
Bruno Olshausen  
Helen Wills Neuroscience Institute, School of Optometry

Redwood Center for Theoretical Neuroscience
UC Berkeley

Beyond inspiration:  
Five lessons from biology on building 

intelligent machines



What are the principles governing information 
processing in this system?

10 Mp camera 
(always on)

1 Gb/sec 
datastream

20 watts



Inspiration is a good start
…but not enough

Real progress will require gaining a more solid 
understanding of the principles of information 

processing at work in nervous systems.

This is both engineering and biology.



Five lessons from biology

• Tiny brains 

• Nonlinear processing in dendritic trees 

• Sparse, overcomplete representations 

• Feedback 

• Active perception



1. Tiny brains



86 billion neurons
20 Watts

<1 million neurons
< 1 mW



lens eye is indeed specialized for looking up through the water
surface to exploit terrestrial or celestial visual cues.

With this result, it is tempting to speculate that the upper
lens eye is used to detect the mangrove canopy through
Snell’s window, such that the approximately 1 cm large
animals can find their habitat between the mangrove prop
roots and remain there even in the presence of tidal or storm-
water currents. To evaluate the possibility that the upper lens
eye detects the position of the mangrove canopy through
Snell’s window, we made still pictures using a wide-angle
lens looking up through Snell’s window in the natural habitat.
The pictures were taken from just under the surface to make
Snell’s window cover the same area of the surface as seen
by the medusae. In the pictures, it was easy to follow the
mangrove canopy, which shifted from covering most of Snell’s
window to covering just the edge of Snell’s window when the
camera was slowly moved outward to about 20 m away from
the lagoon edge (Figure 2).

To determine what medusae of T. cystophora would see
with their upper lens eyes, we used the optical model [2] of
the eye to calculate the point-spread function of the optics at
different retinal locations. Applying these point-spread func-
tions to still images of Snell’s window in themangrove swamp,
we were able to simulate the retinal image formed in the upper
lens eyes as a jellyfish moves about in the mangrove lagoon.
The results (Figure 2) confirm that despite the severely under-
focused eyes and blurred image [2], the approximately 5 m tall
mangrove canopy can be readily detected at a distance of 4 m
from the lagoon edge and, with some difficulty, can be de-
tected even at a distance of 8 m (detection depends on the
amount of surface ripple and the height of themangrove trees).
These results thus predict that if T. cystophora medusae use
their upper lens eyes to guide them to the correct habitat at
the lagoon edge, then they would swim toward this edge if
they are closer than about 8 m away from it. Also, if they are
farther out in the lagoon, surface ripple and their poor visual

resolution will prevent detection of the mangrove canopy,
and the animals would not be able to determine the direction
to the closest lagoon edge.

Behavioral Assessment of Visual Navigation
Experiments were conducted on wild populations of
T. cystophora medusae in the mangrove lagoons near La
Parguera, Puerto Rico. Preliminary tests demonstrated that if
jellyfish were displaced about 5 m from their habitat at the
lagoon edge, they rapidly swam back to the nearest edge,
independent of compass orientation. To make controlled
experiments, we introduced a clear experimental tank consist-
ing of a cylindrical wall and a flat bottom, open upward, to the
natural habitat under the mangrove canopy. When the tank
was filled with water, it was lightly buoyant such that the walls
extended 1–2 cm above the external water surface, effectively
sealing off the water around the animals but without affecting
the visual surroundings. A group of medusae was released
in the tank, and as long as the tank remained under the canopy,
the medusae showed no directional preference but occasion-
ally bumped into the tank wall. The tank, with the trapped
water andmedusae, was then slowly towed out into the lagoon
from the original position under themangrove canopy. In steps
of 2–4 m, starting at the canopy edge, the positions of the
medusae within the tank were recorded by a video camera
suspended under the tank. At all positions, from the canopy
edge and outward, the medusae ceased feeding and swam
along the edges of the tank, constantly bumping into it, sug-
gesting that they responded to the displacement (Figure 3).
Most importantly, their mean swimming direction differed
significantly from random and coincided with the direction
toward the nearest mangrove trees (Table S1). This behavior
was indicated already at the canopy edge but was strongest
when the tank was placed 2 or 4 m into the lagoon (Figure 3).
At 8 m from the canopy edge, the medusae could still detect

