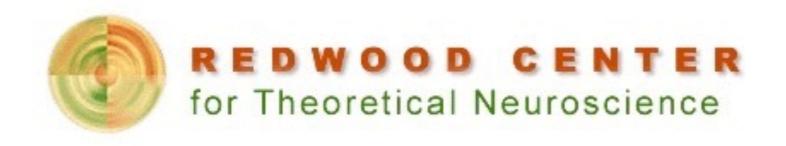
Beyond inspiration:

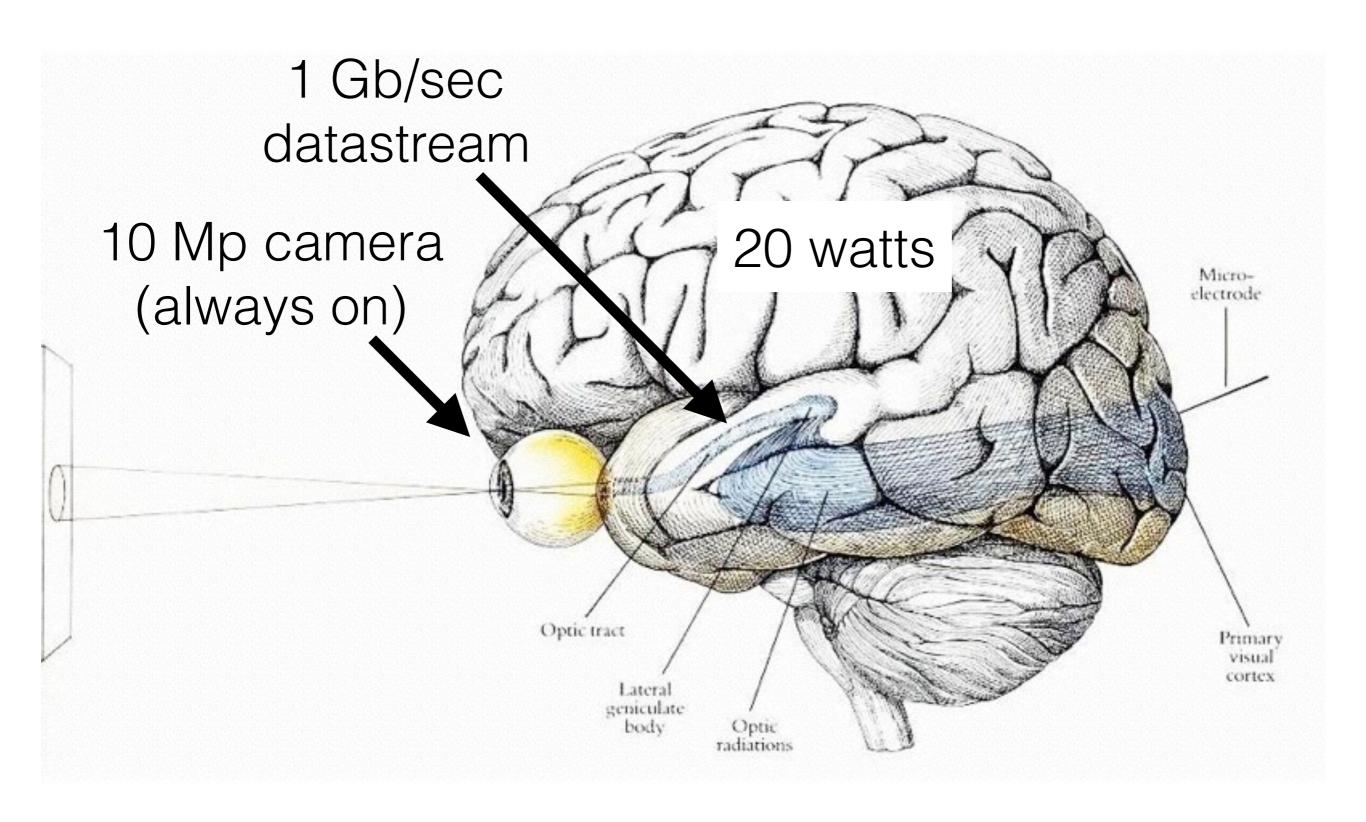
Five lessons from biology on building intelligent machines

Bruno Olshausen

Helen Wills Neuroscience Institute, School of Optometry Redwood Center for Theoretical Neuroscience UC Berkeley



What are the principles governing information processing in this system?



Inspiration is a good start ...but not enough

Real progress will require gaining a more solid understanding of the principles of information processing at work in nervous systems.

This is both engineering and biology.

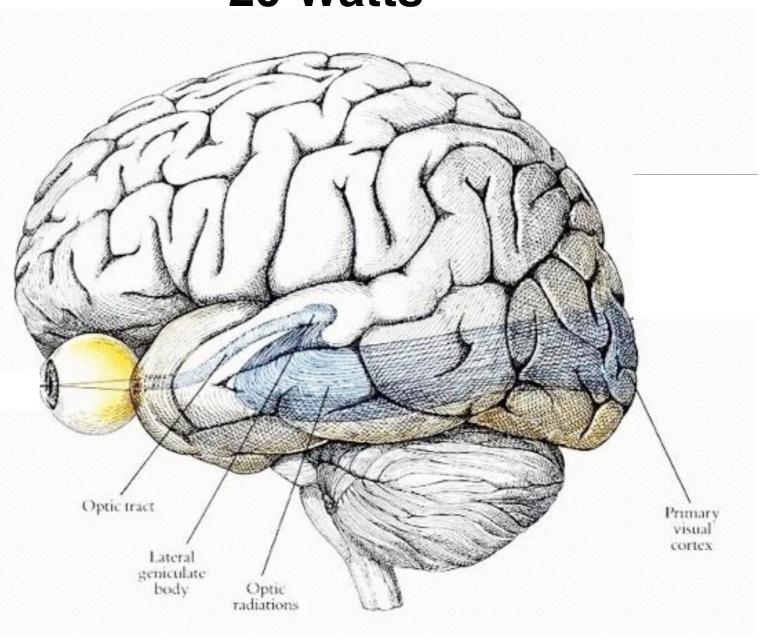
Five lessons from biology

- Tiny brains
- Nonlinear processing in dendritic trees
- Sparse, overcomplete representations
- Feedback
- Active perception

1. Tiny brains

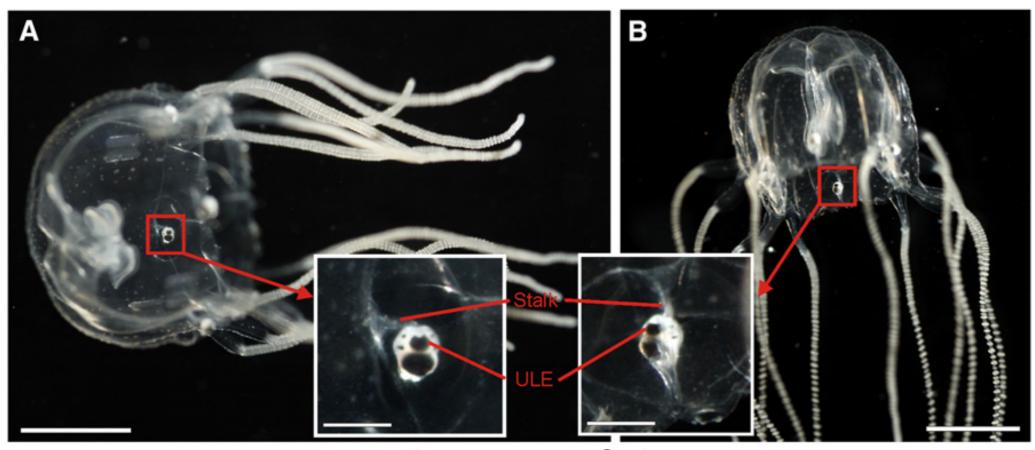
<1 million neurons < 1 mW

86 billion neurons 20 Watts



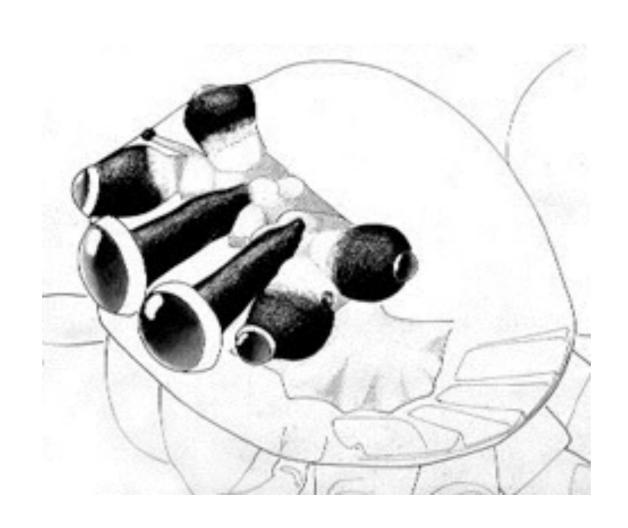
jumping spider

sand wasp



box jellyfish

Jumping spider visual system

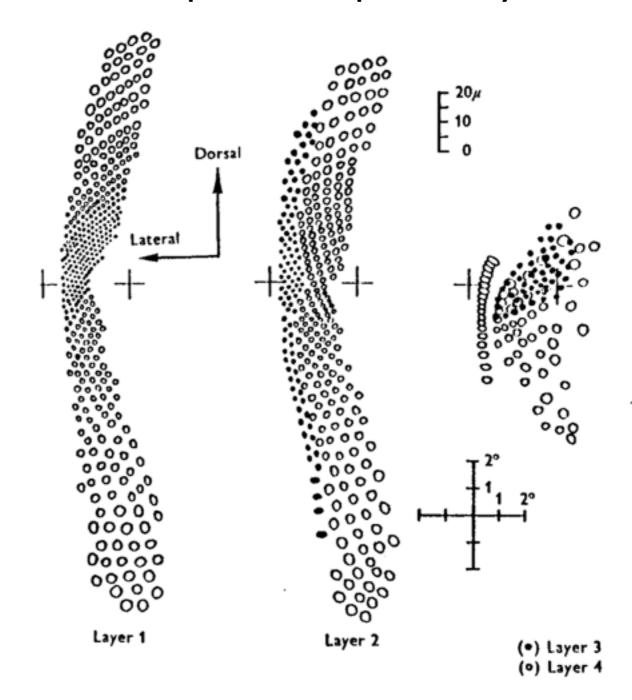


Jumping spider retina

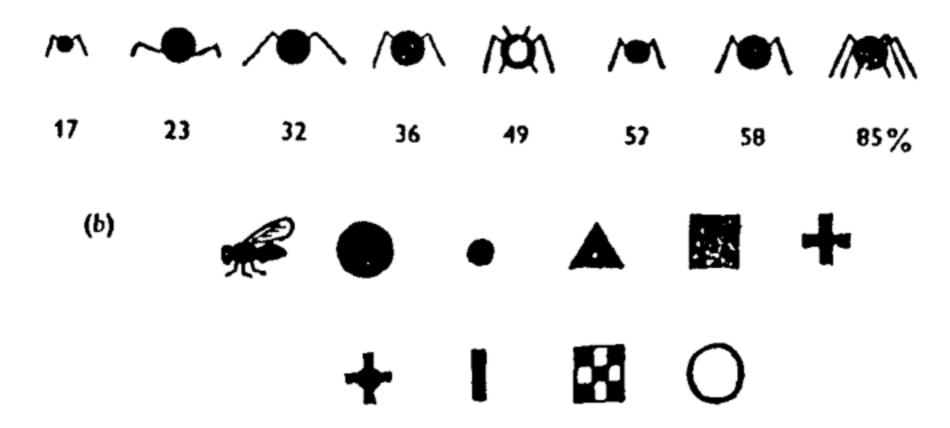
horizontal section

Anterior Lateral

photoreceptor array

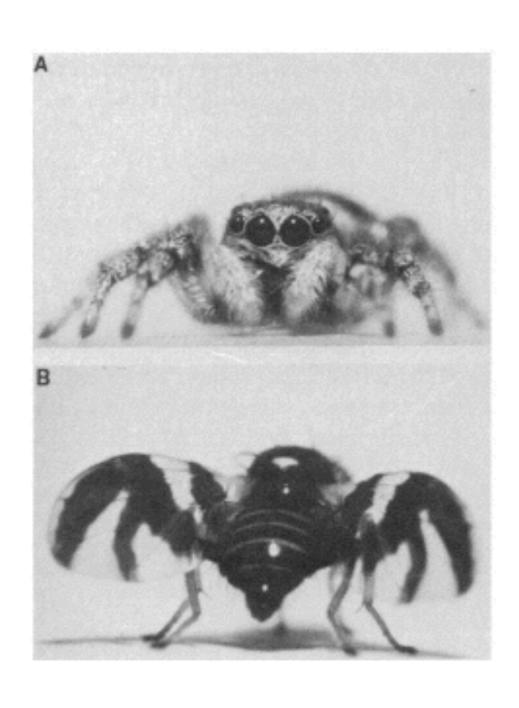


Jumping spiders do object recognition



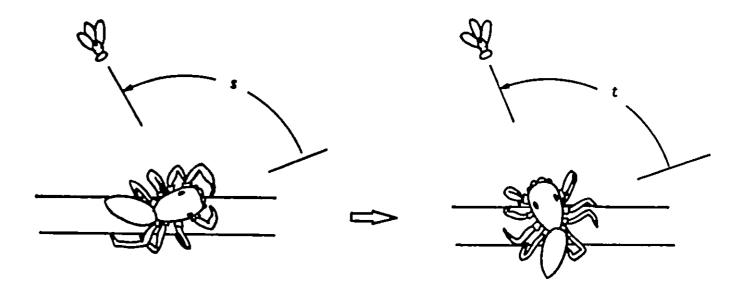
Text-fig. 12. Stimuli found by Drees to evoke courtship (a) and prey capture (b) in male jumping spiders (*Epiblemum scenicum*). The numbers beneath each figure in (a) are the percentage of trials on which courtship was evoked. After Drees (1952).

