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Learning to Pattern Recognition  
 
 
 

 
 
The points represent objects of different classes. 
 
A decision rule is constructed. 
 
Sometimes we see errors. 
The goal is to minimize the average number of 
errors.
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Reconstruction of numerical 
dependencies. 
 

 
 
The Goal is to minimize the Mean 
Square Error    (y – F(x))2. 
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Over fitting in pattern recognition 
problem. 
 

 
Having a training set one ca assume that all points 
within red circles belong to the class 1.                   
All the rest belong to the class 2. 
 
We see no errors on the training set. 
But there will be a lot of errors on new data. 
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Over fitting in polynomial regression 
reconstruction 

 
 
 
 
 
But on the new data the errors will be large. 
 
 
 

Choosing sufficiently large degree of a polynomial 
one can get an approximation delivering zero error 
on the training set. 
получаем безошибочную аппроксимацию 
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Formal definition. 
 
Penalty function for an error 
 
                    Q(y, y*), 
 
where  y  is a true value, y* is a predicted value. 
 
True average risk: 
 
 

Rtrue =   ∫ Q(y, F(x)) dPxy. 
 
 
Empirical risk  
 
 

Remp = 1/l ∑ Q(yi, F(xi)). 
 
 
The goal is to minimize true risk. 
 
The mean is to minimize empirical risk. 
 
 
Approval:  according to the large number law 
 
                              Р 

Remp → Rtrue 
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The red line shows the dependence of the empirical risk on 

parameters. 

 The black line shows the dependence of the true risk on the 

parameters. 

 
The point, delivering minimum to empirical 
risk is far from the point delivering minimum to 
the true risk.  
 
It would be not so if the dependencies  
Rtrue  and Remp are uniformly close. 
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Uniform convergence of frequencies to 
probabilities. 
 
A є S   - a system of random events. 
 
P(A) – probability of an event  А, 
 
x1, x2, ….xl   - a random sample sequence 
 
ν(A) – frequency of the eventчастота А on the 
sample sequence. 
 
 
 
 
Bernully Theorem : 
 

ν(A) → P(A) 
 
 
 
 
Uniform convergence: 
 
Sup |ν(A) - P(A)| → 0        A є S 
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Random functions F(x,α)      α є Λ 
 
M(α) = E F(x,α)  -expectation 
 
R(α) = 1/l Σ  F(xi,α) – average value 
 
 
 
The large number law: 
 

R(α) → M(α) 
 
 
Uniform convergence: 
 
 
Sup |R(α) - M(α)| → 0        α є Λ 
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Growth function is defined as  
 

MΛ(l) = max ∆S(x1,…,  xl), 
 

Where maximum is searched over all 
possible sample sequences of length l. 

 

Conditions of the uniform convergence of 
frequencies to probabilities  
 
Index ∆S(x1,…,  xl) of the event class S is 
defined as the total number of all possible 
splitting of a sequence by the sets A є S. 
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The picture shows all possible splitting of a sequence by the sets 
corresponding to half planes. 
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Growth function is either trivially equal to 2l, is 
bounded from above by a polynomial. 
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Polynomial growth forms sufficient condition for the 
uniform convergence of frequencies to probabilities 
over the event class S. 
 
This condition appears to be sufficient but not 
necessary. There exist examples, when the growth 
function is 2l, but still the uniform convergence 
holds. 
 
In particular, it is so if the space X is countable, and 
the system S consists of all subsets of the space X. 
 
If instead of maximum of index  

∆S(x1, , xl)  
we take expectation of its log 
 

Hs (l) = E log ∆S(x1, , xl),  
 

we can get necessary and sufficient conditions for 
the uniform convergence of frequencies to 
probabilities. 
 
They are: 
 

1/ l   Hs (l) → 0. 
 
This condition may be interpreted as follows. 
 
Entropy per symbol must go to zero while the 
sample sequence length goes to infinity.  
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Conditions for the Uniform Convergence 
of means to expectations 

 
(For uniformly limited classes of 
functions). 
 
Given random functions F(x,α)      α є Λ 
 
M(α) = E F(x,α)  -expectation 
 
R(α) = 1/l Σ  F(xi,α) – mean value 
 
Sup |R(α) - M(α)| → 0        α є Λ 

 
It is possible to reduce the problem to 
the previous one. 
It is enough to construct a set S of 
events defined as  
 

A = { x:  F(xi,α) > C} 
 
for all possible α and C values, and to apply 
the conditions (and estimates) of the 
uniform convergence to this set of events. 
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But then we get only sufficient 
conditions. 
 
To deduce necessary and sufficient 
conditions we propose the following 
construction. 
 
Given a sample sequence 
 

x1, x2, ….xl  
 
we construct in l - dimensional Euclidian 
space a setв Т, consisting of the points with 
coordinates 
 
F(x1,α), F(x2,α) ….F(xl,α) 
 
for all possible values of α є Λ. 
 
Then we define ε– extension of this set as a 
unification of all cubes with edge length ε and 
centers in the points of the set Т, and its volume 
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 Vε (x1, x2, ….xl). 
 
 
ε-entropy of a function class on the samples of 
length l we call expectation of this volume log 
over all sample sequences of length l : 
 

Hε (l) = E  log Vε (x1, x2, ….xl). 
 

 
Then the necessary and sufficient condition 
for the uniform convergence of means to 
expectations is the following: 
 
For all ε > 0 
           1/ l  Hε (l)  → log ε. 
 
That means that ε– extension of our set T behaves 
asymptotically as a single cube with edge length 
equal to ε. 
 
Really it appears that, if this condition holds 
for some ε > 0, then it holds for all  ε > 0. 
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= E 

Q(x2,α) 
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It appears that if 
 
         1/ l  Hε (l)  → log ε + η   (η  > 0), 
 
then there exist two functions, 
the upper one ϕ0(x)  
and the lower one нижняя ϕ1(x) 
 
              (ϕ0(x) >= ϕ1(x))  
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And the average distance between them is 
non-zero 
 
∫ (ϕ0(x) - ϕ1(x)) dPx ≥  ε (eη –1). 
 
The functions and the average distance may be 
found independently on the sample size. 
 
Now if one has an almost arbitrary sample 
sequence,  

x1, x2, ….xl 
 and assigns arbitrarily in what points xi  a 
function should be close to the upper function 
(ωi = 0), and in what points it should be close to 
the lower function (ωi = 1),  
 
then there exists such a value α*, that the 
function F(xi, α*) has arbitrarily close values to 
the upper or to the lower function depending on 
our assignment. 
 
It is true for any sample sequence 
length. 
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Similar property is true for the case, when the 
uniform convergence of frequencies to probabilities 
does not hold. 
 
In this case the system of events S may be characterized 
by a system of binary indicator functions 

F(x,α)       (α ∈ Λ) 
 
In this case there is no need to make ε–extension, 
and the result seems more clear and precise. 
 
I remind that the uniform convergence of 
frequencies to probabilities does not hold if and only 
if 
 

1/ l   Hs (l) →  C > 0. 
 
Then there exists a set S ⊆ X, such that almost for 
any sample sequence 

x1, x2, ….xl     (x i ∈ S) 
and any binary sequence 
 

ω1, ω2, ….ωl    (ωi = 0,1) 
there is such a value α*, that 
 

F(xi, α*) = ωi. 