Figure 1. Rhopalial Orientation and Visual Field
of the Upper Lens Eye

(A andB) In freely swimmingmedusae, the rhopa-
lia maintain a constant vertical orientation. When
the medusa changes its body orientation, the
heavy crystal (statolith) in the distal end of the
rhopalium causes the rhopalial stalk to bend
such that the rhopalium remains vertically
oriented. Thus, the upper lens eye (ULE) points
straight upward at all times, irrespective of
body orientation. The rhopalia in focus are situ-
ated on the far side of the medusa and have the
eyes directed to the center of the animal.
(C) Modeling the receptive fields of the most
peripheral photoreceptors in the ULE (the relative
angular sensitivity of all peripheral rim photore-
ceptors are superimposed and normalized ac-
cording to the color template). The demarcated
field of view reveals a near-perfect match to the
size and orientation of Snell’s window (dashed
line).
(D) The visual field of the ULE, of just below 100!,
implies that it monitors the full 180! terrestrial
scene, refracted through Snell’s window. LLE
denotes lower lens eye. Scale bars represent
5 mm in (A) and (B) and 500 mm in insets.
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Jumping spider visual system



Jumping spider retina

horizontal section photoreceptor array



Jumping spiders do object recognition



Spider mimicry in flies



Prey capture

• attention
• orienting
• tracking

Turning in jumping spiders 123

was rare, easily recognizable, and confined to stimuli in front of the animal. Because

of the ease with which turning mediated by the principal eye and by the lateral eye

could be distinguished, the principal eyes were not routinely covered.

Target

Fig. 3. Diagram of a turn made by a jumping spider in the 'real world' (a) and in the experi-

mental situation (6). In the latter the animal's prosoma is fixed in space, but the substrate, a

card ring, is movable. The spider, ring and drum are not drawn to scale; i is the stimulus angle,

i.e. the angle between a line joining the target to a point between the postero-lateral eyes and

the spider's longitudinal axis; t is the angle turned by the spider, or the ring.

RESULTS

Turns made by unrestrained animals

Anyone who has watched jumping spiders can confirm that they turn to face moving

objects in one of two ways. They either make a single complete turn which results in

the spider's axis pointing straight towards the source of the movement (fixation), or

they will make one or more much smaller turns of 10-20° which may or may not result

in fixation. Sometimes one sees a combination of the two, with a small turn followed

by a much larger one. If the spider makes a turn which does not result in its axis

coming to within about 30° of the target, nothing more happens, unless the target

moves again, in which case another turn may be made. If the turn does result in

fixation many things may happen: the spider may creep towards it, turn and run

away, or begin a sexual display if the target turns out to be another jumping spider.

126 M. F. LAND

angle (i.e. they lie along a line passing through the origin with a slope of i) and that

the remaining 15 turns are all of less than 300 (see also Fig. 76), and their magnitudes

do not seem to be related to the stimulus angle. Fig. 6 shows the results of a much

more extensive experiment on a single spider, in which turns to the left and right of
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Fig. 5- Plot of the angle the spider turns the ring against the stimulus angle (see Fig. 3). The
stimulus angle is taken as the position of the leading edge of the black square at the midpoint
of each movement. Closed circles are plotted from the record shown in Fig. 4. Open circles
from the companion run to this with the target moving in the opposite direction (left to right).

the animal have been pooled. The histogram shows essentially the same features as

Fig. 5, and confirms that for stimulus angles of 6o° or greater there are two quite

distinct kinds of turns (the histograms of numbers of turns versus angle turned become

bimodal). In over a hundred repetitions of this experiment this result was confirmed:

turns are either close in magnitude to the stimulus angle or they are small.

These two kinds of turns will be referred to in future discussion as complete and

partial turns respectively. For convenience, a complete turn will be denned as one

whose amplitude is greater than half the stimulus angle, and a partial turn less than

half. Where the stimulus angle is less than 6o° it does not seem possible to draw this

distinction, since the histograms of number of turns versus angle turned are unimodal

(Fig. 6).

