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Motivation

1. Challenge of PDF Learning: impossible in the L1

sense – Batu et al.

2. Success with learning for one task

3. Compromise: aim to learn for set of tasks that
might arise

4. Needs new framework but first motivational
applications
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One class vs PDF learning

• Mukherjee and Vapnik added constraints to the
one class SVM to fit the cumulative distribution
up to data points to the estimated distribution.

• What happens if we only add some of the
constraints but see how well we do on all of
them? Maybe we don’t need to include all the
constraints?
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One class vs PDF learning
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• Note how only a small number of constraints is
sufficient to significantly reduce the loss

• Curve then levels off as more constraints are
added (note shifted axes)
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Touchstone Class
A Touchstone class for learning a probability density
function (pdf) on a measurable space X is

• a class of measurable real-valued functions F on
X with a distribution PF defined over F.

• Given an unknown pdf function p, the error err(p̂)
of an approximate pdf function p̂ is defined as

err(p̂) = Ef∼PF
[`(Ep[f ],Ep̂[f ])],

• where ` is a loss function such as the absolute
value, its square or an ε-insensitive version
of either – could also be an ε-insensitive
classification
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Examples

1. Mukherjee and Vapnik: F are indicator functions
of downward closed sets - could also be
Kolmogorov and Smirnov in 1 dimension

2. Generalise to indicator functions of a class of
sets: A-distance of He, Ben-David and Tong

3. Marginals of sets of variables. Typically two
processes: estimating probabilities of the model
and performing inference. Approach can be used
to combine the two – see next slide
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Example 3
Consider a distribution over {0, 1}n. The
touchstone class FI is taken as a set of
‘projection’ functions πi,v onto subsets i =
{i1, . . . , i|i|} ∈ I of variables drawn from a set
I ⊆ 2{1,...,n} with prescribed values v ∈ {0, 1}|i|

FI =
{

πi,v: i ∈ I,v ∈ {0, 1}|i|
}

, where

πi,v(x) =
{

1 if xij = vj, for j = 1, . . . , |i|,
0; otherwise.

For this case the expectation Ep[πi,v] is the
marginal for the variables indexed by i set to the
values v.
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Distribution of PF

• In example 1 derived from input distribution but
in general would be unrelated.

• It should encode our prior belief about which
functions are most likely to arise in practice.

• If we simply wish to be good at all the functions
we should use a uniform distribution

• Using an epsilon insensitive classification loss
makes it possible to interpret the error as a
probability that a randomly drawn function will
be estimated with accuracy less than ε
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Theory of learning
• p̂ ∈ P is an ε-approximation of the true density

p with respect to the Touchstone Class F, if
err(p̂) ≤ ε

• P is learnable if there is an algorithm A such
that given any p ∈ P, ε > 0 and δ > 0, A

given a sample of m i.i.d. points where m
is polynomial in 1

ε and 1
δ , returns an estimate

p̂ ∈ P that with probability 1 − δ is an ε-
approximation of p

• For a class P of distributions and a Touchstone
Class F of functions we define the F-derived
class of functions to be

PF = {f ∈ F 7→ Ep[f ] : p ∈ P}.
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First result

Theorem 1. Let F and P be such that there exists
a polynomial Q with the property that for m ≥
Q(1/ε),

Rm(PF) ≤ ε,

where the associated symmetric loss function ` has
range [0, 1], satisfies the triangle inequality and is
Lipschitz continuous with constant L. Then an
algorithm that can select a function from PF that
minimises the empirical ` loss can learn P with
respect to the function class F.
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Support vector density estimation
A kernel κ normalised:

∫
X

κ(x, z)dx = 1.