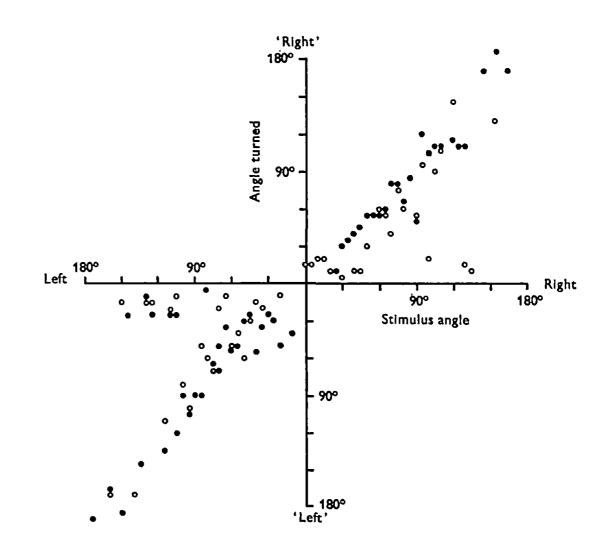
Spider mimicry in flies



Prey capture

- attention
- orienting
- tracking





Navigation

(Tarsitano & Jackson 1997)

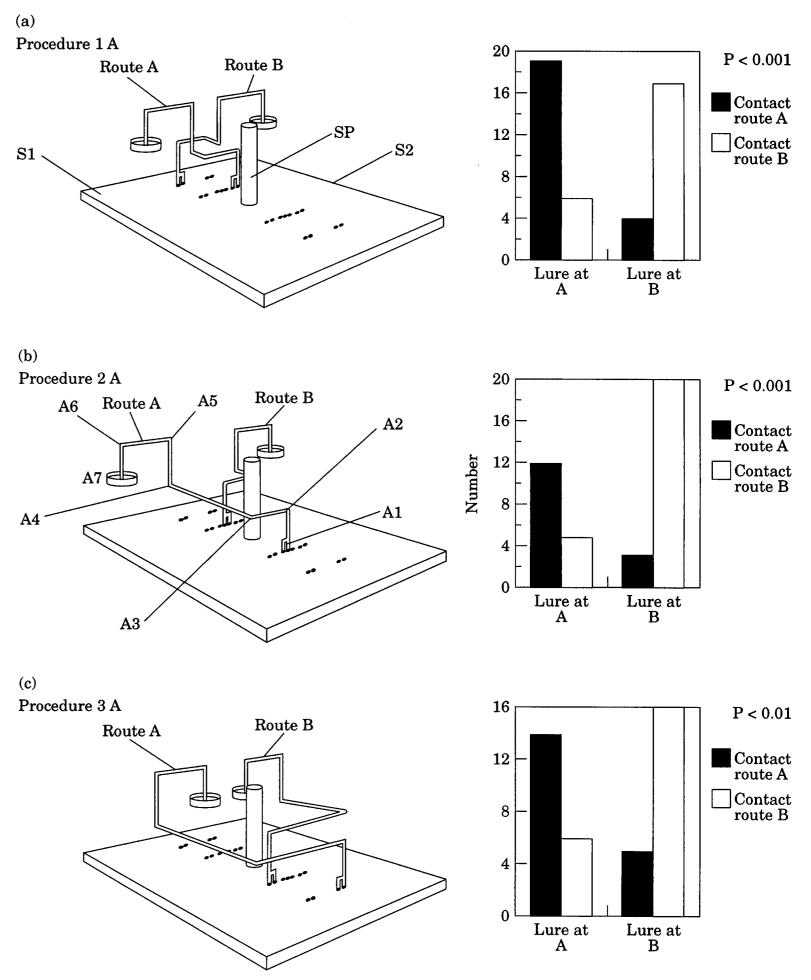
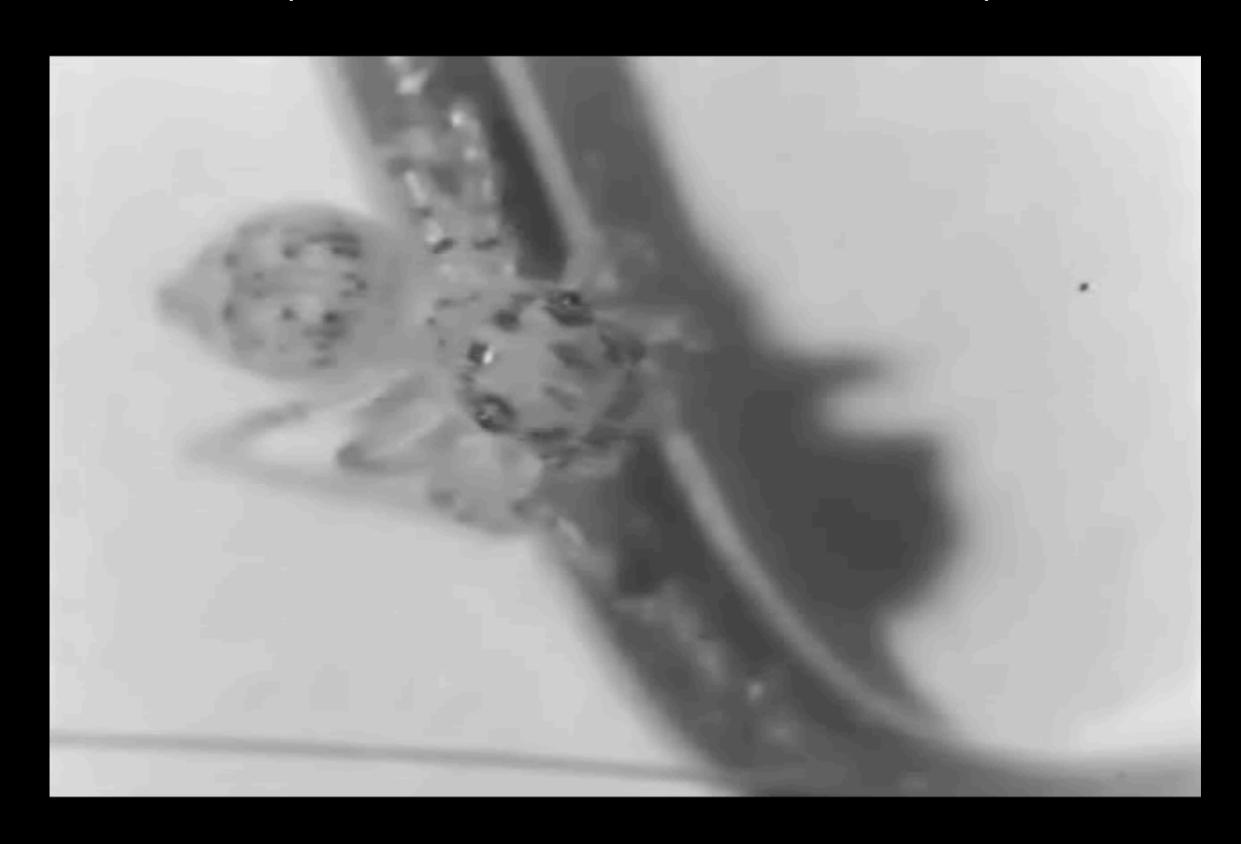


Figure 1 a-c.



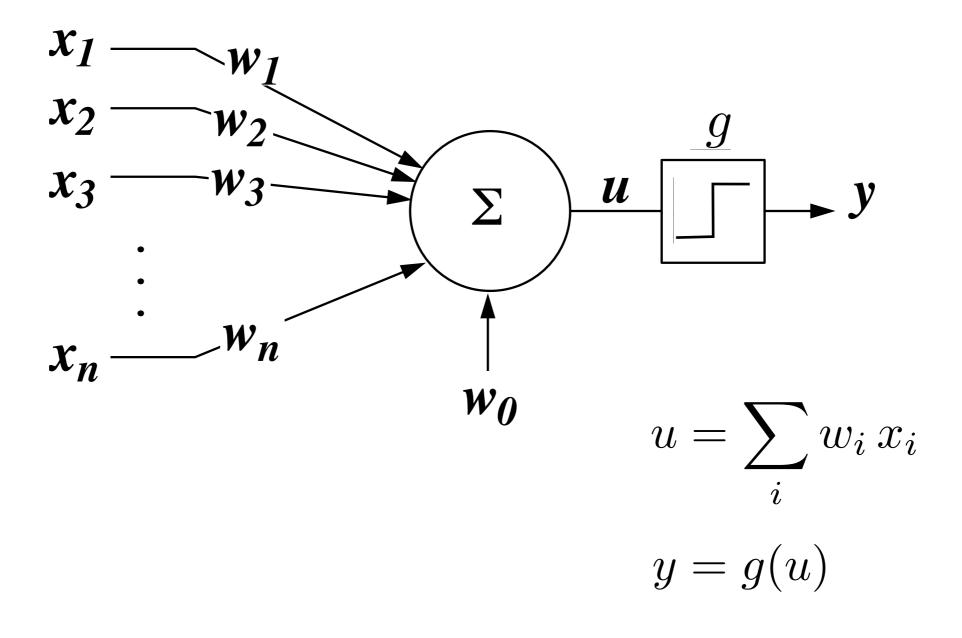
...problem solving behavior, language, expert knowledge and application, and reason, are all pretty simple once the essence of being and reacting are available. That essence is the ability to move around in a dynamic environment, sensing the surroundings to a degree sufficient to achieve the necessary maintenance of life and reproduction. This part of intelligence is where evolution has concentrated its time—it is much harder.

— Rodney Brooks, "Intelligence without representation," Artificial Intelligence (1991)

