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Images	&	Video	

Rela,onal	Data/		
Social	Network	

Massive	increase	in	both	computa,onal	power	and	the	amount	of	
data	available	from	web,	video	cameras,	laboratory	measurements.	

Mining	for	Structure	

Speech	&	Audio	Text	&	Language		

Product		
Recommenda,on	

Mostly	Unlabeled	
• 	Develop	sta,s,cal	models	that	can	discover	underlying	structure,	cause,	or	
sta,s,cal	correla,on	from	data	in	unsupervised	or	semi-supervised	way.		
• 	Mul,ple	applica,on	domains.	

Gene	Expression	

fMRI	 Tumor	region	
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Rela,onal	Data/		
Social	Network	

Massive	increase	in	both	computa,onal	power	and	the	amount	of	
data	available	from	web,	video	cameras,	laboratory	measurements.	

Mining	for	Structure	

Speech	&	Audio	

Gene	Expression	

Text	&	Language		

Product		
Recommenda,on	

fMRI	

Mostly	Unlabeled	
• 	Develop	sta,s,cal	models	that	can	discover	underlying	structure,	cause,	or	
sta,s,cal	correla,on	from	data	in	unsupervised	or	semi-supervised	way.		
• 	Mul,ple	applica,on	domains.	

Tumor	region	
Deep	Learning	Models	that			
support	inferences	and	discover	
structure	at	mul,ple	levels.	



Example:	Understanding	Images	

Model	Samples	

• 	a	group	of	people	in	a	crowded	area	.	
• 	a	group	of	people	are	walking	and	talking	.	
• 	a	group	of	people,	standing	around	and	talking	.	
• 	a	group	of	people	that	are	in	the	outside	.		

strangers,		coworkers,		conven,oneers,		
aMendants,		patrons	

TAGS:	

Nearest	Neighbor	Sentence:	
people	taking	pictures	of	a	crazy	person	



Talk	Roadmap	

•  Learning	Deep	Undirected	Models	
–  Restricted	Boltzmann	Machines		
– Deep	Boltzmann	Machines	

•  Learning	Deep	Directed	Models	
•  Helmholtz	Machines	
•  Varia,onal	&	Importance	Weighted	Autoecnoders	
•  Stochas,c	(Hard)	AMen,on	Models	

•  Applica,ons	and	Some	Open	Problems	



Restricted	Boltzmann	Machines	

RBM	is	a	Markov	Random	Field	with:	

• 	Stochas,c	binary	hidden	variables																							
• 	Bipar,te	connec,ons.	

Pair-wise	 Unary	

• 	Stochas,c	binary	visible	variables																										

Markov	random	fields,	Boltzmann	machines,	log-linear	models.		

Image						visible	variables	

		hidden	variables	



Learned	W:		“edges”	
Subset	of	1000	features	

Learning	Features	

=	 ….	

New	Image:	

Logis,c	Func,on:	Suitable	for	
modeling	binary	images	

Sparse	
representa4ons	

Observed		Data		
Subset	of	25,000	characters	



Model	Learning	

Difficult	to	compute:	exponen,ally	many		
configura,ons	

Image						visible	units	

		Hidden	units	

Given	a	set	of	i.i.d.	training	examples		
	 	 	 														,	we	want	to	learn		

model	parameters 	 	 						.				

Maximize	log-likelihood	objec,ve:	

Deriva,ve	of	the	log-likelihood:	



Model	Learning	

Image						visible	variables	

		hidden	variables	

Deriva,ve	of	the	log-likelihood:		

Easy	to	
compute	exactly	

Difficult	to	compute:	
exponen,ally	many	
configura,ons.		

Approximate	maximum	likelihood	learning	

Use	MCMC	



Gaussian-Bernoulli	RBM:	

• 	Stochas,c	real-valued	visible	variables																		
• 	Stochas,c	binary	hidden	variables																						
• 	Bipar,te	connec,ons.	

Pair-wise	 Unary	

Image						visible	variables	

		hidden	variables	

RBMs	for	Real-valued	Data	

(Salakhutdinov & Hinton, NIPS 2007; Salakhutdinov & Murray, ICML 2008)



Pair-wise	 Unary	

Image						visible	variables	

		hidden	variables	

RBMs	for	Real-valued	Data	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	



RBMs	for	Real-valued	Data	

=  0.9 *            +  0.8 *            + 0.6 *            … 
New	Image	

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	



RBMs	for	Word	Counts	

Replicated	Sodmax	Model:	undirected	topic	model:	

• 	Stochas,c	1-of-K	visible	variables.	
• 	Stochas,c	binary	hidden	variables																							
• 	Bipar,te	connec,ons.	

Pair-wise	 Unary	
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(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)



RBMs	for	Word	Counts	
Pair-wise	 Unary	
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Learned	features:	``topics’’	

russian	
russia	
moscow	
yeltsin	
soviet	

clinton	
house	
president	
bill	
congress	

computer	
system	
product	
sodware	
develop	

trade	
country	
import	
world	
economy	

stock	
wall	
street	
point	
dow	

Reuters	dataset:	
804,414	unlabeled	
newswire	stories	
Bag-of-Words		



Different	Data	Modali,es	

• 	It	is	easy	to	infer	the	states	of	the	hidden	variables:		

• 	Binary/Gaussian/Sodmax	RBMs:	All	have	binary	hidden	
variables	but	use	them	to	model	different	kinds	of	data.	

