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High-Throughput Biotechnologies Record
Global Signals

DNA microarrays, e.g.,
rely on hybridization to
record the complete
genomic signals that
guide the progression
of cellular processes,
such as abundance
levels of DNA, RNA,
and DNA- and RNA-
bound proteins on a
genomic scale.





Global Mathematical Vocabulary for
Molecular Biological Discovery

Develop generalizations
of the matrix and tensor
decompositions that
underlie the theoretical
description of the
physical world;

Create models that
compare and integrate
different types of large-
s c a l e  m o l e c u l a r
biological data;

P r e d i c t  g l o b a l
mechanisms that govern
the activity of DNA and
RNA.



Physics-Inspired Matrix (and Tensor) Models
Mathematical frameworks for the description of the data, in which the
mathematical variables and operations might represent biological reality.

SVD
Alter, Brown & Botstein,
PNAS 97, 10101 (2000).

Comparative
GSVD

Alter, Brown & Botstein,
PNAS 100, 3351 (2003).

Integrative
Pseudoinverse

Alter & Golub,
PNAS 101, 16577 (2004).

“Eigengenes” and
“eigenarrays” Æ cellular

processes and states
in a single dataset.

“Genelets” and
“arraylets” Æ phenomena

exclusive to one of, or
common to two datasets.

“Pseudoinverse
correlation” Æ

causal coordination
between two datasets.

Eigenvalue Decomposition Generalized Eigenvalue
Decomposition

Inverse Projection



Effects of DNA Replication on RNA Expression:
Experimental Verification of a

Computationally Predicted Mode of Regulation
Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter, MSB 5, 312 (2009);

http://alterlab.org/verification_of_prediction/

Matrix and tensor modeling of large-scale molecular biological data can be
used to correctly predict previously unknown cellular mechanisms.



HOSVD for Integrative Analysis of a
High-Dimensional Dataset

Omberg, Golub & Alter, PNAS 104, 18371 (2007);  http://alterlab.org/HOSVD/
The data tensor is a superposition of
all rank-1 “subtensors,” i.e., outer
products of an eigenarray, an x- and
a y-eigengene,
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The significance of a subtensor
is defined by the corresponding
“fraction,” computed from the
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De Lathauwer, De Moor & Vandewalle, SIMAX 21, 1253 (2000).



HOSVD for Integrative Analysis of a
High-Dimensional Dataset

Omberg, Golub & Alter, PNAS 104, 18371 (2007);  http://alterlab.org/HOSVD/

The complexity of the data is defined by the “normalized entropy,”
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A “degenerate subtensor space rotation” gives one unique subtensor,
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Ra+k ,b,cS(a+ k,b,c) =RabcS(a,b,c)+RkbcS(k,b,c).

De Lathauwer, De Moor & Vandewalle, SIMAX 21, 1253 (2000).



HOSVD Detection and Removal of Artifacts
Reconstructing the data tensor of 4,270 genes ¥ 12 time points, or x-
settings ¥ 8 time courses, or y-settings, filtering out “x-eigengenes” and
“y-eigengenes” that represent experimental artifacts.

Batch-of-
hybridization

Culture batch,
microarray
platform and
protocols

Swinnen, Van Huffel, Van Loven & Jacobs, Med Biol Eng Comput 38, 297 (2000).



Patterns Underlie Principles of Nature:
Global Correlations to Causal Coordination

Alter, PNAS 103, 16063 (2006);
Alter, in Microarray Data Analysis: Methods and Applications (Humana Press, 2007), pp. 17–59.

Kepler’s discovery of his first law of planetary motion from
mathematical modeling of Brahe’s astronomical data.

Kepler, Astronomia Nova (Voegelinus, Heidelberg, 1609).



Computational Discovery and Validation of a
Genomic Predictor of GBM Survival

Lee,* Alpert,* Sankaranarayanan & Alter, PLoS One 7, e30098 (2012);
http://alterlab.org/GBM_prognosis/

The number of large-scale datasets recording multiple aspects of a single
phenomenon is increasing in many areas, e.g., personalized medicine.



GSVD for Comparative Analysis of
Two Different Two-Dimensional Datasets

Alter, Brown & Botstein, PNAS 100, 3351 (2003);  http://alterlab.org/GSVD/

T h e  G S V D  simultaneously
separates the two datasets into
paired weighted sums of outer
products, of each normalized right
basis vector, or a “probelet” ( a
pattern of variation across the
patients), which is identical for both
datasets, combined with one of the
two corresponding orthonormal left
basis vectors, or “arraylets” (the
tumor- and normal-specific patterns
of variation across the genome),
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Di =UiΣiV
T = σ i,nui,n

n=1

N

∑ ⊗ vn
T , i =1,2.