The standard choice for κ is a normalised Gaussian

κ(x, z) =
1

(√
2πσ

)d
exp

(
−‖x− z‖2

2σ2

)

If we now consider learning a density function in
a dual representation q(x) =

∑m
i=1 αiκ(xi,x), the

constraint
∑m

i=1 αi = 1 ensures that the density is
correctly normalised,

The corresponding space PF(B) is given by

PF(B) =
{

qw : f 7→ Eqw[f ]
∣∣∣ ‖w‖ ≤ B, qw(X) = 1

}
.
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Optimisation problem

minα,ξ

∑mx
i,j=1 αiαjκ(xi,xj) + D

∑mf

j=1 ξj

subj to
∑mx

i=1 αi = 1
`
(∑mx

i=1 αi

∫
X

κ(xi,x)fj(x)dx, 1
mx

∑mx
i=1 fj(xi)

)
≤ ξj

and ξj ≥ 0 for j = 1, . . . , mf ,
αi ≥ 0 for i = 1, . . . , mx.
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Bounding SVDE
Theorem 2. The empirical Rademacher complexity
of PF(B) on the sample {f1, . . . , fmf

} is bounded by

R̂mf
(PF(B)) ≤ 2B

mf

√√√√
mf∑

i=1

min
(
C2

κ‖fi‖2L1
, ‖fi‖L1‖fi‖L∞

)
.

where

Cκ := sup
z,z′

√
κ(z, z′) =

√
κ(x,x) for all x.
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Bounding SVDE

Theorem 3. Suppose that we learn a pdf function
based on a sample of mx inputs and mf sample
functions from the space F. Then with probability at
least 1 − δ over the generation of the two samples
we can bound the error of p̂ ∈ PF(B) by

err(p̂) ≤ L

√
2

mx
ln

4mf

δ
+ Êf [`(Ep̂[f ], Êx[f ])] +

2BCκ

mf

√√√√
mf∑

i=1

‖fi‖2L1
+

√
9

2mf
ln

4
δ

where L is the Lipschitz constant of the loss
function.
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Experiments with Half spaces
10 dimensional, 100 inputs generated by a mixture
of Gaussians. Half spaces sampled using a
Gaussian distribution.

100 200 300 400 500 600 700 800 900 1000 1100
6

7

8

9

10

11
x 10

−4

# Constraints

Pe
rfo

rm
an

ce
, L

2 no
rm

training
test

The average training (blue unbroken) and test (red
dashed) L2 error as a function of the number of
constraints (size of the sample mf )
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Experiments with Half spaces
10 dimensional, 500 inputs generated by a mixture
of Gaussians. Half spaces sampled using a
Gaussian distribution.
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The average training (blue unbroken) and test (red
dashed) L2 error as a function of the number of
constraints (size of the sample mf )
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Semi-supervised application
Consider using learning to get localised estimates
of the density using the Touchstone class:

F = {fx(·) = κ(x, ·) : x ∼ pL}

We can use the unlabelled data to train a pdf
targeted for F.

Now use the information to guide the margin
measurement when learning to classify the labelled
data:

minw
1
2
‖w‖2,

s.t. yl
i〈xl

i,w〉 ≥ Ep[fxl
i
],
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Semi-supervised application
The dual of which is given by (expressed in terms of
the kernel functions κ(xi,xj)):

minβ
1
2

nl∑

i,j=1

βiβjκ(xi,xj)−
∑

i

Ep[fxl
i
]βi,

s.t. βi ≥ 0.

Here we denote the dual variables with βi to
distinguish those with the variables αi from the
density estimate.
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Experimental results
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Left: A typical Ripley data set.

Right: The performance of the semi-supervised
learning method as a function of the number of
constraints used to learn the distribution of the test
data. Below difference with sd’s.
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Conclusions

• Introduced a framework for learning a pdf
targeted for a set of tasks

• Theoretical justification that approach will work
under reasonable conditions

• Experiments demonstrating that fast learning can
kick in quite quickly

• Application to semi-supervised learning
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Future work

• Using the approach for probabilistic inference

• Theoretical analysis for ε-insensitive classification
loss

• Applications to sensor networks – retain a range
of information that might be required later

• Other applications?

Open House ’06 20