Binary	

Real-valued	 1-of-K	

0	
0	
1	
0	

0	



Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribu,on	is	given	by:	

Pu,n	

government	
auhority	
power	
empire	
pu,n	

clinton	
house	
president	
bill	
congress	

bribery	
corrup,on	
dishonesty	
pu,n	
fraud	

oil	
barrel	
exxon	
pu,n	
drill	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corrup,on”	
and	”oil”	can	combine	to	give	very	high	
probability	to	a	word	“Pu,n”.	



Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribu,on	is	given	by:	

government	
auhority	
power	
empire	
pu,n	

clinton	
house	
president	
bill	
congress	

bribery	
corrup,on	
dishonesty	
pu,n	
fraud	

oil	
barrel	
exxon	
pu,n	
drill	

stock	
wall	
street	
point	
dow	

…	

Pu,n	

Distributed	representa,ons	allow	the	
topics	“government”,	”corrup,on”	and	
”oil”	to	combine	to	give	very	high	
probability	to	a	word	“Pu,n”.	
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Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

(Salakhutdinov & Hinton, Neural Computation 2012)



Image	

Higher-level	features:	
Combina,on	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

Learn	simpler	representa,ons,	
then	compose	more	complex	ones	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Model	Formula,on	

model	parameters	

•  Dependencies	between	hidden	variables.	
•  All	connec,ons	are	undirected.	

h3

h2

h1

v

W3

W2

W1

•  BoMom-up	and	Top-down:	

Top-down	 BoMom-up	Input	

•  Hidden	variables	are	dependent	even	when	condi4oned	on	
the	input.	

Same	as	RBMs	



Mathema,cal	Formula,on	

model	parameters	

Maximum	likelihood	learning:	

Problem:	Both	expecta,ons	are	
intractable!	

Learning	rule	for	undirected	graphical	models:		
MRFs,	CRFs,	Factor	graphs.		

•  Dependencies	between	hidden	variables.	

Deep	Boltzmann	Machine	

h3

h2

h1

v

W3

W2

W1



Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	

h3

h2

h1

v

W3

W2

W1

•  Both	expecta,ons	are	intractable!		



Data	

Approximate	Learning	

(Approximate)	Maximum	Likelihood:	h3

h2

h1

v

W3

W2

W1

Not	factorial	any	more!	



Approximate	Learning	

(Approximate)	Maximum	Likelihood:	

Not	factorial	any	more!	

h3

h2

h1

v

W3

W2

W1 Varia,onal	
	Inference	

Stochas,c	
Approxima,on		
(MCMC-based)	



h2

h1

v

Time		t=1	

Stochas,c	Approxima,on	

Update	 Update	
h2

h1

v

t=2	
h2

h1

v

t=3	

•  Generate 	 	 	 	 						by	simula,ng	from	a	Markov	chain	
that	leaves									invariant	(e.g.	Gibbs	or	M-H	sampler)	

•  Update 						by	replacing	intractable		 	 								with	a	point	
es,mate		

In	prac,ce	we	simulate	several	Markov	chains	in	parallel.	
Robbins	and	Monro,	Ann.	Math.	Stats,	1957	
	L.	Younes,		Probability	Theory	1989	

Update						and						sequen,ally,		where	



Learning	Algorithm	
Update	rule	decomposes:	

True	gradient	 Perturba,on	term	
Almost	sure	convergence	guarantees	as	learning	rate			

Problem:	High-dimensional	data:	
the	probability	landscape	is		
highly	mul,modal.	

Connec,ons	to	the	theory	of	stochas,c	approxima,on	and	adap,ve	MCMC.	

Key	insight:	The	transi,on	operator	can	be		
any	valid	transi,on	operator	–	Tempered		
Transi,ons,	Parallel/Simulated	Tempering.	

Markov	Chain	
Monte	Carlo	

(Salakhutdinov, ICML 2010, NIPS 
2011, Srivastava et al., NIPS 2012, 
Grosse et.al., 2013, Burda et.al., 
2015); 



Posterior	Inference	

Mean-Field	

Varia,onal	Inference	
Approximate	intractable	distribu,on																	with	simpler,	tractable	
distribu,on 	 					:	

(Salakhutdinov, 2008; Salakhutdinov & Larochelle, AI & Statistics 2010)

Varia,onal	Lower	Bound	

Minimize	KL	between	approxima,ng	and	true	
distribu,ons	with	respect	to	varia,onal	parameters					.		



Posterior	Inference	

Mean-Field	

Varia,onal	Inference	
Approximate	intractable	distribu,on																	with	simpler,	tractable	
distribu,on 	 					:	

Mean-Field:	Choose	a	fully	factorized	distribu,on:	

with	

Nonlinear	fixed-	
point	equa,ons:	

Varia4onal	Inference:	Maximize	the	lower	bound	w.r.t.	
Varia,onal	parameters					.		

Varia,onal	Lower	Bound	



Posterior	Inference	

Mean-Field	

Varia,onal	Inference	
Approximate	intractable	distribu,on																	with	simpler,	tractable	
distribu,on 	 					:	

1.	Varia4onal	Inference:	Maximize	the	lower		
bound	w.r.t.	varia,onal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochas,c	approxima,on		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asympto,cally	
stable	point.	