The significance of a probelet and its corresponding arraylet in one dataset
relative to the second is defined by the “angular distance,”
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−π / 4 ≤ arctan(σ1,n /σ 2,n )−π / 4 ≤ π / 4.
Van Loan, SINUM 13, 76 (1976);  Paige & Saunders, SINUM 18, 398 (1981);
Van Loan, Numer Math 46, 479 (1985).



 Copy-Number Variations (CNVs)
Common to the GBM Tumor and Normal Brain
GSVD identifies CNVs that occur in the normal human genome and are
preserved in the GBM tumors, e.g., female-specific X chromosome
amplification, without a-priori knowledge of these variations.

Patients’ gender is correctly identified also where the TCGA database
entries and the copy-number gender assignments are in discrepancy.
NHGRI’s Interest in Applications to Analyze and Develop Methods for X Chromosome Genome-
wide Association (GWA) Data;  http://grants.nih.gov/grants/guide/notice-files/NOT-HG-11-021.html



Experimental Variations
Exclusive to the Tumor or Normal Profiles

GSVD identifies experimental variations, e.g., in tissue batch, genomic
center, hybridization date and scanner.



Global Pattern of Tumor-Exclusive Copy-
Number Alterations Predicts Drug Targets
Lee & Alter, 60th Annual Meeting of the ASHG (Washington, DC, November 2–6, 2010).

The pattern includes most known GBM-associated changes in chromosome
numbers and focal copy-number alterations (CNAs), as well as several
previously unreported CNAs in >3% of the patients: the biochemically
putative drug target, cell cycle-regulated serine/threonine kinase-encoding
TLK2, the tRNA methyltransferase METTL2A, and the cyclin E1-encoding
CCNE1.



Global, Genomic Predictor of GBM Survival
The global pattern is
correlated with, and
possibly causally related
to, brain cancer survival.

The GBM survival
phenotype is the outcome
of its global genotype.

Despite recent large-scale
profiling efforts, the best
prognostic indicator of
GBM prior to the
discovery of this pattern
was the patient’s age at
diagnosis.

The pattern performs as
well as age, and is
independent of age, such
that combined with age it
makes a better predictor
than age alone.



Platform-Independent Genomic Predictor of  

 

Astrocytoma Outcome 
Aiello & Alter, under review;  

Aiello & Alter, BMES Annual Meeting (Tampa, FL, October 7–10, 2015). 

The GBM pattern identifies among grades III and II, i.e., 
lower-grade astrocytoma (LGA) patients  a  subtype, 
statistically indistinguishable from that among the GBM  
patients, where the 
CNA genotype is 
correlated with a 
one-year survival 
phenotype. 

 



Statistically Better Than, and Independent of 
Age, Grade, and Laboratory Tests 

        
Recurring DNA CNAs were observed in astrocytoma tumors’ genomes for 
decades, however, copy-number subtypes predictive of patients’ outcomes 
were not identified before, despite the growing number of datasets recording 
different aspects of the disease, and due to a need for frameworks that can 
simultaneously find similarities and dissimilarities across the datasets. 



Computational Discovery and Validation of
Genomic Predictors of OV Outcome

Sankaranarayanan,* Schomay,* Aiello & Alter,
PLoS One 10, e121396 (2015);

http://alterlab.org/OV_prognosis/
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This exact decomposition extends the
GSVD and the tensor HOSVD from a
decomposition of either two column-
matched matrices or one tensor,
respectively, to a decomposition of two
order-matched, column-matched, and
row-independent tensors.

Omberg, Golub & Alter, PNAS 104, 18371 (2007);
http://alterlab.org/HOSVD/



Tensor GSVD for Comparative Analysis of  
Two Different High-Dimensional Datasets 

Schomay, Aiello & Alter, in preparation;  Schomay, Aiello & Alter, 2016 Tensor Decompositions and 
Applications Workshop (Leuven, Belgium, January 18–22, 2016). 

 



Tensor GSVD for Comparative Analysis of
Two Different High-Dimensional Datasets

Schomay, Aiello & Alter, in preparation;
Schomay, Aiello & Alter, SIAM Annual Meeting (Chicago, IL, July 7–11, 2014).