Notice that complete turns are those which, in the 'real world', would have brought

the spider's body axis to within a few degrees of the target, and thus resulted in

fixation. Partial turns, while always in the direction of the target, would not result in



back of the lure and dangled it on the end of a
human hair from the bend in the rod immediately
above the dish. We positioned the lure 10 mm
above the dish bottom and jiggled it by passing a

current through a hidden magnetic coil every 5 s
until the test spider oriented towards it.

Positioning the lure 10 mm above the dish
meant that the test spider could see the lure from

Figure 1 a-c.

Animal Behaviour, 53, 2260

Navigation

(Tarsitano & Jackson 1997)



One-day old jumping spider
(filmed in the Bower lab, Caltech)



One-day old jumping spider
(filmed in the Bower lab, Caltech)



One-day old jumping spider
(filmed in the Bower lab, Caltech)



One-day old jumping spider
(filmed in the Bower lab, Caltech)



…problem solving behavior, language, expert knowledge and 
application, and reason, are all pretty simple once the 
essence of being and reacting are available.  That essence is 
the ability to move around in a dynamic environment, sensing 
the surroundings to a degree sufficient to achieve the 
necessary maintenance of life and reproduction.  This part of 
intelligence is where evolution has concentrated its time--it is 
much harder.

— Rodney Brooks, “Intelligence without representation,” 
Artificial Intelligence (1991)



2. Nonlinear processing in dendritic trees
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A brief history of neural networks

1980’s

.

.

.

Σ

x1
x2
x3

xn

w1
w2
w3

wn
w0

yu
σg

u =
X

i

wi xi

y = g(u)



A brief history of neural networks
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3. Sparse, overcomplete representation



V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)



Dense codes
(e.g., ascii)

Sparse, 
distributed codes

Local codes
(e.g., grandmother cells)

.  .  . .  .  .
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N(  )
(From Foldiak & Young, 1995)
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Sparse, distributed representation



Energy function

preserve information be sparse



Energy function

preserve information be sparse
-log      P(I | a)                P(a)
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Coefficients ai may be computed via 
thresholding and lateral inhibition

(‘LCA’ - Rozell, Johnson, Baraniuk & Olshausen, 2008)
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1.25x 2.5x

5x 10x



ridgelet

circular

curvature

grating

Examples from 10x dictionary
(Olshausen, 2013)



Explaining away can account for non-classical 
surround effects such as end-stopping

(Lee et al., 2006;  Zhu & Rozell, 2013)



Yellow = excitatory 
Blue   =  inhibitory

Explaining away can account for non-classical 
surround effects such as end-stopping

(Lee et al., 2006;  Zhu & Rozell, 2013)



4. Feedback





Hubel & Wiesel (1962, 1965)
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FIG. 38. Wiring diagrams that might 
account for the properties of hypercomplex 
cells. A: hypercomplex cell responding to 
single stopped edge (as in Figs. 8 through 
11) receives projections from two complex 
cells, one excitatory to the hypercomplex 
cell (E), the other inhibitory (I). The ex- 
citatory complex cell has iti receptive field 
in the region indicated by the left (con- 
tinuous) rectangle; the inhibitory cell has 
its field in the area indicated by the right 
(interrupted) rectangle. The hypercomplex 
field thus includes both areas, one being the 
activating region, the other the antagonistic. 
Stimulating the left region alone resulti in 
excitation of the cell, whereas stimulating 
both regions together is without effect. & 
scheme proposed to explain the properties 
of a hypercomplex cell responding to a 
double-stopped slit (such as that described 
in Figs. 16 and 17, except for the difference 
in orientation, or the hypercomplex cell with 
small spikes in Fig. 27). The cell receives 
excitatory input from a complex cell whose 
vertically oriented field is indicated to the 
left by a continuous rectangle; two addi- 
tional complex cells inhibitory to the hyper- 
complex cell have vertically oriented fields 
flanking the first one above and below, 
shown by interrupted rectangles. In an al- 
ternative scheme (C), the inhibitory input is 

supplied by a single cell with a large field indicated by the entire interrupted rectangle. In 
either case (13 or C), a slit covering the entire field of the hypercomplex cell would be in- 
effective. Scheme C requires that a slit covering but restricted to the center region be too 
short to affect the inhibitory cell. 