Uncondi,onal	Simula,on	Varia,onal	Lower	Bound	



Posterior	Inference	

Mean-Field	

Varia,onal	Inference	
Approximate	intractable	distribu,on																	with	simpler,	tractable	
distribu,on 	 					:	

1.	Varia4onal	Inference:	Maximize	the	lower		
bound	w.r.t.	varia,onal	parameters						

Markov	Chain	
Monte	Carlo	

2.	MCMC:	Apply	stochas,c	approxima,on		
to	update	model	parameters					 										

Almost	sure	convergence	guarantees	to	an	asympto,cally	
stable	point.	

Uncondi,onal	Simula,on	

Fast	Inference	

Learning	can	scale	to	
millions	of	examples	

Varia,onal	Lower	Bound	



Good	Genera,ve	Model?	
HandwriMen	Characters	



Good	Genera,ve	Model?	
HandwriMen	Characters	



Good	Genera,ve	Model?	
HandwriMen	Characters	

Real	Data	Simulated	



Good	Genera,ve	Model?	
HandwriMen	Characters	

Real	Data	 Simulated	



Good	Genera,ve	Model?	
HandwriMen	Characters	



Good	Genera,ve	Model?	
MNIST	HandwriMen	Digit	Dataset	



Handwri,ng	Recogni,on	

Learning	Algorithm	 Error	

Logis,c	regression	 12.0%	
K-NN		 3.09%	
Neural	Net	(PlaM	2005)	 1.53%	
SVM	(Decoste	et.al.	2002)	 1.40%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

1.40%	

Deep	Belief	Net	
(Hinton	et.	al.	2006)		

1.20%	

DBM		 0.95%	

Learning	Algorithm	 Error	

Logis,c	regression	 22.14%	
K-NN		 18.92%	
Neural	Net	 14.62%	
SVM	(Larochelle	et.al.	2009)	 9.70%	
Deep	Autoencoder	
(Bengio	et.	al.	2007)		

10.05%	

Deep	Belief	Net	
(Larochelle	et.	al.	2009)		

9.68%	

DBM	 8.40%	

MNIST	Dataset	 Op,cal	Character	Recogni,on	
60,000	examples	of	10	digits	 42,152	examples	of	26	English	leMers		

Permuta,on-invariant	version.	



Genera,ve	Model	of	3-D	Objects	

24,000	examples,	5	object	categories,	5	different	objects	within	each		
category,	6	lightning	condi,ons,	9	eleva,ons,	18	azimuths.			



3-D	Object	Recogni,on	

Learning	Algorithm	 Error	
Logis,c	regression	 22.5%	
K-NN	(LeCun	2004)	 18.92%	
SVM	(Bengio	&	LeCun		2007)	 11.6%	
Deep	Belief	Net	(Nair	&	
Hinton		2009)		

9.0%	

DBM	 7.2%	

PaMern	Comple,on	

Permuta,on-invariant	version.	



Learning	Hierarchical	Representa,ons	
Deep	Boltzmann	Machines:		

Learning	Hierarchical	Structure		
in	Features:	edges,	combina,on		
of	edges.		

• 	Performs	well	in	many	applica,on	domains	
• 	Fast	Inference:	frac,on	of	a	second	
• 	Learning	scales	to	millions	of	examples	



Talk	Roadmap	

•  Learning	Deep	Undirected	Models	
–  Restricted	Boltzmann	Machines		
– Deep	Boltzmann	Machines	

•  Learning	Deep	Directed	Models	
•  Helmholtz	Machines	
•  Varia,onal	&	Importance	Weighted	Autoecnoders	
•  Stochas,c	(Hard)	AMen,on	Models	

•  Applica,ons	and	Some	Open	Problems	



Helmholtz	Machines	
• 	Hinton,	G.	E.,	Dayan,	P.,	Frey,	B.	J.	and	Neal,	R.,	Science	1995	

Input	data	

h3

h2

h1

v

W3

W2

W1

Genera,ve	
Process	Approximate	

Inference	

• 	Kingma	&	Welling,	2014	

• 	Rezende,	Mohamed,	Daan,	2014	

• 	Mnih	&	Gregor,	2014		

• 	Bornschein	&	Bengio,	2015	

• 	Tang	&	Salakhutdinov,	2013			



Various	Deep	Genera,ve	Models	

Input	data	

h3
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h1

v

W3

W2

W1

h3

h2

h1

v

W3

W2

W1

h3

h2

h1

v

W3

W2

W1

Input	data	 Input	data	

Helmholtz	
Machine	

Deep	Boltzmann	
Machine	

Deep	Belief	
Network		



Mo,va,ng	Example	
• 	Can	we	generate	images	from	natural	language	descrip,ons?	

A	stop	sign	is	flying	in	
blue	skies		

A	pale	yellow	school	bus	
is	flying	in	blue	skies		

A	herd	of	elephants	is	
flying	in	blue	skies		

A	large	commercial	airplane	
is	flying	in	blue	skies		

(Mansimov,	ParisoMo,	Ba,	Salakhutdinov,	2015)		



Overall	Model	

• 	Genera,ve	Model:	Stochas,c	Recurrent	Network,	chained	
sequence	of	Varia,onal	Autoencoders,	with	a	single	stochas,c	layer.	