2. Nonlin	near proces	ssing in d	endritic	trees

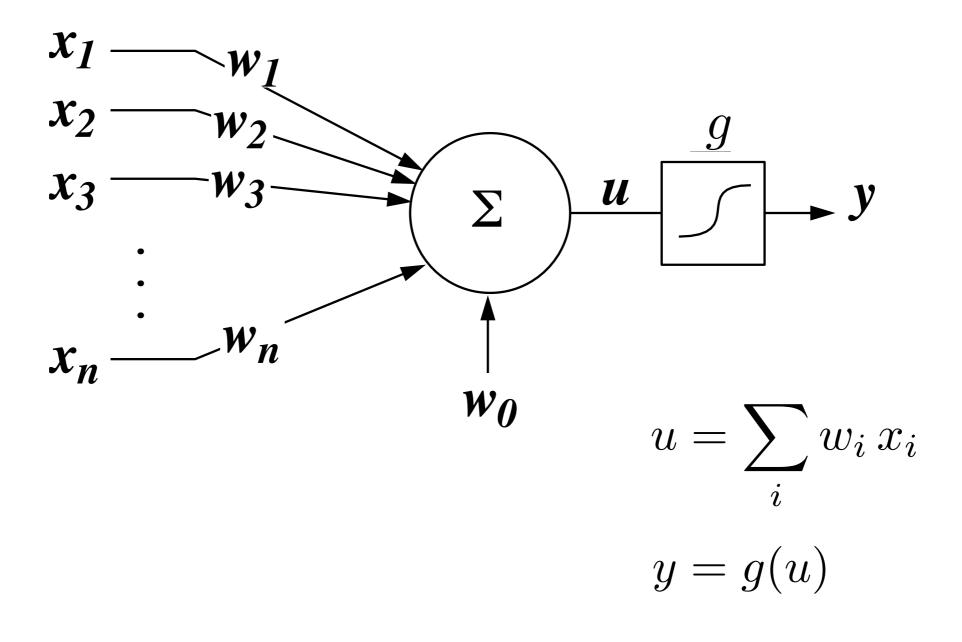
A brief history of neural networks

1960's



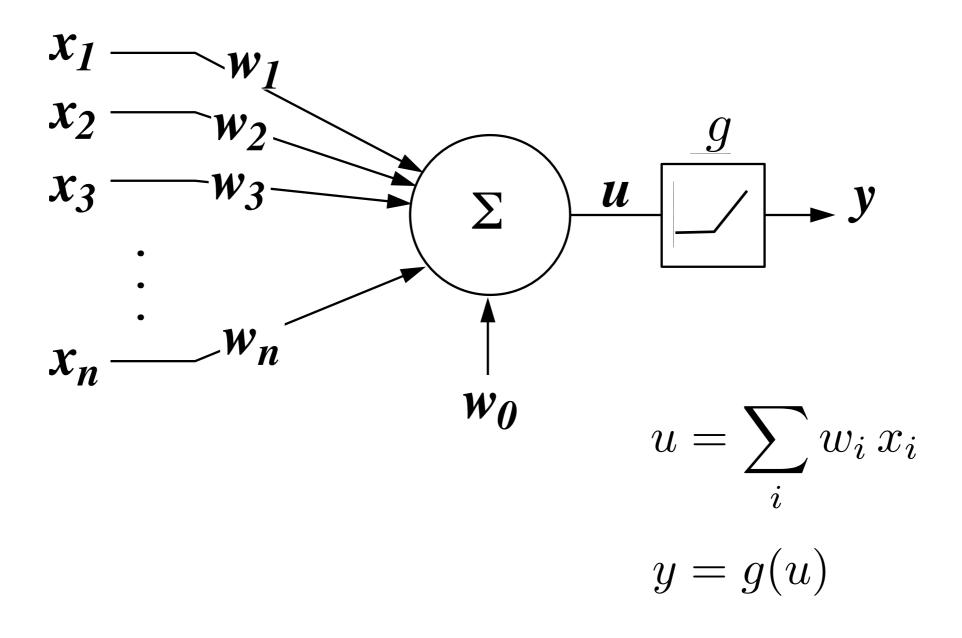
A brief history of neural networks

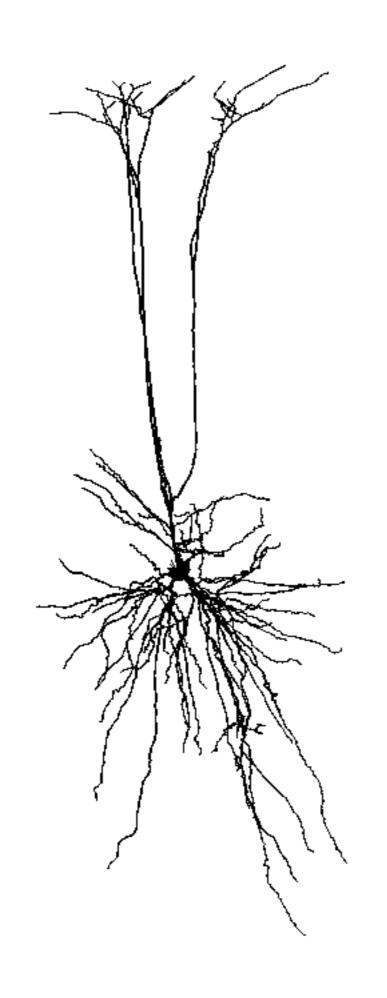
1980's



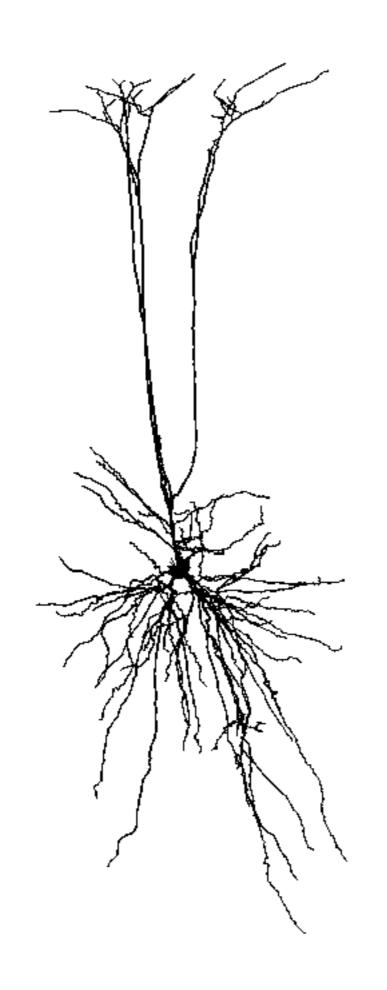
A brief history of neural networks

2000's





$$\neq g(\sum_i w_i x_i)$$



$$\sim g(\sum_{i} w_{i} \Pi_{j \in G_{i}} x_{j})$$

Bartlett Mel

Mel BW, Koch C. (1990). Sigma-pi learning: on radial basis functions and cortical associative learning. In *Advances in neural information processing systems, vol. 2*, D.S. Touretzky, (Ed.), San Mateo, CA: Morgan Kaufmann, pp. 474-481.

Mel BW. (1994). Information processing in dendritic trees. Neural Computation, 6, 1031-1085.

Polsky, A., Mel BW, Schiller J. (2004). Computational subunits in thin dendrites of pyramidal cells. *Nature Neuroscience*, *7*, 621-627.

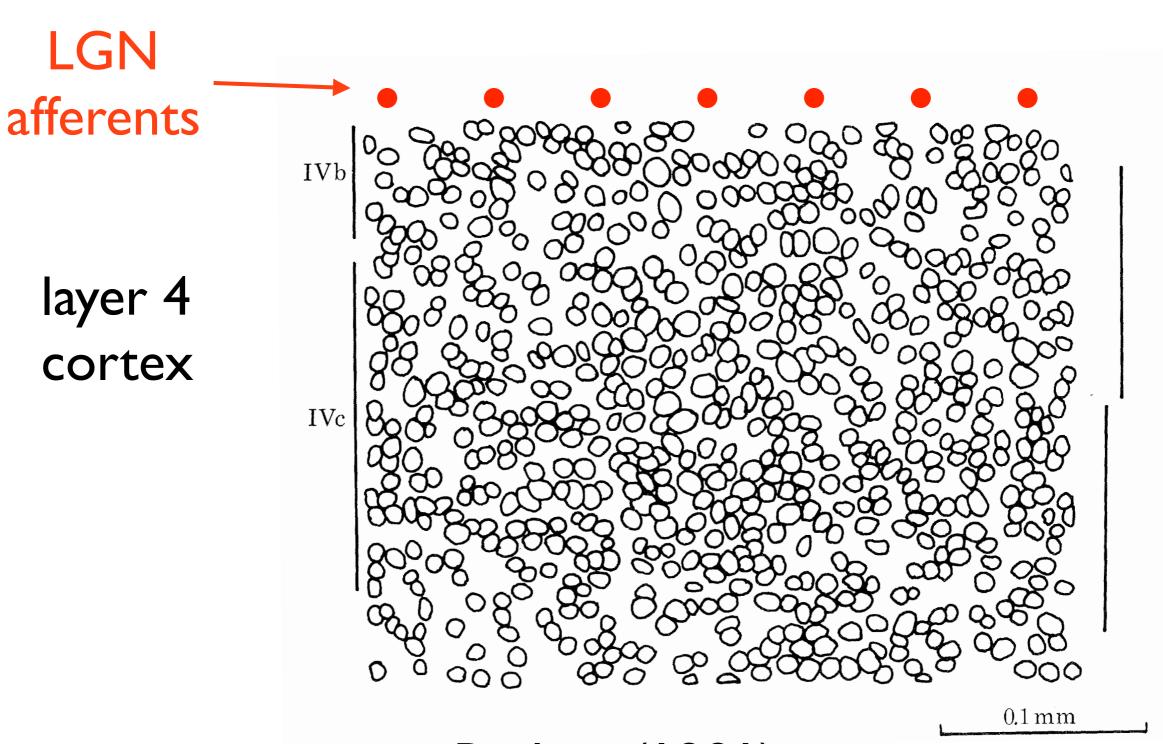
Hausser M, Mel B. (2003). Dendrites: bug or feature? *Current Opinion in Neurobiology, 13*, 372-83.

Poirazi P, Brannon T, Mel BW. (2003). Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell. *Neuron*, *37*, 977-987.

Poirazi P, Brannon T, Mel BW. (2003). Pyramidal Neuron as 2-Layer Neural Network. *Neuron*, *37*, 989-999.

3.	Sparse,	overcom	plete re	presenta	ation

VI is highly overcomplete



Barlow (1981)

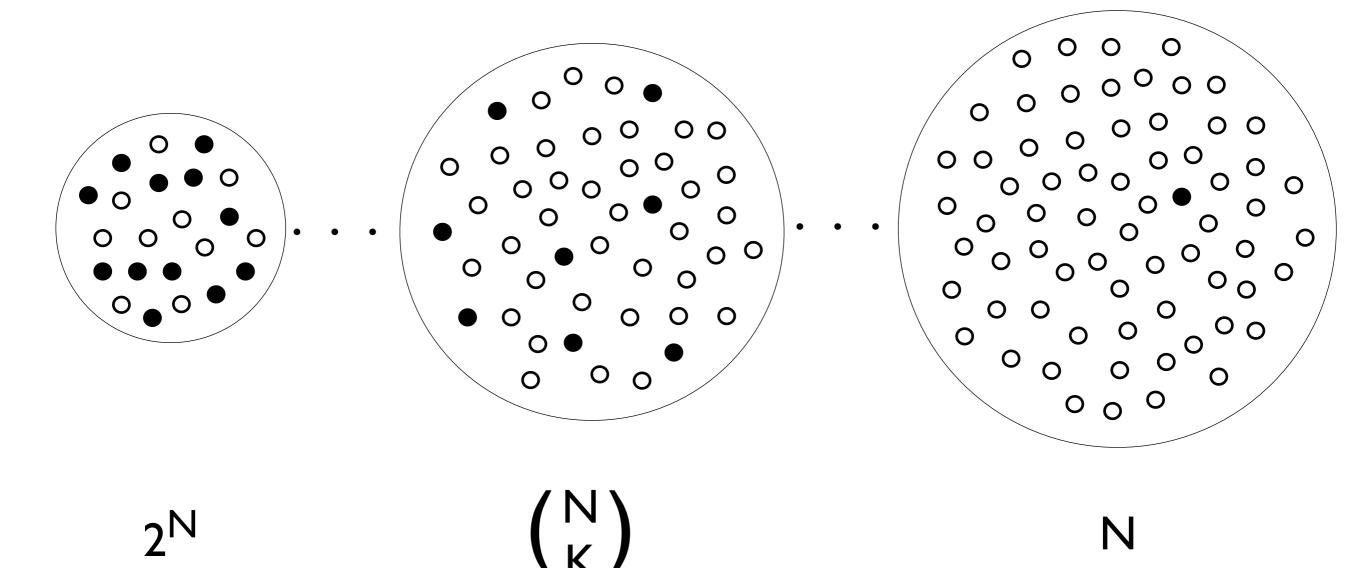
Dense codes

(e.g., ascii)

Sparse, distributed codes

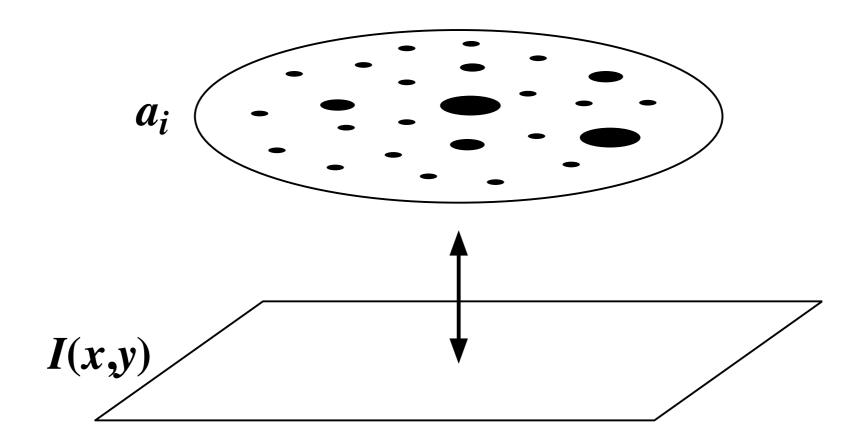
Local codes

(e.g., grandmother cells)



(From Foldiak & Young, 1995)

Sparse, distributed representation



$$I(x,y) = \sum_{i} a_i \, \phi_i(x,y) + \epsilon(x,y)$$

Energy function

$$E = \frac{1}{2} |\mathbf{I} - \Phi \mathbf{a}|^2 + \lambda \sum_i C(a_i)$$

preserve information be sparse

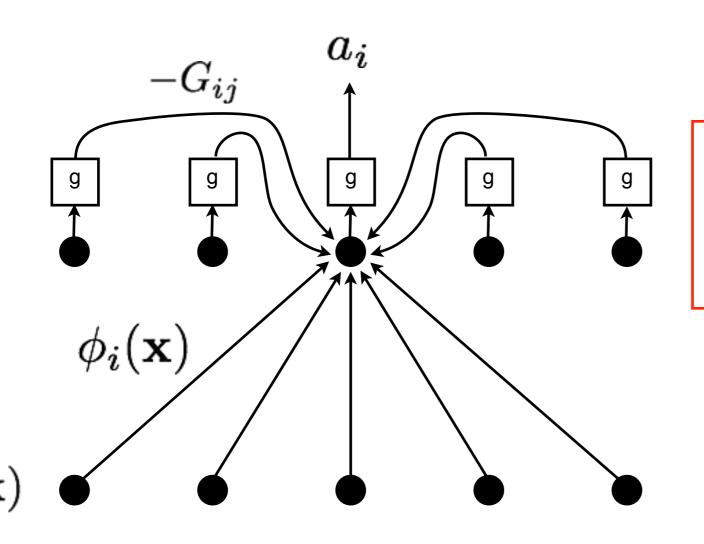
Energy function

$$E = \frac{1}{2} |\mathbf{I} - \Phi \mathbf{a}|^2 + \lambda \sum_{i} C(a_i)$$

$$-\log P(I \mid a) P(a)$$

Coefficients a_i may be computed via thresholding and lateral inhibition

('LCA' - Rozell, Johnson, Baraniuk & Olshausen, 2008)