its field stopped at only one end, is given in Fig. 38A; the cell could be the 
one illustrated in Figs. 8 through 11, Only two afferent cells are shown, an 
excitatory and an inhibitory, but there might be many of each type. In Fig. 
38, B and C, two possible arrangements are suggested to account for the 
properties of a double-stopped hypercomplex cell (see Figs. 16 through 20, 
and 27). Figure 38B requires two inhibitory cells, or sets of cells, both com- 
plex, with their fields covering the two flanking areas. In an alternative 
scheme (Fig. 38C), the hypercomplex cell receives an excitatory input from a 
complex cell whose field covers the activating center, as before, and an 
inhibitory input from a single complex cell with a field having the same size 
and position as the entire hypercomplex field, both center and flanks. This 
arrangement could only work efficiently if the inhibitory afferent gave a good 
response to a long slit, but little or no response to a stimulus confined to 
the activating area. This was true for the complex cell (large spikes) of 
Fig. 27, which responded well to a large slit, but not to a small one. Except 
for the difference in ocular dominance, one might imagine that the two 
simultaneously recorded cells in Fig. 27 were interconnected, the complex 
cell sending inhibitory connections to the hypercomplex one. 

D. H. HUBEL AND T. N. WIESEL
field such as that of Text-fig. 2F) are of the same order of magnitude as
the diameters of geniculate receptive-field centres, at least for fields in or
near the area centralis. Hence the fineness of discrimination implied by
the small size of geniculate receptive-field centres is not necessarily lost at
the cortical level, despite the relatively large total size of many cortical
fields; rather, it is incorporated into the detailed substructure of the
cortical fields.

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with 'on' centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated 'on' centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

In a similar way, the simple fields of Text-fig. 2D-G may be constructed
by supposing that the afferent 'on'- or 'off'-centre geniculate cells have
their field centres appropriately placed. For example, field-type G could
be formed by having geniculate afferents with 'off' centres situated in the
region below and to the right of the boundary, and 'on' centres above and
to the left. An asymmetry of flanking regions, as in field E, would
be produced if the two flanks were unequally reinforced by 'on'-centre
afferents.
The model of Text-fig. 19 is based on excitatory synapses. Here the

suppression of firing on illuminating an inhibitory part of the receptive
field is presumed to be the result of withdrawal of tonic excitation, i.e. the
inhibition takes place at a lower level. That such mechanisms occur in the
visual system is clear from studies of the lateral geniculate body, where
an 'off'-centre cell is suppressed on illuminating its field centre because of
suppression of firing in its main excitatory afferent (Hubel & Wiesel, 1961).
In the proposed scheme one should, however, consider the possibility of
direct inhibitory connexions. In Text-fig. 19 we may replace any of the
excitatory endings by inhibitory ones, provided we replace the corre-
sponding geniculate cells by ones of opposite type ('on '-centre instead of
' off'-centre, and conversely). Up to the present the two mechanisms have
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CAT VISUAL CORTEX1
not been distinguished, but there is no reason to think that both do not
occur.
The properties of complex fields are not easily accounted for by sup-

posing that these cells receive afferents directly from the lateral geniculate
body. Rather, the correspondence between simple and complex fields
noted in Part I suggests that cells with complex fields are of higher order,
having cells with simple fields as their afferents. These simple fields would
all have identical axis orientation, but would differ from one another in
their exact retinal positions. An example of such a scheme is given in
Text-fig. 20. The hypothetical cell illustrated has a complex field like that

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, ofwhich three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

of Text-figs. 5 and 6. One may imagine that it receives afferents from a set
of simple cortical cells with fields of type C, Text-fig. 2, all with vertical
axis orientation, and staggered along a horizontal line. An edge of light
would activate one or more of these simple cells wherever it fell within the
complex field, and this would tend to excite the higher-order cell.

Similar schemes may be proposed to explain the behaviour of other
complex units. One need only use the corresponding simple fields as
building blocks, staggering them over an appropriately wide region. A
cell with the properties shown in Text-fig. 3 would require two types of
horizontally oriented simple fields, having 'off' centres above the hori-
zontal line, and 'on' centres below it. A slit of the same width as these
centre regions would strongly activate only those cells whose long narrow
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input data (x)

output (y)

y = f(x;w)

“The answer”



Is this the goal of vision?