• 	Recogni,on	Model:	Determinis,c	Recurrent	Network.	

Stochas,c	
Layer	

Gregor	et.	al.	NIPS,	2015		

(Mansimov,	ParisoMo,	Ba,	Salakhutdinov,	2015)		



Flipping	Colors	
A	yellow	school	bus	parked	
in	the	parking	lot	

A	red	school	bus	parked	in	
the	parking	lot	

A	green	school	bus	parked	in	
the	parking	lot	

A	blue	school	bus	parked	in	
the	parking	lot	



Flipping	Backgrounds	
A	very	large	commercial	
plane	flying	in	clear	skies.	

A	very	large	commercial	
plane	flying	in	rainy	skies.	

A	herd	of	elephants	walking	
across	a	dry	grass	field.	

A	herd	of	elephants	walking	
across	a	green	grass	field.	



Flipping	Objects	
The	decadent	chocolate	
desert	is	on	the	table.	

A	bowl	of	bananas	is	on	
the	table..	

A	vintage	photo	of	a	cat.	 A	vintage	photo	of	a	dog.	



Qualita,ve	Comparison	
A	group	of	people	walk	on	a	beach	with	surf	boards	

Our	Model	 LAPGAN	(Denton	et.	al.	2015)	

Fully	Connected	VAE	Conv-Deconv	VAE	



Varia,onal	Lower-Bound	
• 	We	can	es,mate	the	varia,onal	lower-bound	on	the	average	
test	log-probabili,es.		

• 	At	least	we	can	see	that	we	do	not	overfit	to	the	training	data,	
unlike	many	other	approaches.	

Model	 Training	 Test	

Our	Model	 -1792,15	 -1791,53	
Skipthought-Draw	 -1794,29	 -1791,37	
noAlignDraw	 -1792,14	 -1791,15	



Novel	Scene	Composi,ons	
A	toilet	seat	sits	open	in	the	
bathroom	

Ask	Google?	

A	toilet	seat	sits	open	in	the	
grass	field	

Bloomberg	News	



Overall	Model	

Focus	on	Varia,onal	Autoecnoders	(Kingma	&	Welling,	2014).	

Stochas,c	
Layer	



Varia,onal	Autoencoders	(VAEs)		
• 	The	VAE	defines	a	genera,ve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochas,c	layers:		

h3

h2

h1

v

W3

W2

W1

Each	term	may	denote	a	
complicated	nonlinear	rela,onship		

•  Sampling	and	probability	
evalua,on	is	tractable	for	
each																						.		

Genera,ve	
Process	

•  					denotes	parameters	
of	VAE.		

•  				is	the	number	of	
stochas4c	layers.	

Input	data	



VAE:	Example	
• 	The	VAE	defines	a	genera,ve	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochas,c	layers:		

This	term	denotes	a	one-layer	
neural	net.	

Determinis,c	
Layer	

Stochas,c	Layer	

Stochas,c	Layer	

•  					denotes	parameters	
of	VAE.		

•  Sampling	and	probability	
evalua,on	is	tractable	for	
each																						.		

•  				is	the	number	of	
stochas4c	layers.	



Recogni,on	Network		
• 	The	recogni,on	model	is	defined	in	terms	of	an	analogous	
factoriza,on:		

Input	data	

h3

h2

h1

v

W3

W2

W1

Genera,ve	
Process	

Each	term	may	denote	a	
complicated	nonlinear	rela,onship		

•  The	condi,onals:	

are	Gaussians	with	
diagonal	covariances		

Approximate	
Inference	

•  We	assume	that		



Varia,onal	Bound	
• 	The	VAE	is	trained	to	maximize	the	varia,onal	lower	bound:	

Input	data	

h3

h2

h1

v

W3

W2

W1

•  Hard	to	op,mize	the	varia,onal	bound	
with	respect	to	the	recogni,on	network	
(high-variance).		

•  Key	idea	of	Kingma	and	Welling	is	to	use	
reparameteriza,on	trick.		

•  Trading	off	the	data	log-likelihood	and	the	KL	divergence	
from	the	true	posterior.		



Reparameteriza,on	Trick	
• 	Assume	that	the	recogni,on	distribu,on	is	Gaussian:	

				with	mean	and	covariance	computed	from	the	state	of	the	hidden	
units	at	the	previous	layer.		

•  Alterna,vely,	we	can	express	this	in	term	of	auxiliary	variable:			



• 	Assume	that	the	recogni,on	distribu,on	is	Gaussian:	

•  Or	

Determinis,c	
Encoder	

•  The	recogni,on	distribu,on																										can	be	expressed	in	
terms	of	a	determinis,c	mapping:				

Distribu,on	of			
does	not	depend	on	

Reparameteriza,on	Trick	



Compu,ng	the	Gradients	
•  The	gradient	w.r.t	the	parameters:	both	recogni,on	and	
genera,ve:	

Gradients	can	be	
computed	by	backprop	

The	mapping	h	is	a	determinis,c	
neural	net	for	fixed				.		



where	we	defined	unnormalized	importance	weights:	

•  VAE	update:	Low	variance	as	it	uses	the	log-likelihood	gradients	
with	respect	to	the	latent	variables.		

