# **Targeted PDF Learning**

John Shawe-Taylor
Centre for Computational Statistics
and Machine Learning
University College London

jst@cs.ucl.ac.uk

Joint work with Alex Dolia and Tijl De Bie
July, 2006

#### **Motivation**

- 1. Challenge of PDF Learning: impossible in the  $L_1$  sense Batu et al.
- 2. Success with learning for one task
- 3. Compromise: aim to learn for set of tasks that might arise
- 4. Needs new framework but first motivational applications

#### One class vs PDF learning

- Mukherjee and Vapnik added constraints to the one class SVM to fit the cumulative distribution up to data points to the estimated distribution.
- What happens if we only add some of the constraints but see how well we do on all of them? Maybe we don't need to include all the constraints?

## One class vs PDF learning



- Note how only a small number of constraints is sufficient to significantly reduce the loss
- Curve then levels off as more constraints are added (note shifted axes)

#### **Touchstone Class**

A *Touchstone class* for learning a probability density function (pdf) on a measurable space  $\mathfrak{X}$  is

- a class of measurable real-valued functions  $\mathfrak{F}$  on  $\mathfrak{X}$  with a distribution  $P_{\mathfrak{F}}$  defined over  $\mathfrak{F}$ .
- Given an unknown pdf function p, the  $error err(\hat{p})$  of an approximate pdf function  $\hat{p}$  is defined as

$$\operatorname{err}(\hat{p}) = \mathbb{E}_{f \sim P_{\mathfrak{F}}}[\ell(\mathbb{E}_p[f], \mathbb{E}_{\hat{p}}[f])],$$

• where  $\ell$  is a loss function such as the absolute value, its square or an  $\epsilon$ -insensitive version of either — could also be an  $\epsilon$ -insensitive classification

## **Examples**

- Mukherjee and Vapnik: F are indicator functions of downward closed sets - could also be Kolmogorov and Smirnov in 1 dimension
- 2. Generalise to indicator functions of a class of sets: A-distance of He, Ben-David and Tong
- 3. Marginals of sets of variables. Typically two processes: estimating probabilities of the model and performing inference. Approach can be used to combine the two see next slide

#### **Example 3**

Consider a distribution over  $\{0,1\}^n$ . The touchstone class  $\mathfrak{F}_{\mathfrak{I}}$  is taken as a set of 'projection' functions  $\pi_{\mathbf{i},\mathbf{v}}$  onto subsets  $\mathbf{i} = \{i_1,\ldots,i_{|\mathbf{i}|}\} \in \mathfrak{I}$  of variables drawn from a set  $\mathfrak{I} \subseteq 2^{\{1,\ldots,n\}}$  with prescribed values  $\mathbf{v} \in \{0,1\}^{|\mathbf{i}|}$ 

$$\begin{split} \mathcal{F}_{\mathcal{I}} &= \left\{ \pi_{\mathbf{i},\mathbf{v}} \colon \mathbf{i} \in \mathcal{I}, \mathbf{v} \in \{0,1\}^{|\mathbf{i}|} \right\}, \text{ where} \\ \pi_{\mathbf{i},\mathbf{v}}(\mathbf{x}) &= \left\{ \begin{array}{l} 1 & \text{if } \mathbf{x}_{i_j} = \mathbf{v}_j, \text{ for } j = 1, \dots, |\mathbf{i}|, \\ 0; & \text{otherwise.} \end{array} \right. \end{split}$$

For this case the expectation  $\mathbb{E}_p[\pi_{\mathbf{i},\mathbf{v}}]$  is the marginal for the variables indexed by  $\mathbf{i}$  set to the values  $\mathbf{v}$ .