Primate visual cortex



faces‘Gabor filters’ .      .      ?     .     . objects

an absolute depth judgment with respect
to fixation, while fine stereopsis requires
the judgment of relative depth, i.e., com-
paring depth across space; (2) the partic-
ular coarse stereopsis task used requires
the monkey to discriminate a signal in
noise, while the fine task does not; (3)
the range of disparities is quite different.

Chowdhury and DeAngelis (2008) repli-
cate the finding that monkeys initially
trained on coarse stereopsis show im-
paired coarse depth discrimination when
muscimol is injected into MT. Remark-
ably, the same animals, after a second
round of training on fine stereopsis, are
unimpaired at either fine or coarse depth
discrimination by similar injections. More-
over, recordings in MT show that neuronal
responses are not altered by learning the
fine stereopsis task. Given the differences
between the tasks and the large number

of visual areas containing disparity-sensi-
tive neurons, one might not be surprised
to find different areas involved in the two
tasks. But it is quite unexpected that
merely learning one task would change
the contribution of areas previously in-
volved in the other. Chowdhury and
DeAngelis conclude that the change in
outcome reflects a change in neural de-
coding—decision centers that decode
signals to render judgments of depth,
finding MT signals unreliable for the fine
stereopsis task, switch their inputs to se-
lect some better source of disparity infor-
mation. Candidates include ventral
stream areas V4 or IT, where relative dis-
parity signals have been reported (Orban,
2008) and which contain far more neurons
than MT (Figure 1). When challenged
afresh with the coarse depth task, these
same decision centers may now find that

their new sources of information can solve
the coarse task as well as the old ones.
MT is no longer critical.

Perhaps in other monkeys MT would
never have a role in stereopsis at all.
ChowdhuryandDeAngelis’monkeyswere
trained simultaneously or previously to
discriminate motion, which engages MT.
Faced with a qualitatively similar random
dot stimulus, it might make sense for the
cortex to try to solve the new problem of
stereopsis with existing decoding strate-
gies. But if the animals were initially trained
on a different task—say, a texture discrim-
ination—MT might never be engaged at
all. It would also be interesting to see the
outcome if monkeys were trained on depth
tasks that were less different and could
be interleaved in the same sessions, for
example noise-limited depth judgments
using similar absolute or relative disparity

Figure 1. A Scaled Representation of the Cortical Visual Areas of the Macaque
Each colored rectangle represents a visual area, for the most part following the names and definitions used by Felleman and Van Essen (1991). The gray bands
connecting the areas represent the connections between them. Areas above the equator of the figure (reds, browns) belong to the dorsal stream. Areas below the
equator (blues, greens) belong to the ventral stream. Following Lennie (1998), each area is drawn with a size proportional to its cortical surface area, and the lines
connecting the areas each have a thickness proportional to the estimated number of fibers in the connection. The estimate is derived by assuming that each area
has a number of output fibers proportional to its surface area and that these fibers are divided among the target areas in proportion to their surface areas. The
connection strengths represented are therefore not derived from quantitative anatomy and furthermore represent only feedforward pathways, though most or all
of the pathways shown are bidirectional. The original version of this figure was prepared in 1998 by John Maunsell.

196 Neuron 60, October 23, 2008 ª2008 Elsevier Inc.
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sensory data (x) actuator movement (a)

.

.

state (s)

.

.
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Vision as inference



Hierarchical Bayesian inference in visual cortex 
(Lee & Mumford, 2003)

areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P!x0 , xv1 , xv2 , xv4 , xIT"

! P!x0!xv1"P!xv1!xv2"P!xv2!xv4"P!xv4!xIT"P!xIT"

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P!xv1!x0 , xv2 , xv4 , xIT" ! P!x0!xv1"P!xv1!xv2"/Z1 ,

P!xv2!x0 , xv1 , xv4 , xIT" ! P!xv1!xv2"P!xv2!xv4"/Z2 ,

P!xv4!x0 , xv1 , xv2 , xIT" ! P!xv2!xv4"P!xv4!xIT"/Z4 .