•  The	gradient	w.r.t	the	parameters:	recogni,on	and	genera,ve:	

•  Approximate	expecta,on	by	genera,ng	k	samples	from			:		

Compu,ng	the	Gradients	



VAE:	Assump,ons	
•  Remember	the	varia,onal	bound:	

•  The	varia,onal	assump,ons	must	be	approximately	sa,sfied.		

•  We	can	relax	these	assump,ons	using	a	,ghter	lower	bound	on	
marginal	log-likelihood.		

•  The	posterior	distribu,on	must	be	approximately	factorial	
(common	prac,ce)	and	predictable	with	a	feed-forward	net.		



Importance	Weighted	Autoencoders	
•  Consider	the	following	k-sample	importance	weigh,ng	of	the	
log-likelihood:		

				where																								are	sampled	
from	the	recogni,on	network.	

Input	data	

h3

h2

h1

v

W3

W2

W1

unnormalized	
importance	weights		

(Burda, Grosse, Salakhutdinov, ICLR 2016)

•  Mnih	and	Rezende,	ICML	2016,	further	study	these		
k-sample	bounds	with	discrete	latent	variables.	



Importance	Weighted	Autoencoders	
•  Consider	the	following	k-sample	importance	weigh,ng	of	the	
log-likelihood:		

•  This	is	a	lower	bound	on	the	marginal	log-likelihood:	

•  Special	Case	of	k=1:	Same	as	standard	VAE	objec,ve.		

•  Using	more	samples	à	Improves	the	,ghtness	of	the	bound.	

(Burda, Grosse, Salakhutdinov, ICLR 2016)



Tighter	Lower	Bound	

•  For	all	k,	the	lower	bounds	sa,sfy:	

•  Using	more	samples	can	only	improve	the	,ghtness	of	the	
bound.	

•  Moreover	if																													is	bounded,	then:	



Compu,ng	the	Gradients	
•  We	can	use	the	unbiased	es,mate	of	the	gradient	using	
reparameteriza,on	trick:	

where	we	define	normalized	importance	weights:	



IWAEs	vs.	VAEs	
•  Draw	k-samples	form	the	recogni,on	network			

-  or	k-sets	of	auxiliary	variables				.							
•  Obtain	the	following	Monte	Carlo	es,mate	of	the	gradient:	

•  Compare	this	to	the	VAE’s	es,mate	of	the	gradient:		



				First	term:		
- Decoder:	encourages	the	genera,ve	model	to	
assign	high	probability	to	each														.		

IWAE:	Intui,on		
•  The	gradient	of	the	log	weights	decomposes:	

Determinis,c	
Encoder	

Determinis,c	
decoder	

Input	data	

h3

h2

h1

v

W3

W2

W1

.		
-  Encoder:	encourages	the	recogni,on	net	to	
adjust	its	latent	states	h	so	that	the	
genera,ve	network	makes	beMer	predic,ons.		



				Second	term:		
-  Encoder:	encourages	the	recogni,on	network	
to	have	a	spread-out	distribu,on	over	
predic,ons.			

IWAE:	Intui,on		
•  The	gradient	of	the	log	weights	decomposes:	

Determinis,c	
Encoder	

Determinis,c	
decoder	

Input	data	

h3

h2

h1

v

W3

W2

W1



Computa,on	with	IWAEs	
•  Dominant	cost:	Requires	forward	and	backward	pass	for	each	
sample:	

•  In	prac,ce:	the	samples	are	processed	in	parallel	by	replica,ng	
each	training	example	k	,mes	within	a	mini-batch.		

•  Only	forward	pass	is	need	to	compute	importance	weights.	

•  The	sum	can	be	approximated	by	sampling													.	

•  This	requires	k	forward	passes	and	1	backward	pass.		



Two	Architectures	

•  For	the	MNIST	experiments,	we	
considered	two	architectures:	

784	

200	

200	

50	

Determinis,c	
Layers	

1-stochas,c	layer	

784	

200	

200	

100	

100	

100	

50	

2-stochas,c	layers	

Stochas,c	Layers	

Determinis,c	
Layers	

Determinis,c	
Layers	



Key	Observa,on	

784	

200	

200	

100	

100	

100	

50	

2-stochas,c	layers	

Determinis,c	
Layers	

Determinis,c	
Layers	

•  Recogni,on	network	has	a	
stochas,c	layer.	

•  The	approximate	marginal	
posterior	can	be	mul,modal:	



MNIST	Results	



MNIST	Results	



IWAEs	vs.	VAEs	



IWAEs	vs.	VAEs	



Talk	Roadmap	

•  Learning	Deep	Undirected	Models	
–  Restricted	Boltzmann	Machines		
– Deep	Boltzmann	Machines	

•  Learning	Deep	Directed	Models	
•  Helmholtz	Machines	
•  Varia,onal	&	Importance	Weighted	Autoecnoders	
•  Stochas,c	(Hard)	AMen,on	Models	

•  Applica,ons	and	Some	Open	Problems	



Cap,on	Genera,on	

(Kiros, Salakhutdinov, Zemel, TACL 2015)	



Encode-Decode	Framework	

• 	Decoder:	A	neural	language	model	for	genera,ng	a	sequence	
of	words.		

• 	Encoder:	CNN	and	Recurrent	Neural	Net	for	a	joint	image-
sentence	embedding.		