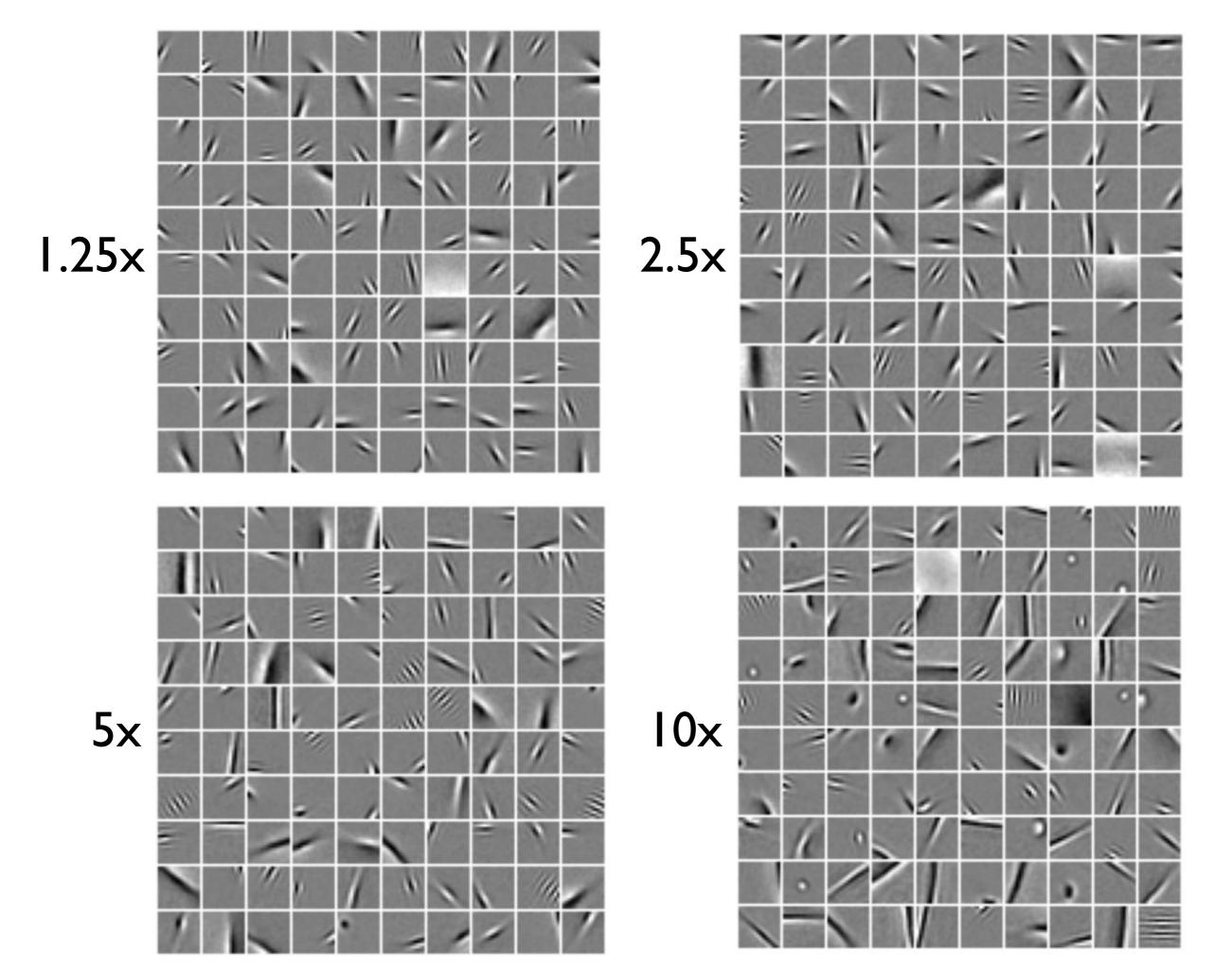


$$\tau \dot{u}_i + u_i = b_i - \sum_{j \neq i} G_{ij} a_j$$

$$a_i = g(u_i)$$

$$b_i = \sum_{\mathbf{x}} \phi_i(\mathbf{x}) I(\mathbf{x})$$

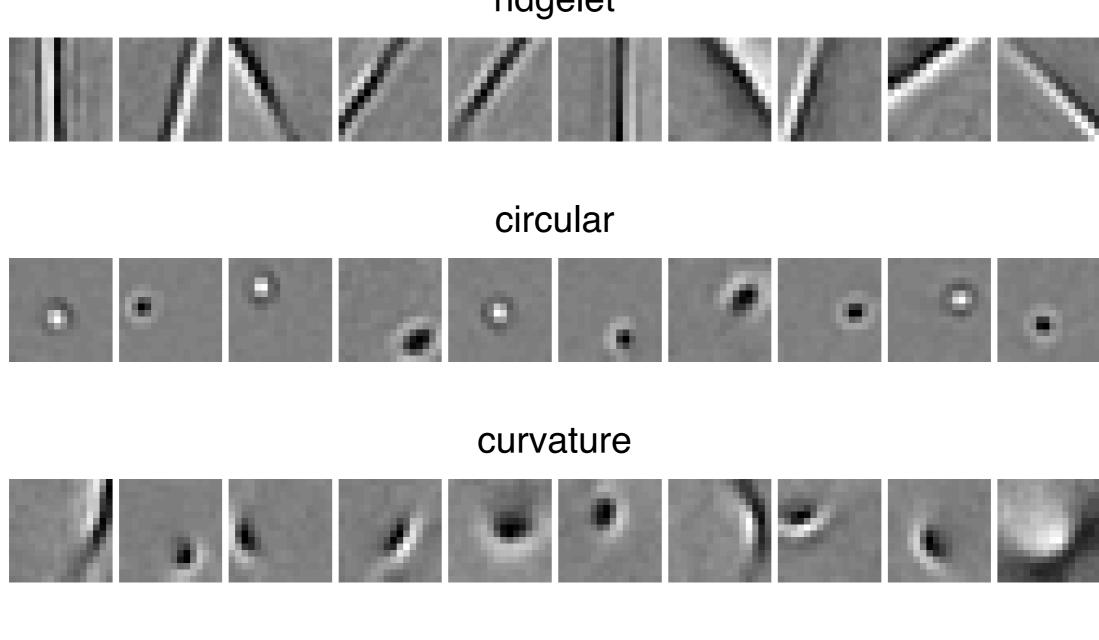
$$G_{ij} = \sum_{\mathbf{x}} \phi_i(\mathbf{x}) \, \phi_j(\mathbf{x})$$



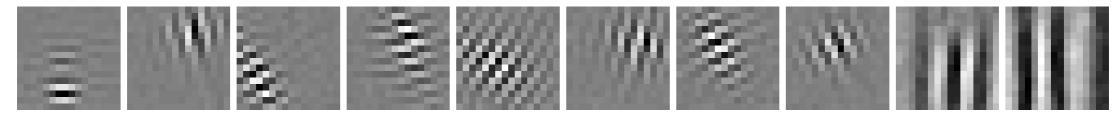
Examples from 10x dictionary

(Olshausen, 2013)

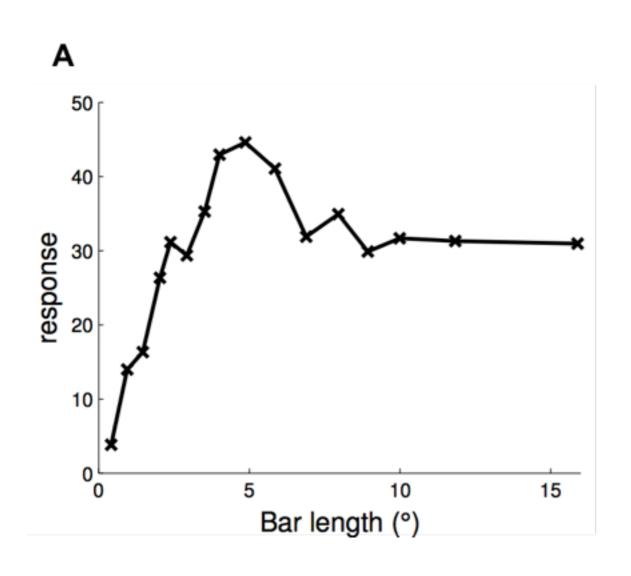
ridgelet

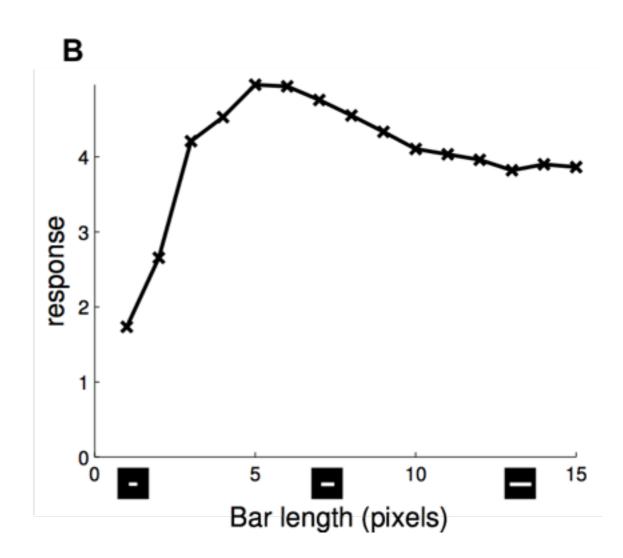


grating



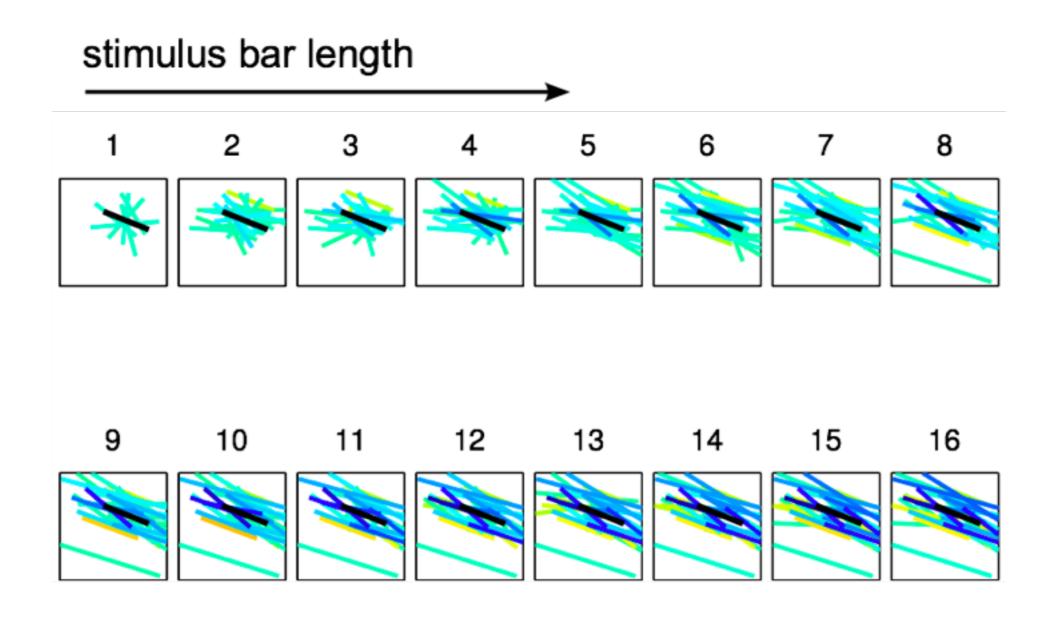
Explaining away can account for non-classical surround effects such as end-stopping (Lee et al., 2006; Zhu & Rozell, 2013)





Explaining away can account for non-classical surround effects such as end-stopping

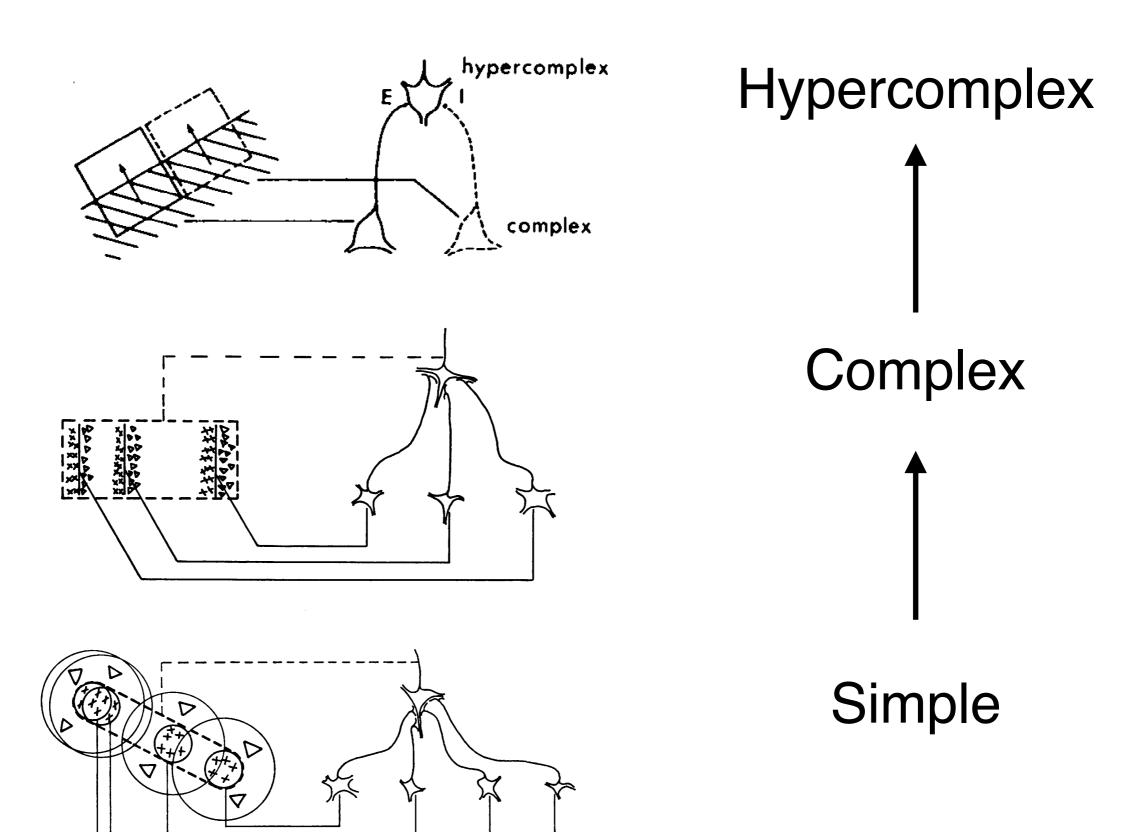
(Lee et al., 2006; Zhu & Rozell, 2013)