#### Distribution of $\mathcal{P}_{\mathfrak{F}}$

- In example 1 derived from input distribution but in general would be unrelated.
- It should encode our prior belief about which functions are most likely to arise in practice.
- If we simply wish to be good at all the functions we should use a uniform distribution
- Using an epsilon insensitive classification loss makes it possible to interpret the error as a probability that a randomly drawn function will be estimated with accuracy less than *ϵ*

# Theory of learning

- $\hat{p} \in \mathcal{P}$  is an  $\epsilon$ -approximation of the true density p with respect to the Touchstone Class  $\mathcal{F}$ , if  $\operatorname{err}(\hat{p}) \leq \epsilon$
- $\mathcal P$  is learnable if there is an algorithm  $\mathcal A$  such that given any  $p\in \mathcal P$ ,  $\epsilon>0$  and  $\delta>0$ ,  $\mathcal A$  given a sample of m i.i.d. points where m is polynomial in  $\frac{1}{\epsilon}$  and  $\frac{1}{\delta}$ , returns an estimate  $\hat p\in \mathcal P$  that with probability  $1-\delta$  is an  $\epsilon$ -approximation of p
- For a class T of distributions and a Touchstone Class T of functions we define the T-derived class of functions to be

$$\mathfrak{P}_{\mathfrak{F}} = \{ f \in \mathfrak{F} \mapsto \mathbb{E}_p[f] : p \in \mathfrak{P} \}.$$

#### First result

**Theorem 1.** Let  $\mathfrak F$  and  $\mathfrak P$  be such that there exists a polynomial Q with the property that for  $m \geq Q(1/\epsilon)$ ,

$$R_m(\mathfrak{P}_{\mathfrak{F}}) \leq \epsilon$$
,

where the associated symmetric loss function  $\ell$  has range [0,1], satisfies the triangle inequality and is Lipschitz continuous with constant L. Then an algorithm that can select a function from  $\mathfrak{P}_{\mathfrak{F}}$  that minimises the empirical  $\ell$  loss can learn  $\mathfrak{P}$  with respect to the function class  $\mathfrak{F}$ .

## Support vector density estimation

A kernel  $\kappa$  normalised:  $\int_{\mathcal{X}} \kappa(\mathbf{x}, \mathbf{z}) d\mathbf{x} = 1$ .

The standard choice for  $\kappa$  is a normalised Gaussian

$$\kappa(\mathbf{x}, \mathbf{z}) = \frac{1}{\left(\sqrt{2\pi\sigma}\right)^d} \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

If we now consider learning a density function in a dual representation  $q(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i \kappa(\mathbf{x}_i, \mathbf{x})$ , the constraint  $\sum_{i=1}^{m} \alpha_i = 1$  ensures that the density is correctly normalised,

The corresponding space  $\mathcal{P}_{\mathfrak{F}}(B)$  is given by

$$\mathcal{P}_{\mathcal{F}}(B) = \left\{ q_{\mathbf{w}} : f \mapsto \mathbb{E}_{q_{\mathbf{w}}}[f] \middle| \|\mathbf{w}\| \le B, q_{\mathbf{w}}(\mathcal{X}) = 1 \right\}.$$

## **Optimisation problem**

$$\begin{split} \min_{\alpha,\xi} & \quad \sum_{i,j=1}^{m_x} \alpha_i \alpha_j \kappa(\mathbf{x}_i, \mathbf{x}_j) + D \sum_{j=1}^{m_f} \xi_j \\ \text{subj to} & \quad \sum_{i=1}^{m_x} \alpha_i = 1 \\ & \quad \ell \left( \sum_{i=1}^{m_x} \alpha_i \int_{\mathfrak{X}} \kappa(\mathbf{x}_i, \mathbf{x}) f_j(\mathbf{x}) d\mathbf{x}, \frac{1}{m_x} \sum_{i=1}^{m_x} f_j(x_i) \right) \leq \xi_j \\ & \quad \text{and} & \quad \xi_j \geq 0 \text{ for } j = 1, \dots, m_f, \\ & \quad \alpha_i \geq 0 \text{ for } i = 1, \dots, m_x. \end{split}$$

#### **Bounding SVDE**

**Theorem 2.** The empirical Rademacher complexity of  $\mathcal{P}_{\mathfrak{F}}(B)$  on the sample  $\{f_1, \ldots, f_{m_f}\}$  is bounded by

$$\hat{R}_{m_f}(\mathcal{P}_{\mathcal{F}}(B)) \le \frac{2B}{m_f} \sqrt{\sum_{i=1}^{m_f} \min\left(C_{\kappa}^2 ||f_i||_{L_1}^2, ||f_i||_{L_1} ||f_i||_{L_{\infty}}\right)}.$$

where

$$C_{\kappa} := \sup_{\mathbf{z}, \mathbf{z}'} \sqrt{\kappa(\mathbf{z}, \mathbf{z}')} = \sqrt{\kappa(\mathbf{x}, \mathbf{x})}$$
 for all  $\mathbf{x}$ .