More generally, in a graphical model one needs only po-
tentials #(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P!xv1!x0 , xv2 , xv4 , xIT"

! #!x0 , xv1"#!xv1 , xv2"/Z!x0 , xv2" ,

P!xv2!x0 , xv1 , xv4 , xIT"

! #!xv1 , xv2"#!xv2 , xv4"/Z!vv1 , xv4",

P!xv4!x0 , xv1 , xv2 , xIT"

! #!xv2 , xv4"#!xv4 , xIT"/Z!xv2 , xIT",

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].

Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1!x2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials # are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.
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confounding variable (e.g. viewpoint), and I1 is the image.
Then we discount the confounding variables by integrat-
ing them out (or summing over them):

pðS1; I1Þ ¼
X

S2

pðS1; S2; I1Þ

Discounting illumination by integrating it out can reduce
ambiguity with regards to the location or shape of an
object [34,35]. Integrating out illumination level or direc-
tion has also been used to model apparent surface color
[36,37]. Similarly, viewpoint can be treated as a confound-
ing variable that can be discounted [8].
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colors represent random variables that fall into four classes. The variables may be: 1) known (black); 2) unknown and need to be estimated
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an auxiliary measurement (I2) ‘tips the balance’ in favor of a different value of S1. The influence diagram structure corresponds to p(S1, S2, I1,
I2)¼p(I2|S2)p(I1|S1, S2)p(S1)p(S2). Four red line segments may appear as four distinct objects because the vertices are occluded. When auxiliary
evidence (the blue bars) is taken into account, the missing vertices are explained and the four red-line segments become perceptually organized into a
single diamond [50,52$$].
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5. Active perception
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Human eye movements during viewing of an image



Fixational eye movements
(drift)

(eye movement data from Austin Roorda, UC Berkeley)
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Retinal ganglion cell spacing as a function of eccentricity

∆E ≈ .01(|E| + 1)
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Retinal ganglion cell sampling lattice
(shown at one dot for every 20 ganglion cells)



Minimal letter size required for recognition 
as a function of eccentricity

(Anstis, 1974)
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Figure 2: A: High-level diagram of proposed recurrent attention model. B: Two methods for
modifying initial kernel configurations. Training: individual kernels in the lattice adjust their own
position and variance parameters. Control: transforms the whole sampling lattice by translation and
scale.

Vi,t =
HX

n

WX

m

Unmki,t�1 Glimpse Generator (4)

ht = frnn(Vt, ht�1) Recurrent Network (5)
[gc,t; gs,t] = fcontrol(ht) Control Network (6)

µi,t = gs,t(gc,t � ⇠i) Kernel Centers (7)

Zi,t =
X

m

e
�(m�µi,t)

2

2�2
i + ✏ Kernel Normalization (8)

ki,t =
1

Zi,t
e

�(m�µi,t)
2

2�2
i Kernel for next glimpse (9)

The centers of each kernel filter µi are calculated with respect to a global center gc and scale gs and103

learnable offset ⇠i specific to each kernel. The global center and scale are predicted by the control104

network fcontrol() which is parameterized by a fully-connected neural network. In contrast, the105

learnable offset is treated as another parameter and optimized during training. After the kernels are106

normalized using equation 8, the kernel filter for the next timepoint is computed (equation 9).107

In this work, we investigate two variants of the proposed recurrent model:108

• Translation Only: The model can only translate the kernel filters gc,t = fcontrol(ht) and109

the global scale is fixed gs,t = 1.110

• Translation and Scaling: This model follows equation 6 where it can both rescale and111

translate the kernels.112

Prior to training, the kernel filters are initialized as a 12x12 grid (144 kernel filters), tiling uniformly113

over the central region of the input image and creating a retinal sampling lattice as shown in Figure114

3 (initial kernel layout). Our models are trained end-to-end in Theano (Bastien et al., 2012) using115

stochastic gradient descent with the Adam optimizer (Kingma & Ba, 2014).116

4

B

Figure 1: A: Diagram of single kernel filter parameterized by a mean µi and variance �i B: First row
Examples from our variant of the cluttered MNIST dataset. Second row Examples with additional
random rescaling of the digit.