(Kiros, Salakhutdinov, Zemel, TACL 2015)	



Cap,on	Genera,on	



Cap,on	Genera,on	



Cap,on	Genera,on	with		
Visual	AMen,on		

A	man	riding		a	horse	
in	a	field.		

(Xu	et.al.,	ICML	2015)	



Visual	AMen,on	
•  Consider	performing	ac,on	recogni,on	in	a	video:	

•  Instead	of	processing	each	frame,	we	can	process	only	a	small	
piece	of	each	frame.		

(Sharma, Kiros, Salakhutdinov, 2015)	

•  Degree	of	interpretability:	examine	what	signals	the	algorithm	
is	using	by	seeing	where	it	is	looking.	



Improving	Ac,on	Recogni,on	

Cycling	 Horse	back	riding	Soccer	juggling	

(Sharma, Kiros, Salakhutdinov, 2015)	



Recurrent	AMen,on	Model	

Coarse	
Image	

Classifica,on	

Recurrent	Neural	
Network	

Sample	ac,on:	

• 	Hard	AWen4on:	Sample	
ac,on	(latent	gaze	loca,on)	

• 	SoX	AWen4on:	Take	
expecta,on	instead	of	
sampling	



Recurrent	AMen,on	Model	

• 	Hard	AWen4on:	Sample	
ac,on	(latent	gaze	loca,on)	

• 	SoX	AWen4on:	Take	
expecta,on	instead	of	
sampling	

•  Bahdanau	et.al.,	ICLR	2015	
•  Mnih	et.al.,	NIPS	2014	
•  Ba	et.al.,	NIPS	2015,	ICLR	2015	
•  Yao	et.al.,	ICCV	2015	
•  Xu	et.	al.,	ICML	2015		
•  Larochelle	and	Hinton,	2010		



Model	Defini,on	
•  We	aim	to	maximize	the	probability	of	correct	class	by	

marginalizing	over	the	ac,ons	(or	latent	gaze	loca,ons):	

where	
-  W	is	the	set	of	parameters	of	the	recurrent	network.		
-  a	is	a	set	of	ac,ons	(latent	gaze	loca,ons,	scale).	
-  X:	is	the	input	(e.g.	image,	video	frame).		

	For	clarity	of	presenta,on,	I	will	some,mes	omit	condi,oning	on	W	or	X.	It	should	be	obvious	
from	the	context.	



Varia,onal	Learning	
•  A	number	of	approaches	use	varia,onal	lower	bound:	

•  Here																				is	some	approxima,on	to	posterior	over	the	
gaze	loca,ons.		

Ba	et.al.,	ICLR	2015	
Mnih	et.al.,	NIPS	2014	

•  In	the	case	where	q	is	the	prior,																																												,		the	
varia,onal	bound	becomes:	



Varia,onal	Learning	

•  Deriva,ves	w.r.t	model	parameters:	

Very	bad	term	as	it	is	unbounded.	
Introduces	high	variance	in	the	es,mator.	

•  Need	to	introduce	heuris,cs	(e.g.	replacing	this	term	with	
a	0/1	discrete	indicator	func,on,	which	leads	to	
REINFORCE	algorithm	of	Williams,	1992).		 Ba	et.al.,	ICLR	2015	

Mnih	et.al.,	NIPS	2014	



•  The	stochas,c	es,mator	of	the	gradient	is	given	by:	

Varia,onal	Learning	

where	we	draw	M	samples	from	the	prior:		

•  Deriva,ves	w.r.t	model	parameters:	



Sampling	from	the	Prior	
•  Generate	M	samples	from	the	prior	

Coarse	image	

Run	the	network	forward:	



Key	Observa,on	
•  We	can	maximize	the	marginal	class	log-probability	directly	

without	adhering	to	the	varia,onal	lower	bound:	

where	

•  We	can	use	importance	sampling	to	es,mate	required	
expecta,ons.		

Posterior:	

(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)	



Maximizing	Marginal	Likelihood	

•  Let																					be	some	approxima,on	to	the	posterior:		

•  Using	Importance	Sampling,	we	obtain:	

•  The	stochas,c	es,mator	of	the	gradient	is	given	by:	

where	

•  Need	to	es,mate:	

(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)	



Comparing	the	Two	Es,mators	
•  Varia,onal	bound	vs.	Marginal	likelihood:		

Very	bad	term,	as	it	
is	unbounded	

• 		The	performance	gain	from	importance	sampling	heavily	relies	
on	an	appropriate	choice	of	the	proposal	proposal	distribu,on	q!	

When	approximate	posterior	q	is	equal	to	the	prior,	this	approach	is	equivalent	to	Tang	
and	Salakhutdinov	for	learning	genera,ve	networks	(NIPS	2013).	It	is	also	similar	to	the	
Reweighted	Wake-Sleep	of	Bornschein	and	Bengio	(ICLR	2015).		



Another	Key	Observa,on	
• 	Using	finite	number	of	samples	M,	our	importance	sampling	
es,mator	can	be	viewed		as	the	gradient	ascent	on	the	following	
objec,ve:	

• 	Using	Jensen’s	inequality	we	obtain:	

• 	Hence	in	expecta,on,	we	are	op,mizing	a	lower	bound	on	the	
marginal	likelihood	(although	the	variance	can	be	high).		