The mathematical properties of the tensor GSVD allow interpreting its
variables and operations in terms of the similar as well as dissimilar, e.g.,
biomedical reality between the datasets.
Supplementary Lemma 1:

The tensor GSVD exists for two tensors of the same order since it is
constructed from the GSVDs of the tensors unfolded into full column
rank matrices.

Supplementary Lemma 2:
The tensor GSVD has the same uniqueness properties as the GSVD.

Supplementary Corollary 1:
The tensor GSVD of two second-order tensors reduces to the GSVD of
the corresponding matrices.

Supplementary Theorem 1:
The tensor GSVD of the tensor, which row mode unfolding gives the
identify matrix, and a tensor of the same column dimensions reduces to
the HOSVD of the tensor.

Theorem 1: 
The tensor GSVD angular distance equals that of the row mode GSVD.



Chromosome Arm-Wide Patterns of Tumor-
Exclusive Platform-Consistent Alterations

Encoding for Cell Transformation

Loss of the p21-encoding CDKN1A and the p38-encoding MAPK14 on 6p,
and gain of KRAS  on 12p, combined but not separately, can lead to
transformation of human normal to tumor cells. There exist drugs that
interact with CDKN1A, MAPK14, and RAD51AP1.
Hahn, Counter, Lundberg, Beijersbergen, Brooks & Weinberg, Nature 400, 464 (1999).



Predictors of
OV Survival
Chromosome arm-wide
patterns are correlated
with, and possibly
causally related to,
ovarian cancer survival.

Despite recent large-
scale profiling efforts,
the best prognostic
indicator of OV prior to
the discovery of these
patterns was the tumor’s
age at diagnosis.

The pat terns  are
independent of stage,
and combined with
stage  make better
predictors than stage
alone.



Predictors of OV Survival and
Response to Platinum-Based Chemotherapy

~25% of primary OV
tumors are resistant,
and most recurrent OV
t u m o r s  d e v e l o p
resistance to platinum-
based chemotherapy,
the first-line treatment
for >30 years.

There exist drugs for
resistant tumors, but
n o  p a t h o l o g y
laboratory diagnostic
e x i s t s  t h a t
distinguishes between
resistant and sensitive
tumors before the
treatment.



HO GSVD for Comparative Analysis of
Multiple Two-Dimensional Datasets

Ponnapalli, Golub & Alter, Stanford University and Yahoo! Research Workshop on Algorithms for
Modern Massive Datasets (Stanford, CA, June 21–24, 2006).
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The matrix V, identical in all factorizations, is obtained from the balanced
eigensystem of S, which does not depend upon the ordering of Di.



HO GSVD for Comparative Analysis of
Multiple Two-Dimensional Datasets

Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, e28072 (2011);  http://alterlab.org/HO_GSVD/
This exact decomposition extends to higher orders all of the mathematical
properties of the GSVD except for complete orthogonality of Ui for all i.
Supplementary Theorems 1–5:

For N=2, our HO GSVD leads algebraically to the GSVD.
Theorem 1: S has n independent eigenvectors, and the eigenvectors and

eigenvalues of S are real.
Theorem 2: The eigenvalues of S satisfy λk≥1.
Theorem 3: The common HO GSVD subspace. An eigenvalue satisfies

λk=1 if and only if the corresponding right basis vector vk is
of equal significance in all matrices Di and Dj, i.e., σi,k /σj,k=1
for all i and j, and the corresponding left basis vector ui,k is
orthonormal to all other left basis vectors in Ui for all i.

Corollary 1: An eigenvalue satisfies λk=1 if and only if the corresponding
right basis vector vk is a generalized singular vector of all
pairwise GSVD factorizations of the matrices Di and Dj with
equal corresponding generalized singular values for all for all
i and j.

Supplementary Theorem 6 and Conjecture 1:
A role in iterative approximation algorithms.



Mathematical variables Æ biological reality
Genelets of almost equal significance in all datasets

Æ processes common to all genomes:

Approximately Common HO GSVD Subspace

In a comparison of global cell cycle mRNA expression from S. pombe, S.
cerevisiae and human, the approximately common HO GSVD subspace
represents the cell cycle mRNA expression oscillations, which are similar
among the datasets.
Simultaneous reconstruction in the common subspace, therefore, removes
the experimental artifacts, which are dissimilar, from the datasets.