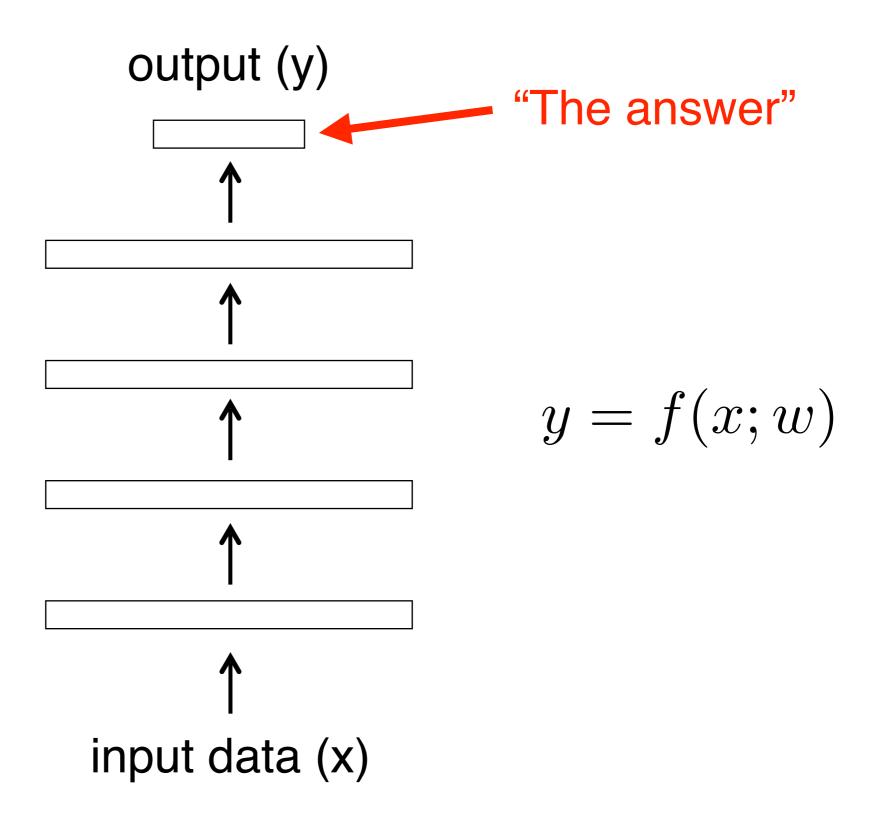


Yellow = excitatory Blue = inhibitory

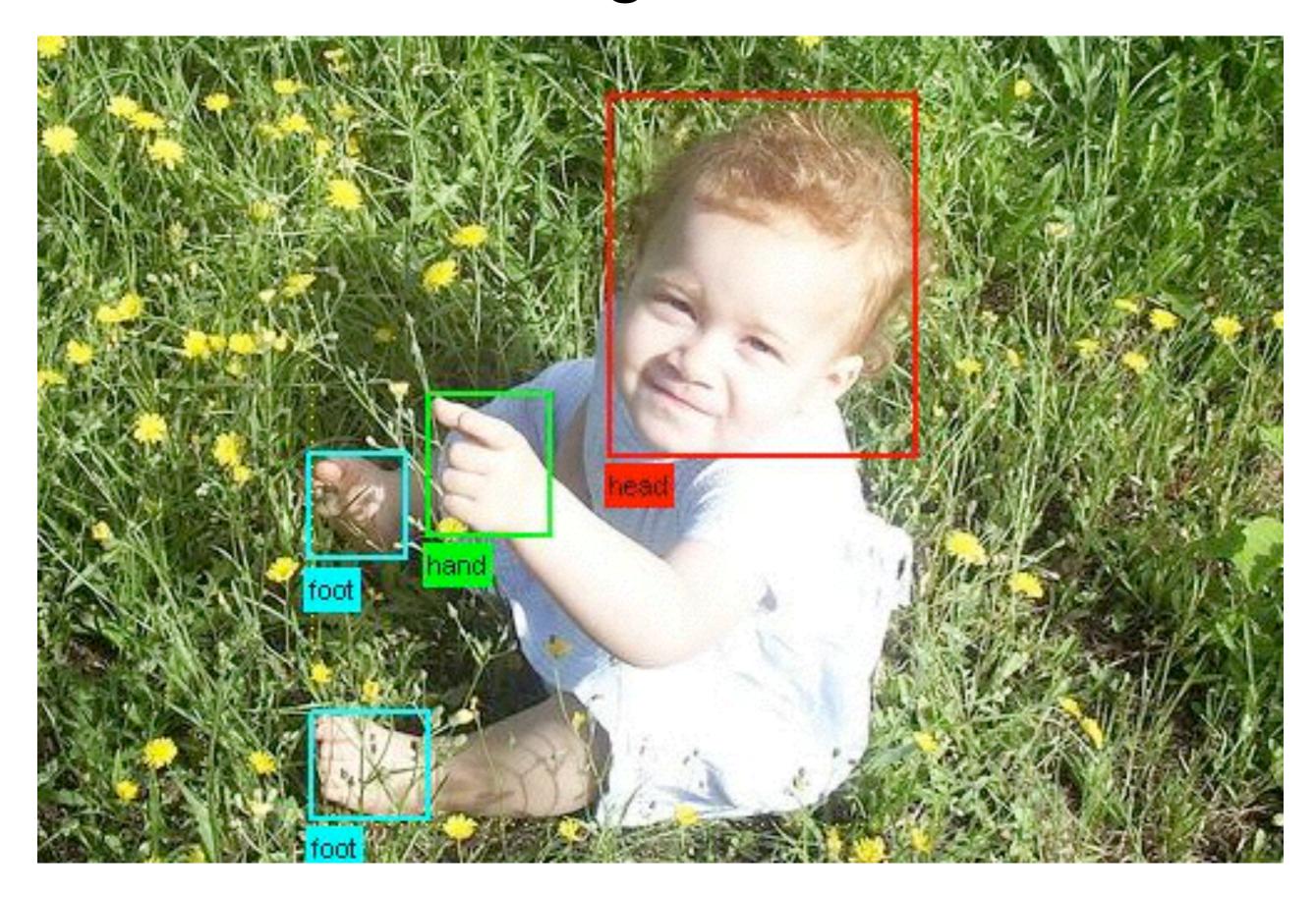
4. Feedback

Hubel & Wiesel (1962, 1965)