This factorization is shown in equation 3, where the kernel is defined as an isotropic gaussian. For82

each kernel filter, given a center µi and scalar variance �i, a two dimensional gaussian is defined over83

the input image as shown in Figure 1A.84

ki(m,n) = p(m;µi,x,�i)p(n;µi,y,�i) (3)

While this factored formulation reduces the space of possible transformations from input to output, it85

can still form many different mappings from an input U to output V . Figure 2B shows the possible86

windows which an input image can be mapped to an output V . The blue circles denote the central87

location of a particular kernel. Each kernel maps to one of the outputs Vi. The kernel filters in88

our model can be adjusted through two distinct mechanisms: control and training. control defines89

adjustments to the retinal sampling lattice as a whole and can include translation and rescaling of90

the entire lattice. Translational control can be considered analgous to the motor control signals91

which executes saccades of the eye in biology. In contrast, training defines structural adjustments to92

individual kernels which include its position in the lattice as well as its variance. These adjustments93

are only possible during training and are fixed afterwards. Training adjustments can be considered94

analagous to the layout of the retinal sampling lattice which is directed by evolutionary pressures in95

biology.96

3 Recurrent Neural Architecture for Attention97

We develop a recurrent model of overt attention inspired by Mnih et al. (2014). A sample input98

image U is reduced by a glimpse generator using equation 4 to create a output ‘glimpse’ Vt. We99

omit the sample index n to simplify notation. This glimpse Vt is processed by a fully-connected100

recurrent network frnn(). Equation 4-9 details the feedforward process of generating the kernel filter101

configurations which define the retinal sampling lattice for the next time point.102

3

Learning the sampling lattice
(Brian Cheung, Eric Weiss)



Initial Kernel Filter Layout Translation and ScalingTranslation Only Translation Only (RR)

Figure 3: Scatter plot of the centers of each kernel filter. Image boundaries correspond to [-1, +1].
The radius of each point corresponds to the variance �2

i of the kernel.

4 Datasets and Tasks117

4.1 Modified Cluttered MNIST Dataset118

We define our visual search task as a joint recognition and localization problem. Example images from119

of our dataset are shown in Figure 1B. Handwritten digits from the original MNIST dataset LeCun120

& Cortes (1998) are randomly placed over a 100x100 image with varying amounts of distractors121

(clutter). Distractors are generated by extracting random segments of non-target MNIST digits which122

are placed randomly with uniform probability over the image. In contrast to the cluttered MNIST123

dataset proposed in Mnih et al. (2014), the number of distractors for each image varies randomly124

from 0 to 20 pieces. This prevents the attention model from learning a solution which depends on the125

number ‘on’ pixels in a given region. In addition, we create another dataset with an additional factor126

of variation: the original MNIST digit is randomly resized (RR) uniformly by a factor of 0.5x to 2.0x.127

Examples of this dataset are shown in the second row of Figure 1B.128

4.2 Visual Search Task129

The recurrent attention model we propose must output both the class ĉ and location ˆ̀of the single130

MNIST digit appearing in the image via the prediction network fpredict(). The task loss, L, is131

specified in equation 11. The first term specifies the classification error (cross-entropy) and the132

second specifies the localization error (mean-squared).133

[ĉt,n; ˆ̀t,n] = fpredict(ht,n) (10)

L =
NX

n

TX

t

�cnlog(ĉt,n) + (1� �)||`n � ˆ̀
t,n||22 (11)

Analolgous to the visual search experiments performed in physiological studies, we pressure our134

attention model to accomplish the visual search as quickly as possible. By applying the task loss to135

every timepoint, the model is forced to accurately recognize and localize the target MNIST digit in as136

few iterations as possible. In all of our experiments, � = 0.5 and the model is given T = 4 glimpses137

before predicting the final location and class of the digit in the image.138

5 Results139

Figure 3 shows the layouts of the kernel filters before and after training. In both variants of our140

attention model, the kernel filters spread their individual centers to create a sampling lattice which141

covers the full image. This is sensible as the target MNIST digit can appear anywhere in the image142

with uniform probability. When we include random rescaling (RR) as additional factor in the dataset,143

the translation only model shows an even greater diversity of variances for the kernel filters. This144

is shown visually in Figure 3. More quantitatively, Figure 4A shows histogram data where there145

appears to be more kernel filters between low variance (high acuity) and high variance (low acuity).146

5

Learned glimpse window sampling lattices



Five lessons from biology

• Tiny brains 

• Nonlinear processing in dendritic trees 

• Sparse, overcomplete representations 

• Feedback 

• Active perception
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