAM+c
of| — WS-RAM+q | :
WS-RAM+g+c| L apg ¥ Y

w
0

w
(=]
T

N
4]

VAR
— VAR+cC
|| — WS-RAM ; é
| — WS-RAM+c | ;

1.0k A A

Variance of Estimated Gradient

— WS-RAM+q |
WS-RAM+q+C 0'Oo 50 20 60 80 100
0 2;0 4;0 6;0 SiO 100
Training error as a number Variance of Estimated

of updates. Gradients.



MNIST Attention Demo

* Actions contain:
— Location: 2-d Gaussian latent variable
— Scale: 3-way softmax over 3 different scales

M

7




Hard vs. Soft Attention

* Soft attention models:
— Computationally expensive. They have to examine every
image location. Hard to scale to large video datasets.
— Deterministic. They can be trained by backprop.

* Hard attention models:
— Computationally more efficient. They need to process
only small part of each image frame.
— Stochastic. Require some form of sampling, because they
must make discrete choices.

* Research is taking place on both fronts!



Talk Roadmap

* Learning Deep Undirected Models
— Restricted Boltzmann Machines
— Deep Boltzmann Machines

* Learning Deep Directed Models
* Helmholtz Machines

e Variational & Importance Weighted Autoecnoders
* Stochastic (Hard) Attention Models

* Applications and Some Open Problems



(Some) Open Problems

Unsupervised Learning / Transfer Learning /
One-Shot Learning

Reasoning, Attention, and Memory
Natural Language Understanding

Deep Reinforcement Learning



(Some) Open Problems

Unsupervised Learning / Transfer Learning /
One-Shot Learning

Reasoning, Attention, and Memory
Natural Language Understanding

Deep Reinforcement Learning



Sequence to Sequence Learning

Learned Output Sequence

Representation

Encoder

* RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

v v

Decoder

Input Sequence



Skip-Thought Model

I got back home <eos>

3030300

got back home

>0 29, »0O »0O >0 >0 »O 20¢

...... This was strange <eos>

could see the cat on the steps \ ! N !

<eos> This was strange

- Given a tuple (S;—1, S;i, Si+1) of contiguous sentences:
— the sentence S; is encoded using LSTM.
— the sentence S; attempts to reconstruct the previous
sentence and next sentence S;+1.

* The input is the sentence triplet:
— | got back home.
— | could see the cat on the steps.
— This was strange.

(Kiros et.al., NIPS 2015)



Skip-Thought Model

Encoder

Sentence

Generate Previous Sentence

Generate Forward Sentence



Learning Objective

* Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

representation of

encoder \
E lOgP z—i—llwz—i—lv _l_ E lOgP W; 1‘wz 19 )
1\ J t J
Y Y
Forward sentence Previous sentence

e Data: Book-11K corpus:

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420



Semantic Relatedness

Method T p MSE

SemEval [ Illinois-LH [18] 0.7993 0.7538  0.3692

2014 sub- 4 UNAL-NLP [19] 0.8070 0.7489  0.3550

. Meaning Factory [20] 0.8268 0.7721 0.3224
MISSIONS | ECNU [21] 0.8414 - -

~ Mean vectors [22] 0.7577 0.6738 0.4557

Results DT-RNN [23] 0.7923 0.7319 0.3822

reported SDT-RNN [23] 0.7900 0.7304 0.3848

by Tai et.al.) LSTM [22] 0.8528 0.7911 0.2831

Bidirectional LSTM [22] 0.8567 0.7966 0.2736

- Dependency Tree-LSTM [22] 0.8676 0.8083 0.2532

" uni-skip 0.8477 0.7780 0.2872

J  biskip 0.8405 0.7696  0.2995

Ours combine-skip 0.8584 0.7916 0.2687

_  combine-skip+COCO 0.8655 0.7995 0.2561

e Qutperform all previous systems from the SemEval 2014

competition.



Semantic Relatedness
Recurrent Neural Network

e How similar the two sentences are on the scale 1 to 5?