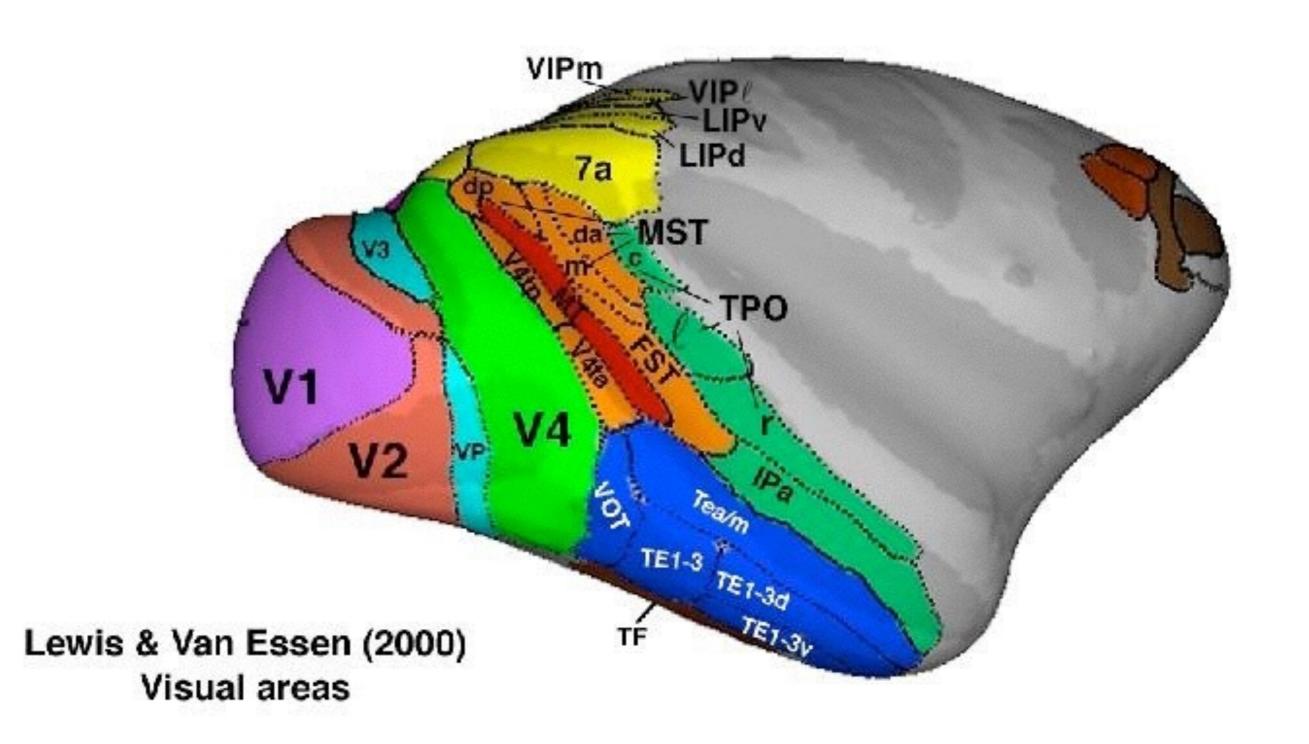


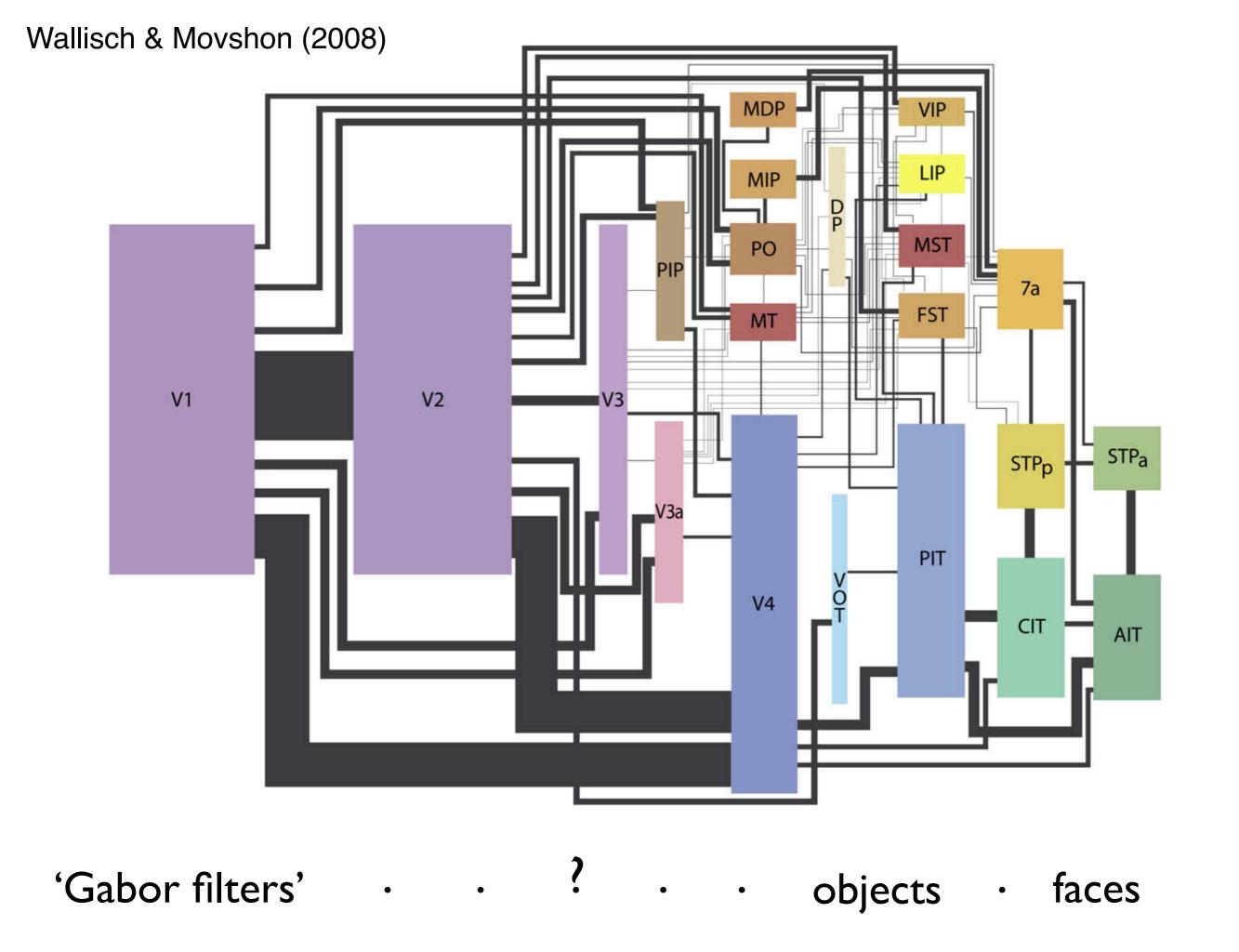


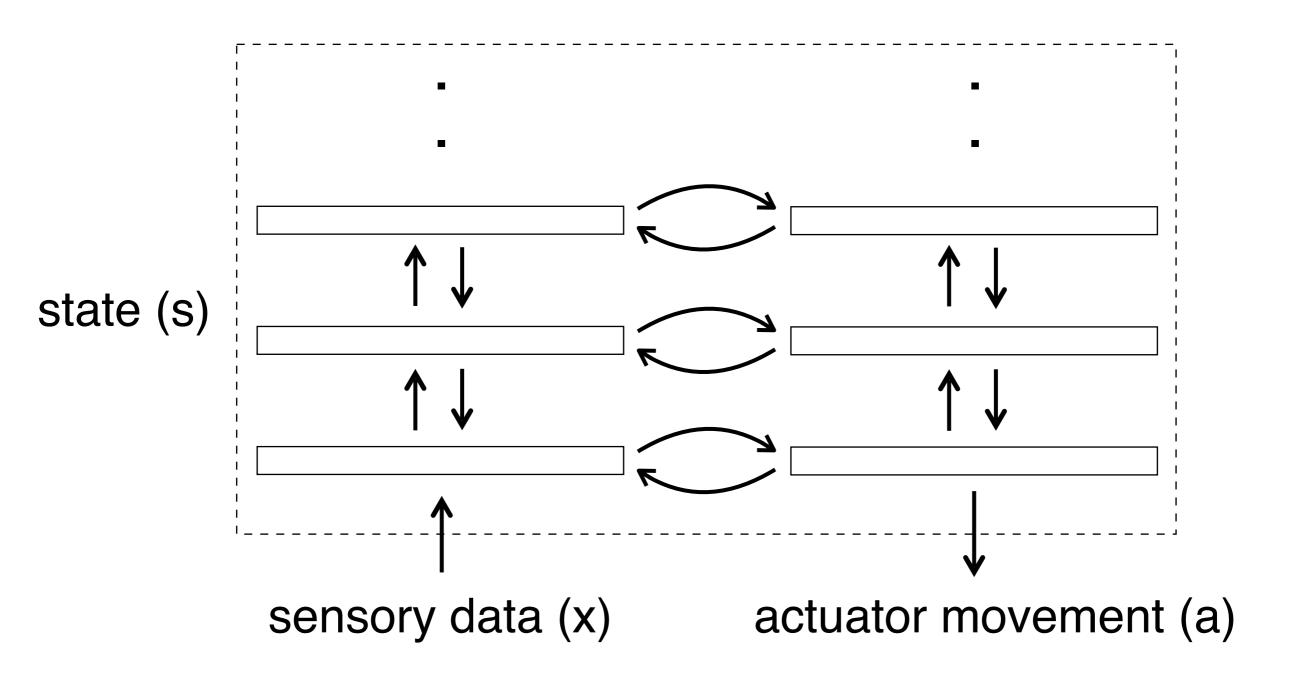
Is this the goal of vision?



Primate visual cortex



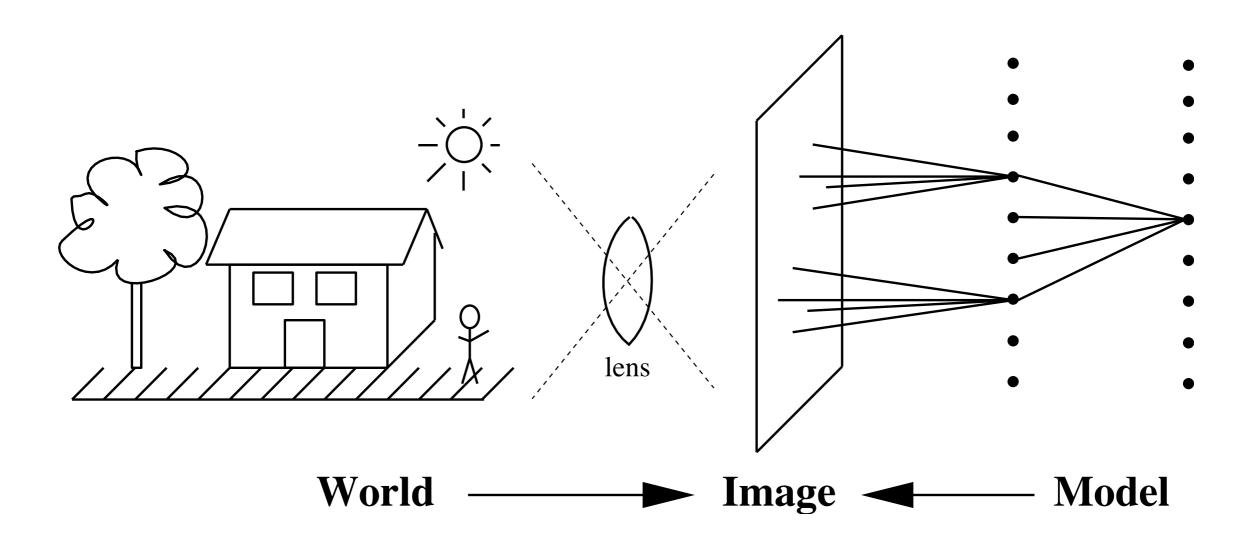




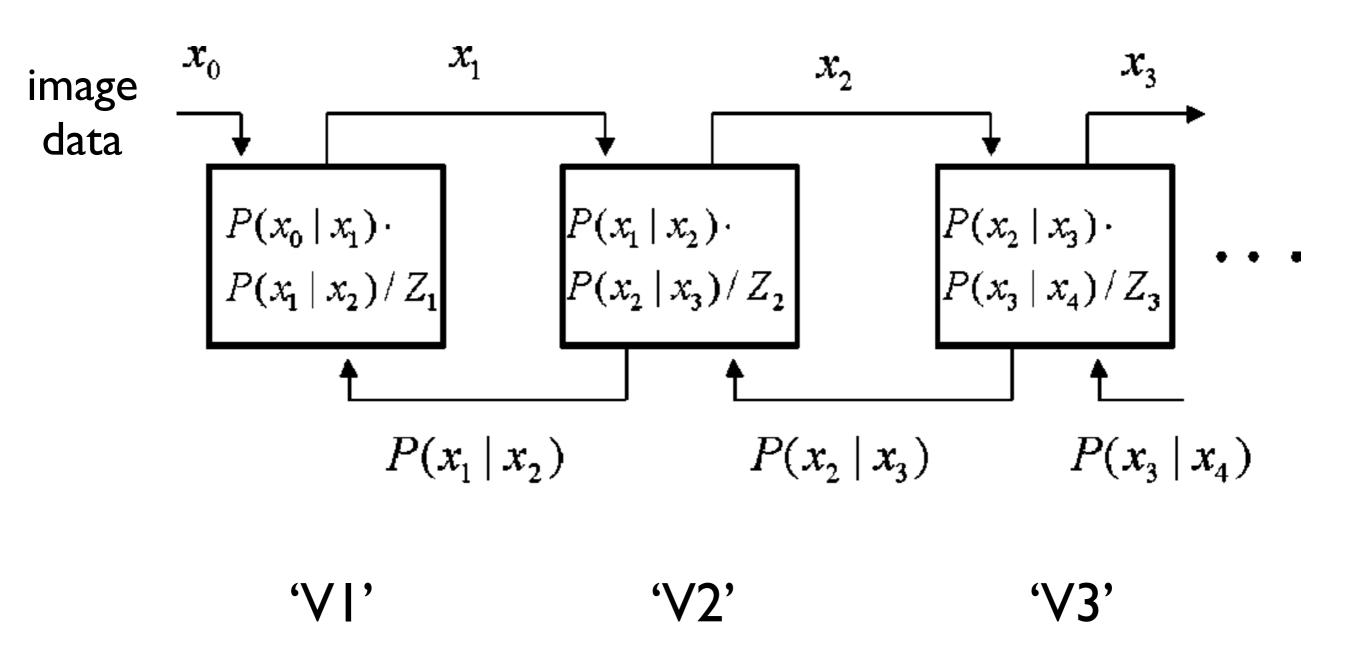
$$\tau \dot{s} + s = g(s, x, a; w)$$

$$a = f(s)$$

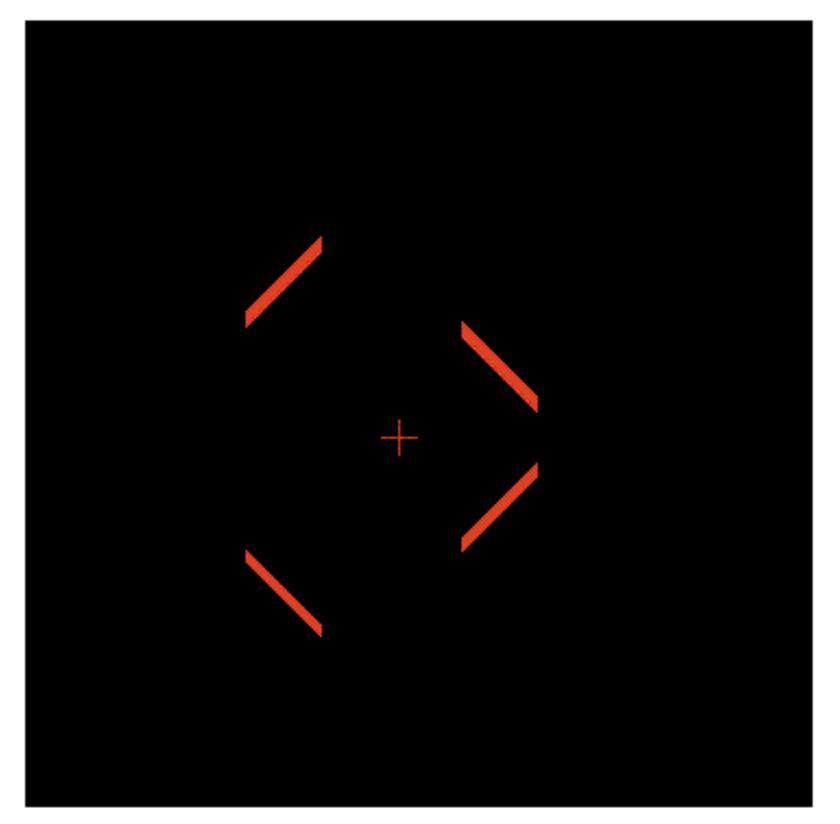
Vision as inference



Hierarchical Bayesian inference in visual cortex (Lee & Mumford, 2003)

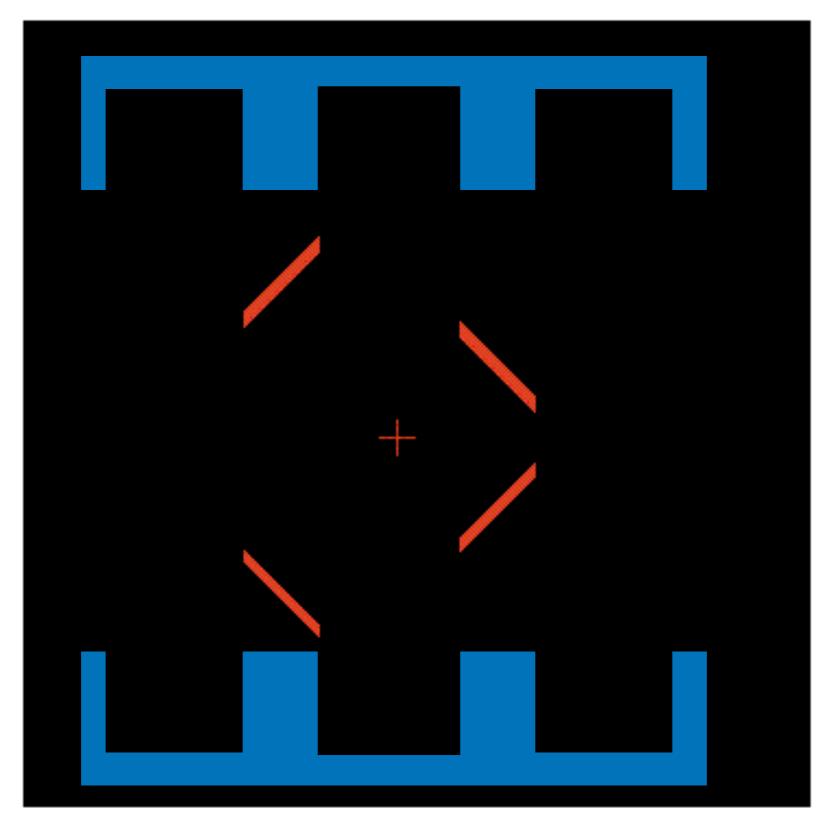


What do you see?