## **Bounding SVDE**

**Theorem 3.** Suppose that we learn a pdf function based on a sample of  $m_x$  inputs and  $m_f$  sample functions from the space  $\mathfrak{F}$ . Then with probability at least  $1-\delta$  over the generation of the two samples we can bound the error of  $\hat{p} \in \mathfrak{P}_{\mathfrak{F}}(B)$  by

$$\begin{aligned} \textit{err}(\hat{p}) & \leq & L\sqrt{\frac{2}{m_x}}\ln\frac{4m_f}{\delta} + \hat{\mathbb{E}}_f[\ell(\mathbb{E}_{\hat{p}}[f], \hat{\mathbb{E}}_x[f])] + \\ & \frac{2BC_{\kappa}}{m_f}\sqrt{\sum_{i=1}^{m_f}\|f_i\|_{L_1}^2} + \sqrt{\frac{9}{2m_f}}\ln\frac{4}{\delta} \end{aligned}$$

where L is the Lipschitz constant of the loss function.

## **Experiments with Half spaces**

10 dimensional, 100 inputs generated by a mixture of Gaussians. Half spaces sampled using a Gaussian distribution.



The average training (blue unbroken) and test (red dashed)  $L_2$  error as a function of the number of constraints (size of the sample  $m_f$ )

# **Experiments with Half spaces**

10 dimensional, 500 inputs generated by a mixture of Gaussians. Half spaces sampled using a Gaussian distribution.



The average training (blue unbroken) and test (red dashed)  $L_2$  error as a function of the number of constraints (size of the sample  $m_f$ )

#### Semi-supervised application

Consider using learning to get localised estimates of the density using the Touchstone class:

$$\mathcal{F} = \{ f_{\mathbf{x}}(\cdot) = \kappa(\mathbf{x}, \cdot) : \mathbf{x} \sim p_L \}$$

We can use the unlabelled data to train a pdf targeted for  $\mathfrak{F}$ .

Now use the information to guide the margin measurement when learning to classify the labelled data:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2,$$
s.t.  $y_i^l \langle \mathbf{x}_i^l, \mathbf{w} \rangle \ge \mathbb{E}_p[f_{\mathbf{x}_i^l}],$ 

# Semi-supervised application

The dual of which is given by (expressed in terms of the kernel functions  $\kappa(\mathbf{x}_i, \mathbf{x}_j)$ ):

$$\min_{\beta} \quad \frac{1}{2} \sum_{i,j=1}^{n_l} \beta_i \beta_j \kappa(\mathbf{x}_i, \mathbf{x}_j) - \sum_i \mathbb{E}_p[f_{\mathbf{x}_i^l}] \beta_i,$$
s.t.  $\beta_i \ge 0$ .

Here we denote the dual variables with  $\beta_i$  to distinguish those with the variables  $\alpha_i$  from the density estimate.

# **Experimental results**



Left: A typical Ripley data set.

Right: The performance of the semi-supervised learning method as a function of the number of constraints used to learn the distribution of the test data. Below difference with sd's.

#### **Conclusions**

- Introduced a framework for learning a pdf targeted for a set of tasks
- Theoretical justification that approach will work under reasonable conditions
- Experiments demonstrating that fast learning can kick in quite quickly
- Application to semi-supervised learning

#### **Future work**

- Using the approach for probabilistic inference
- ullet Theoretical analysis for  $\epsilon$ -insensitive classification loss
- Applications to sensor networks retain a range of information that might be required later
- Other applications?