Ground Truth 5.0 Prediction 4.9
[ A man is driving a car. A car is being driven by a man. ]
Ground Truth 2.9 Prediction 3.5
~ ™
A little girl is looking at a A little girl in costume looks
woman in costume. like a woman.
\ y,
Ground Truth 2.6 Prediction 4.4
~ ™
A person is performing The performer is tricking a
tricks on a motorcycle person on a motorcycle




Neural Story Telling

Sample from the Generative Model
(recurrent neural network):

We were barely able to catch the
breeze at the beach, and it felt as if
someone stepped out of my mind.

She was in love with him for the first time in months, so she had no
intention of escaping. The sun had risen from the ocean, making her
feel more alive than normal. She is beautiful, but the truth is that |
do not know what to do. The sun was just starting to fade away,
leaving people scattered around the Atlantic Ocean.

(Kiros et.al., NIPS 2015)



Hierarchical RNNs

* Hierarchical Bidirectional RNN with CRF using both word-level
and character- level RNNs.

R I o I o HIH{ o

i, = T 7 7t
TR TETE S

GRU GRU GRU GRU GRU
(O]®) Q) Q) Q)
Doctor lives in Canada

GRU GRU GRU QO —— Character Embeddings
Mike —=  Character-Level GRU
GRU GRU GRU GRU
we  \Nord Embeddings
OO [OO] OO O] Word-Level GRU
M i k e = CRF Layer

(Yang, Salakhutdinov, Cohen, 2016,
Lample et al., NAACL 2016)



Hierarchical RNNs

* Hierarchical Bidirectional RNN with CRF using both word-level
and character- level RNNs.

CRF CRF

Word GRU

e~

Char GRU Word Emb

* State-of-the art performance in multiple languages on several
tasks including POS tagging, chunking, and NER.

(Yang, Salakhutdinov, Cohen, 2016)



(Some) Open Problems

Unsupervised Learning / Transfer Learning /
One-Shot Learning

Reasoning, Attention, and Memory
Natural Language Understanding

Deep Reinforcement Learning



One-Shot Learning

GtV ES
N1 £] Nk 3

(Lake, Salakhutdinov, Tenenbaum, Science, 2015)



One-Shot Learning

(Lake, Salakhutdinov, Tenenbaum, Science, 2015)



One-Shot Learning

7 » “segway”’

5l
TS

How can we learn a novel concept — a high dimensional
statistical object — from few examples.

- —7

a &
e
Y =
H 7 ¢

(Lake, Salakhutdinov, Tenenbaum, Science, 2015)



One-Shot Learning:
Humans vs. Machines

M

2
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€ € L

(Lake, Salakhutdinov, Tenenbaum, Science, 2015)
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Atari Games |

observation

action

* Agent observes raw pixel
input.

* Goal: maximize the
score.

* Can a single network play
many games at once?

Figure credit: Nando de Freitas

e Can the network learn new games faster by leveraging
knowledge about the previous games it learnt.

Mnih et.al., 2014, Rusu et. al., 2015, Wang et.al., 2015



Actor-Mimic Net in Action

* The multitask network can match expert performance on 8
games (we are extending this to more games).

Space Invaders Enduro

(Parisotto, Ba, Salakhutdinov, ICLR 2016)



Transfer Learning

Star Gunner: Performance after learning on 13 other games:

s S e - s S

Actor-Mimic Random Actor-Mimic Random
500k frames 1 million frames

500K frames 1M frames

(Parisotto, Ba, Salakhutdinov, ICLR 2016)



Summary

» Efficient learning algorithms for Deep Learning Models

Learning a Category
Hierarchy

Image Tagging

Text & image retrieval /
Object recognition

REUTERS P
AP Associated Press

mosque, tower,
building, cathedral,
dome, castle

dat Y ok
Object Detection
Multimodal Data
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 Deep models improve the current state-of-the art in many

application domains:
» Object recognition and detection, text and image retrieval, handwritten

character and speech recognition, and others.
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