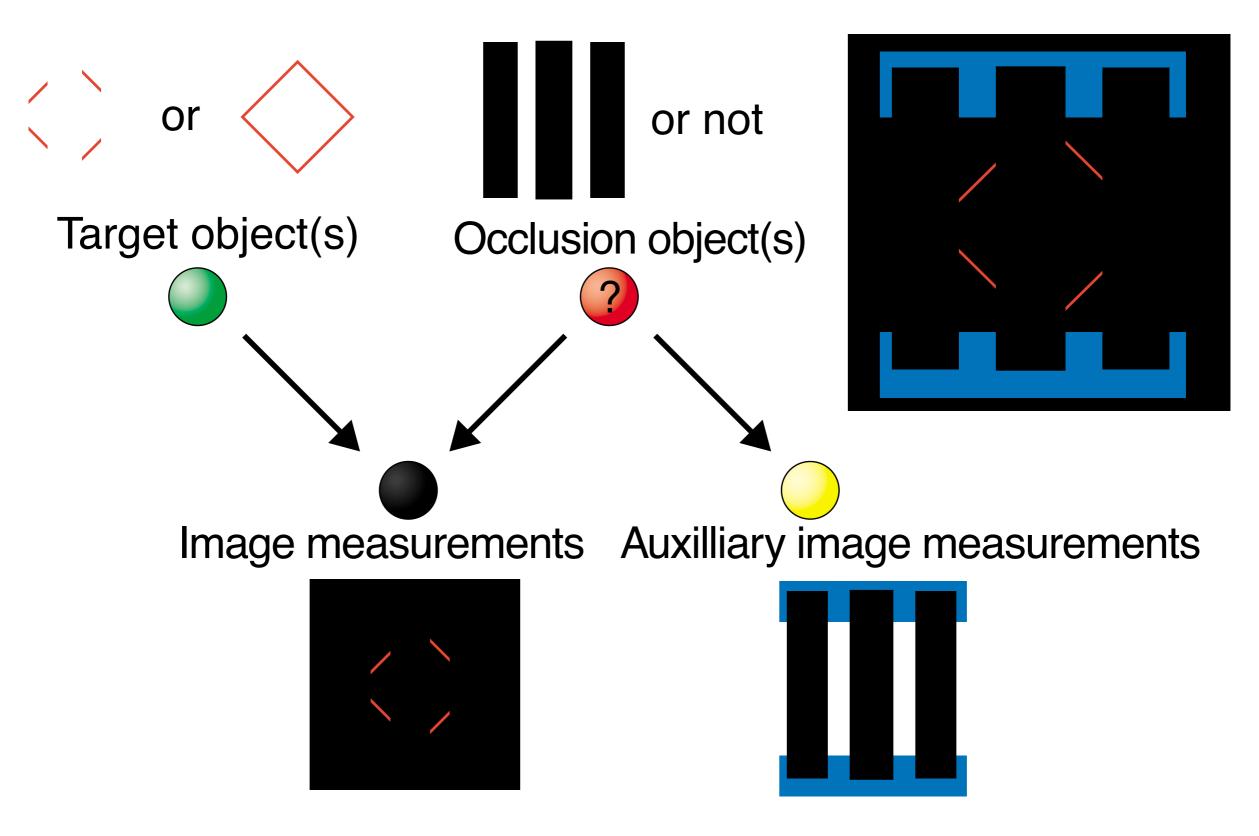
Lorenceau & Shiffrar (1992); Murray, Kersten, Schrater, Olshausen & Woods (2002)

What do you see?



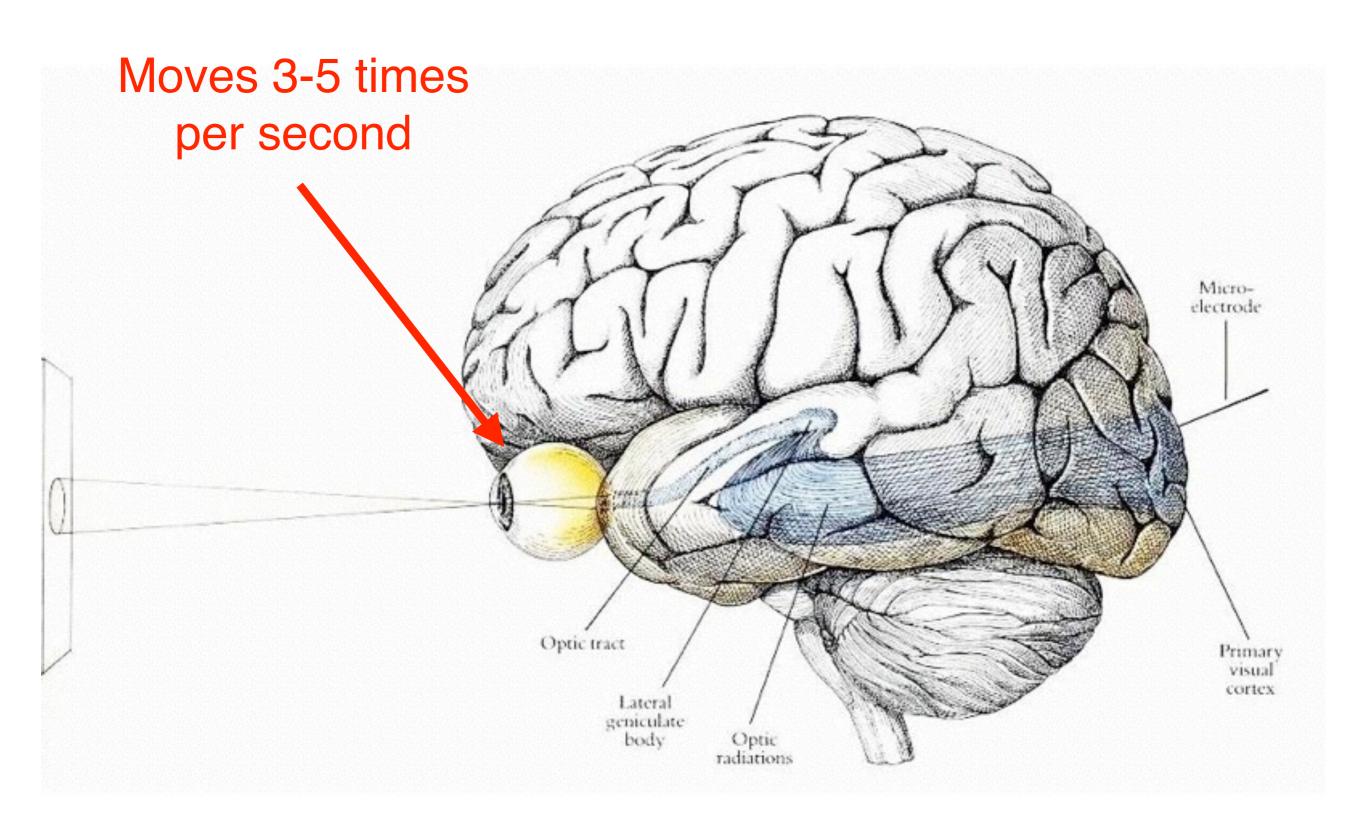
Lorenceau & Shiffrar (1992); Murray, Kersten, Schrater, Olshausen & Woods (2002)

Perceptual "explaining away"

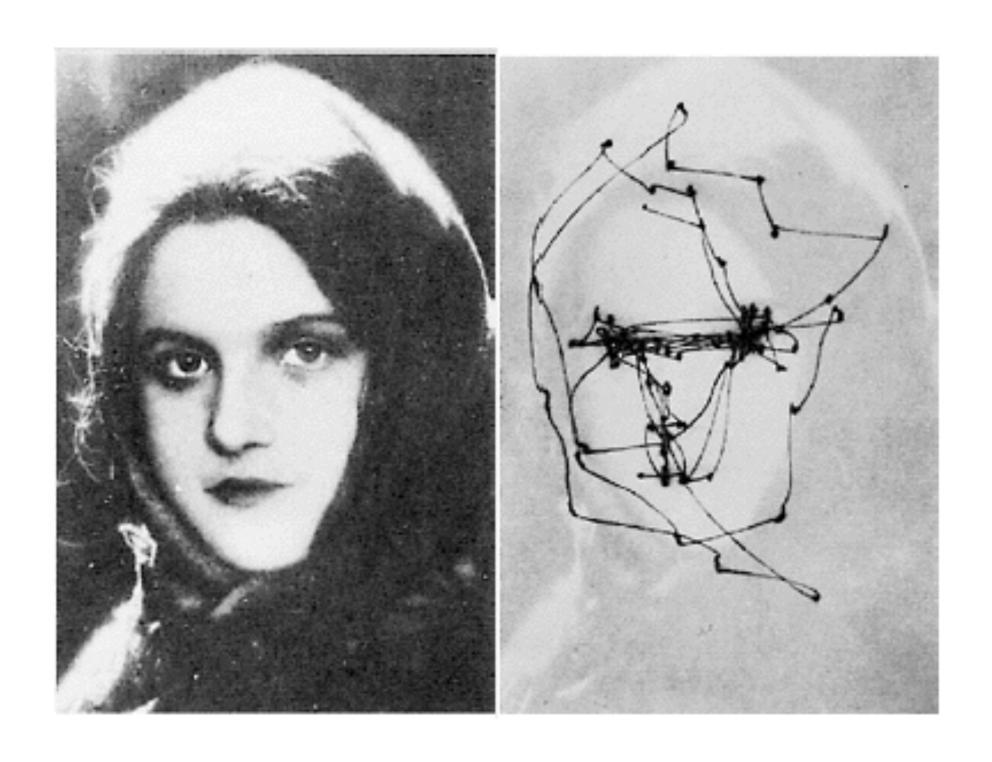


(Kersten & Yuille, 2003)

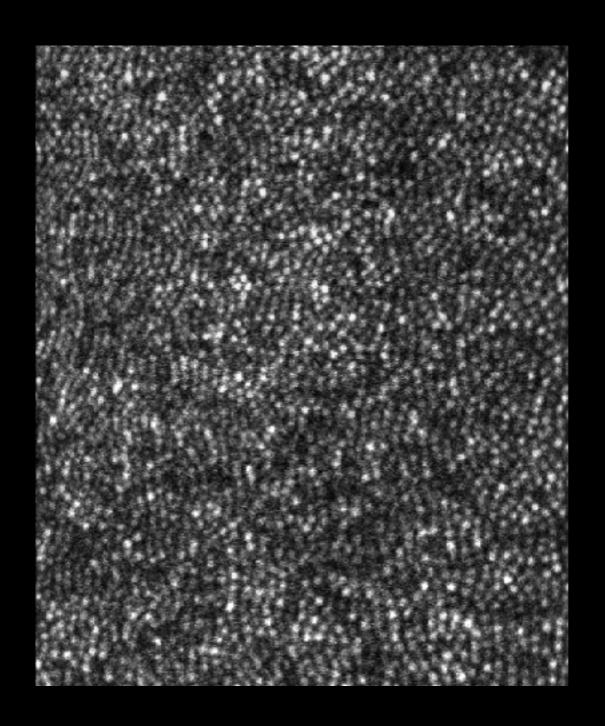
5. Active perception



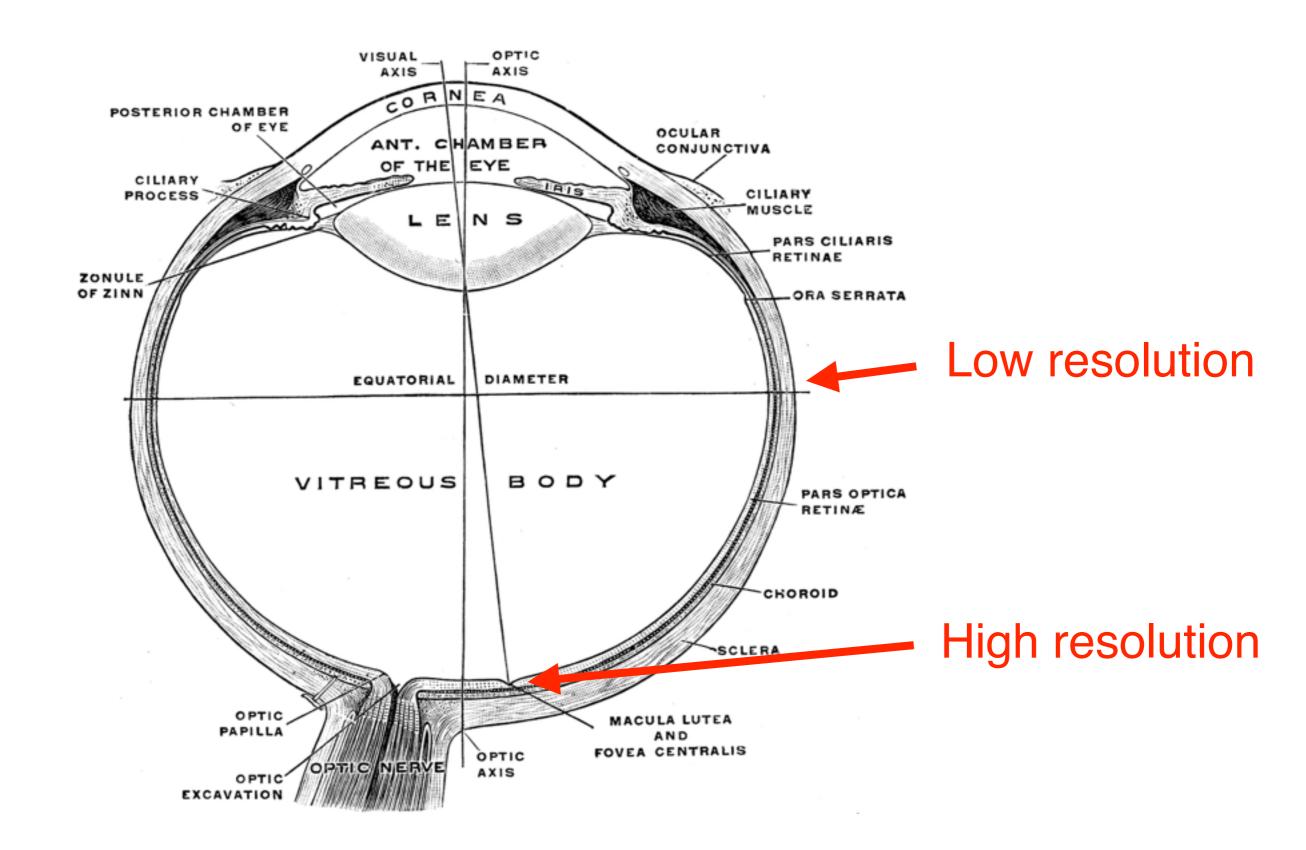
Human eye movements during viewing of an image



Fixational eye movements (drift)