Mathematical operations Æ biological reality
Simultaneous classification in the common HO GSVD subspace

Æ biological similarity in the regulation of the
cellular programs that are conserved across the species:

Common Cell Cycle Subspace
Schizosaccharomyces pombe
Rustici et al., Nat Genet 36, 809 (2004).

Saccharomyces cerevisiae
Spellman et al., MBC 9, 3273 (1998).

Human
Whitfield et al., MBC 13, 1977 (2002).



Simultaneous Classification
Independent of Sequence Similarity

Genes of highly conserved sequences
across the three organisms but
significantly different cell cycle peak
times are correctly classified.

ABC Transporter Superfamily Genes

Phospholipase B-Encoding Genes and
B Cyclin-Encoding Genes



Patterns Underlie Principles of Nature:
Statistics to Processes

Æ Brownian motion.
Einstein, Ann Phys 17, 549 (1905).

Æ Bacterial sensitivity and resistance to viruses.
Luria & Delbrück, Genetics 28, 491 (1943).



SVD Identifies Transcript Length Distribution
Functions from DNA Microarray Data

Bertagnolli, Drake, Tennessen & Alter, PLoS One 8, e78913 (2013);
http://alterlab.org/GBM_metabolism/

Alter & Golub, PNAS 103, 11828 (2006);  http://alterlab.org/harmonic_oscillator/



The interplay between mathematical modeling and experimental
measurement is at the basis of the “effectiveness of mathematics” in
physics. Wigner, Commun Pure Appl Math 13, 1 (1960).



Mathematical modeling of large-scale molecular biological data can
lead beyond classification of genes and cellular samples to the
discovery and ultimately also control of molecular biological
mechanisms. Alter, PNAS 103, 16063 (2006).

Andrews & Swedlow, Nikon Small World (2002).

Our models bring physicians a step closer to one day being able to
predict and control the progression of cancers as readily as NASA
engineers plot the trajectories of spacecraft today.
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Multi-Tensor Decompositions for 
Personalized Cancer  

Diagnostics and Prognostics 
http://physics.cancer.gov/network/UniversityofUtah.aspx;   

http://alterlab.org/physics_of_cancer/ 
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Physics-Inspired
Multi-Tensor Decompositions

Create a single coherent model from multiple high-dimensional
datasets. By using the complex structure of the datasets, rather than
simplifying them as is commonly done, the frameworks can:
Æ detect and remove experimental artifacts or batch effects;
Æ identify and separate the biologically similar from the dissimilar;
Æ uncover previously unknown phenomena.
Generalize the SVD from a single two-dimensional dataset to
multiple three- and higher-dimensional datasets. The SVD underlies:
Æ theoretical physics;
Æ recommendation systems, e.g., the Netflix challenge;
Æ Google’s PageRank algorithm.
Find what others miss, and outperform algorithms that:
Æ are sensitive to artifacts (e.g., hierarchical clustering);
Æ require a-priori knowledge (e.g., analysis of variance);
Æ require data modifications (e.g., Bayesian statistics or topological

data analysis);
Æ vary the single-dataset SVD (e.g., independent component analysis

or randomized decompositions).
Nielsen, West, Linn, Alter et al., Lancet 359, 1301 (2002).



The SVD is also used for the stable computation of principal
component analysis (PCA).

The SVD is Different than PCA
Æ PCA assumes preprocessing of the data, which limits the data
interpretation (e.g., the SVD of a dataset can identify the probability
distribution function that is sampled by the dataset with no a-priori
assumptions; PCA cannot).

Alter & Golub, PNAS 103, 11828 (2006);
Cadima & Jolliffe, Pak J Statist 25, 473 (2009);

Bertagnolli, Drake, Tennessen & Alter, PLoS One 8, e78913 (2013).

Æ PCA identifies patterns across the columns separately from patterns
across the rows; the SVD simultaneously computes the corresponding
sets of patterns across the rows and columns, ensuring consistent
data interpretation.

Alter, Brown & Botstein, PNAS 97, 10101 (2000);
Fellenberg, Hauser, Brors, Neutzner, Hoheisel & Vingron, PNAS 98, 10781 (2001).

Æ PCA, as it is programmed in most computational packages, is limited
to classifying the data based upon the two or three patterns that capture
most of the information in the data (e.g., variance in the case of column
centering); the SVD maintains all data patterns, and not just for data
classification.