• 	The	bound	becomes	,ghter	as	we	increase	M.		
(Ba, Grosse, Salakhutdinov, Frey, NIPS 2015)	



• 	Using	Jensen’s	inequality	we	obtain:	

• 	However,	our	proposed	bound	is	at	least	as	accurate	as	the	
varia,onal	bound:	

Another	Key	Observa,on	
• 	Using	finite	number	of	samples	M,	our	importance	sampling	
es,mator	can	be	viewed		as	the	gradient	ascent	on	the	following	
objec,ve:	



Rela,onship	To	Helmholtz	Machines	

Coarse	image	

Stochas,c	Units	

Determinis,c	
Units	

•  Goal:	Maximize	the	probability	of	correct	class	(sequence	of	words)	
by	marginalizing	over	the	ac,ons	(or	latent	gaze	loca,ons):	

Stochas,c	
Units	

•  Neural	Network	
with	stochas,c	and	
determinis,c	units.		



Rela,onship	To	Helmholtz	Machines	

Coarse	image	

Determinis,c	
Units	

Stochas,c	
Units	

•  View	this	model	as	a	condi,onal	Helmholtz	Machine	with	
stochas,c	and	determinis,c	units.	

•  Can	use	Wake-Sleep,	Re-weighted	Wake	Sleep,	varia,onal	
autoencoders,	and	their	variants	to	learns	good	aMen,on	policy!	

Input	data	

h3

h2

h1

v

W3

W2

W1

Helmholtz	Machine	



Xlow-resolution

(x1, a1) (x2, a2) (x3, a3) (xM, aM)

p(a1|X)

q(a1|y,X)

y y y y

q(a2|y,X) q(a3|y,X) q(a4|y,X)

p(a4|X)p(a3|X)p(a2|X)

p(y|a,X)

inference
network

The	Wake-Sleep	Recurrent		
AMen,on	Model	

•  We	can	learn	both:	genera,ve	model	P	and	recogni,on	model	Q.		

Q	Network	

P	Network	



Xlow-resolution

(x1, a1) (x2, a2) (x3, a3) (xM, aM)

p(a1|X)

q(a1|y,X)

y y y y

q(a2|y,X) q(a3|y,X) q(a4|y,X)

p(a4|X)p(a3|X)p(a2|X)

p(y|a,X)

inference
network

Training	Inference	Network	
• 	We	train	an	inference	network	to	predict	glimpses,	given	the	
observa4ons	as	well	as	the	class	label,	where	the	network	should	
look	to	correctly	predict	that	class.	

• 		This	distribu,on	is	analogous	
to	the	prior,	except	that	each	
decision	also	takes	into	
account	the	class	label	y.	



• 	In	fact	we	can	reuse	the	importance	weights	computed	for	the	
aMen,on	model	update.	

Training	Inference	Network	
• 	To	train	q	network	we	op,mize:	

• 	Using	importance	sampling,	we	get	the	following	stochas,c	
es,mate	of	the	gradient:	



MNIST	Example	

Training	error	as	a	number	
of	updates.	

Variance	of	Es,mated	
Gradients.	



MNIST	AMen,on	Demo	
• 	Ac,ons	contain:		

- 	Loca,on:	2-d	Gaussian	latent	variable	
- 	Scale:	3-way	sodmax	over	3	different	scales		



Hard	vs.	Sod	AMen,on	
• 	Sod	aMen,on	models:	

- 	Computa,onally	expensive.	They	have	to	examine	every	
image	loca,on.	Hard	to	scale	to	large	video	datasets.		
- 	Determinis,c.	They	can	be	trained	by	backprop.		

• 	Hard	aMen,on	models:	
- 	Computa,onally	more	efficient.	They	need	to	process	
only	small	part	of	each	image	frame.		
- 	Stochas,c.	Require	some	form	of	sampling,	because	they	
must	make	discrete	choices.		

• 	Research	is	taking	place	on	both	fronts!	



Talk	Roadmap	

•  Learning	Deep	Undirected	Models	
–  Restricted	Boltzmann	Machines		
– Deep	Boltzmann	Machines	

•  Learning	Deep	Directed	Models	
•  Helmholtz	Machines	
•  Varia,onal	&	Importance	Weighted	Autoecnoders	
•  Stochas,c	(Hard)	AMen,on	Models	

•  Applica,ons	and	Some	Open	Problems	



(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning,	AMen,on,	and	Memory	

•  Natural	Language	Understanding	

•  Deep	Reinforcement	Learning		



(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning,	AMen,on,	and	Memory	

•  Natural	Language	Understanding	

•  Deep	Reinforcement	Learning		



Decoder	

Sequence	to	Sequence	Learning	

•  RNN	Encoder-Decoders	
for	Machine	Transla,on	
(Sutskever	et	al.	2014;	
Cho	et	al.	2014;	
Kalchbrenner	et	al.	2013,	
Srivastava	et.al.,	2015)	Input	Sequence	

Encoder	

Learned	
Representa4on	

Output	Sequence	



Skip-Thought	Model		

• 	Given	a	tuple																															of	con,guous	sentences:	
- 	the	sentence							is	encoded	using	LSTM.		
- 	the	sentence							aMempts	to	reconstruct	the	previous	
sentence	and	next	sentence									.		