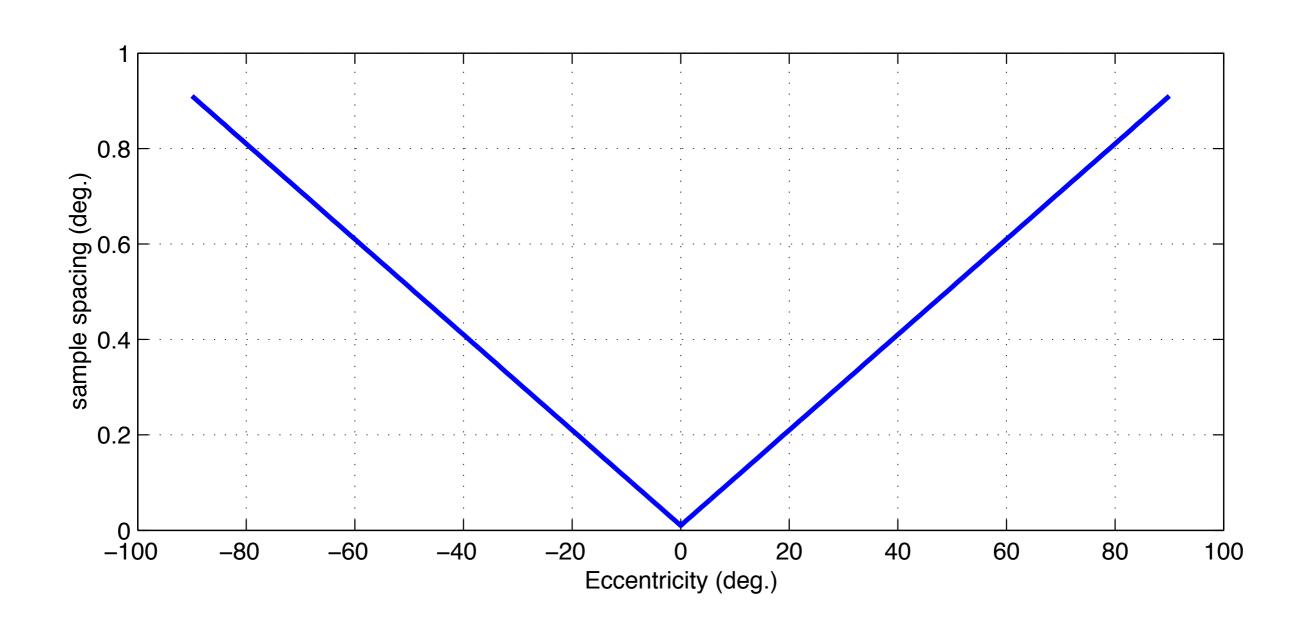


(eye movement data from Austin Roorda, UC Berkeley)

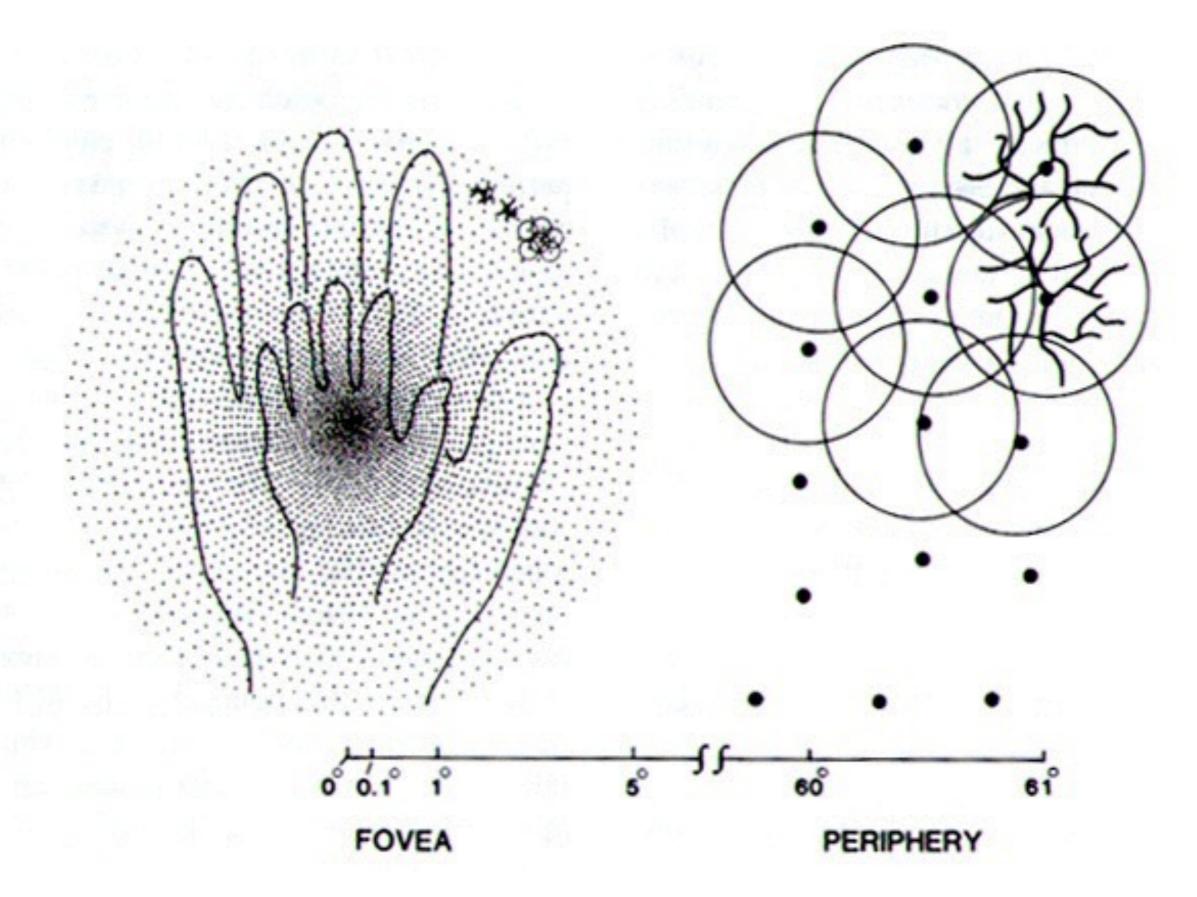


Retinal ganglion cell spacing as a function of eccentricity

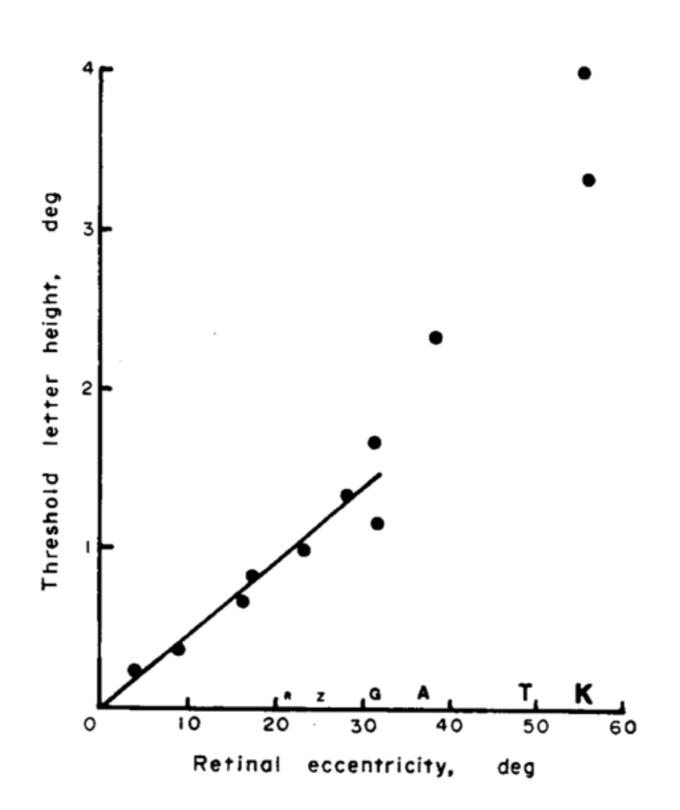
$$\Delta E \approx .01(|E|+1)$$



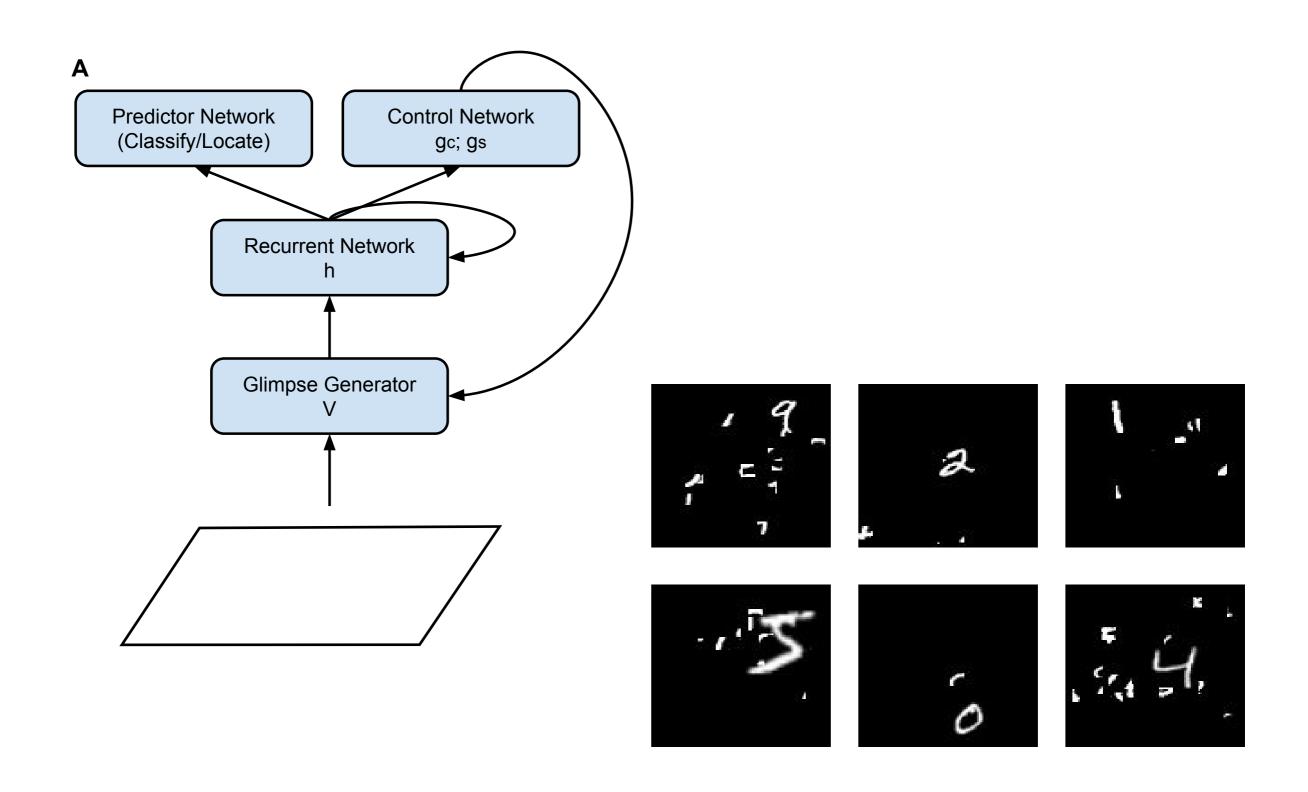
Retinal ganglion cell sampling lattice (shown at one dot for every 20 ganglion cells)



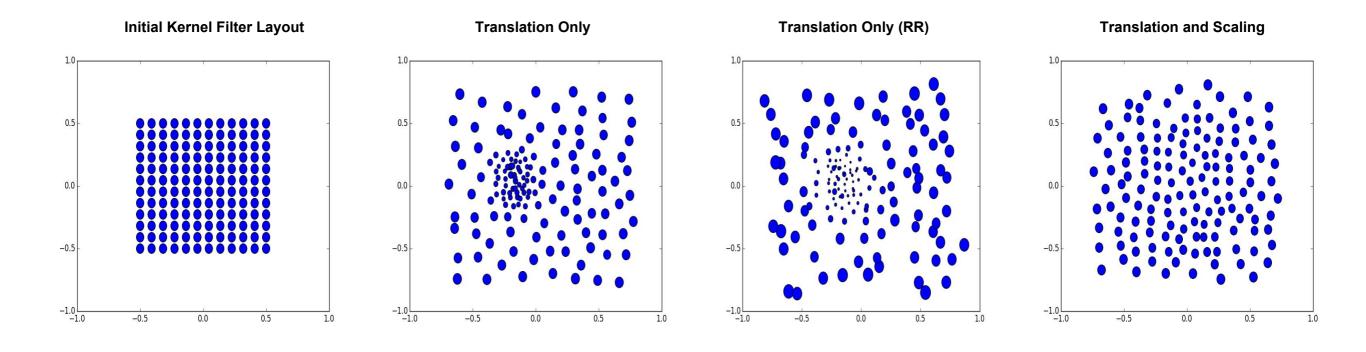
Minimal letter size required for recognition as a function of eccentricity (Anstis, 1974)



Learning the sampling lattice (Brian Cheung, Eric Weiss)



Learned glimpse window sampling lattices



Five lessons from biology

- Tiny brains
- Nonlinear processing in dendritic trees
- Sparse, overcomplete representations
- Feedback
- Active perception

20 years of learning about vision: Questions answered, questions unanswered, and questions not yet asked. In: 20 Years of Computational Neuroscience. J.M. Bower, Ed. (Symposium of the CNS2010 annual meeting)

Lewicki MS, Olshausen BA, Surlykke A, Moss CF (2014) Scene analysis in the natural environment. *Frontiers in Psychology, 5*, article 199.

Olshausen BA (2014) Perception as an inference problem. In: *The Cognitive Neurosciences V*, M. Gazzaniga, R. Mangun, Eds. MIT Press.

http://redwood.berkeley.edu/bruno