• 	The	input	is	the	sentence	triplet:	
- 	I	got	back	home.		
- 	I	could	see	the	cat	on	the	steps.		
- 	This	was	strange.	

(Kiros	et.al.,	NIPS	2015)	



Encoder	

Sentence	 Generate	Forward	Sentence	

Generate	Previous	Sentence	

Skip-Thought	Model		



Learning	Objec,ve	
• 	Objec,ve:	The	sum	of	the	log-probabili,es	for	the	next	and	
previous	sentences	condi,oned	on	the	encoder	representa,on:	

representa,on	of	
encoder	

Forward	sentence		 Previous	sentence		

• 	Data:	Book-11K	corpus:	



Seman,c	Relatedness		

• 	Outperform	all	previous	systems	from	the	SemEval	2014	
compe,,on.		

SemEval	
2014	sub-
missions	

Results	
reported	
by	Tai	et.al.	

Ours	



Seman,c	Relatedness		
Recurrent	Neural	Network	

• 	How	similar	the	two	sentences	are	on	the	scale	1	to	5?	

A	man	is	driving	a	car.	 A	car	is	being	driven	by	a	man.	

Ground	Truth	5.0			 	 		Predic,on	4.9		

A	liMle	girl	is	looking	at	a	
woman	in	costume.	

A	liMle	girl	in	costume	looks	
like	a	woman.	

A	person	is	performing	
tricks	on	a	motorcycle	

The	performer	is	tricking	a	
person	on	a	motorcycle		

Ground	Truth	2.9			 	 		Predic,on	3.5		

Ground	Truth	2.6			 	 		Predic,on	4.4		



Neural	Story	Telling	
Sample	from	the	Genera4ve	Model	
(recurrent	neural	network):	

She	was	in	love	with	him	for	the	first	,me	in	months,	so	she	had	no	
inten,on	of	escaping.	The	sun	had	risen	from	the	ocean,	making	her	
feel	more	alive	than	normal.	She	is	beau,ful,	but	the	truth	is	that	I	
do	not	know	what	to	do.	The	sun	was	just	star,ng	to	fade	away,	
leaving	people	scaMered	around	the	Atlan,c	Ocean.		

We	were	barely	able	to	catch	the	
breeze	at	the	beach,	and	it	felt	as	if	
someone	stepped	out	of	my	mind.		

(Kiros	et.al.,	NIPS	2015)	



Hierarchical	RNNs	

(Yang,	Salakhutdinov,	Cohen,	2016,	
Lample	et	al.,	NAACL	2016)		

• 	Hierarchical	Bidirec,onal	RNN	with	CRF	using	both	word-level	
and	character-	level	RNNs.		



Hierarchical	RNNs	
• 	Hierarchical	Bidirec,onal	RNN	with	CRF	using	both	word-level	
and	character-	level	RNNs.		

• 	State-of-the	art	performance	in	mul,ple	languages	on	several	
tasks	including	POS	tagging,	chunking,	and	NER.		

(Yang,	Salakhutdinov,	Cohen,	2016)		



(Some)	Open	Problems	

•  Unsupervised	Learning	/	Transfer	Learning	/	
One-Shot	Learning	

•  Reasoning,	AMen,on,	and	Memory	

•  Natural	Language	Understanding	

•  Deep	Reinforcement	Learning		



One-Shot	Learning	

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



One-Shot	Learning	
“zarc” 

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



One-Shot	Learning	
“zarc” “segway” 

How	can	we	learn	a	novel	concept	–	a	high	dimensional	
sta,s,cal	object	–	from	few	examples.			

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



One-Shot	Learning:		
Humans	vs.	Machines	

(Lake, Salakhutdinov, Tenenbaum, Science, 2015) 



• 	Agent	observes	raw	pixel	
input.	

Atari	Games	

• 	Goal:	maximize	the	
score.	

Figure	credit:	Nando	de	Freitas	

Mnih	et.al.,	2014,	Rusu	et.	al.,	2015,	Wang	et.al.,	2015	

• 	Can	a	single	network	play	
many	games	at	once?	

• 	Can	the	network	learn	new	games	faster	by	leveraging	
knowledge	about	the	previous	games	it	learnt.		



Actor-Mimic	Net	in	Ac,on	
• 	The	mul,task	network	can	match	expert	performance	on	8	
games	(we	are	extending	this	to	more	games).	

(Parisotto, Ba, Salakhutdinov, ICLR 2016) 



Transfer	Learning	

500K	frames	

Star	Gunner:	Performance	ader	learning		on	13	other	games:	

1M	frames	

(Parisotto, Ba, Salakhutdinov, ICLR 2016) 



Summary	
•  Efficient	learning	algorithms	for	Deep	Learning	Models	

•  Deep	models	improve	the	current	state-of-the	art	in	many	
applica,on	domains:	
Ø  Object	recogni,on	and	detec,on,	text	and	image	retrieval,	handwriMen	

character	and	speech	recogni,on,	and	others.	

HMM	decoder	

Speech	Recogni4on	

sunset,	pacific	ocean,	
beach,	seashore	

Mul4modal	Data	
Object	Detec4on	

Text	&	image	retrieval	/		
Object	recogni4on	

Learning	a	Category	
Hierarchy	

mosque,	tower,	
building,	cathedral,	
dome,	castle	

Image	Tagging	
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