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w technologies permitting the observation and manipulation of single quantum
systems, the quantum theory of measurement is fast becoming a subject of experimental
igation in laboratories worldwide. This original new work addresses open fundamental

s in quantum mechanics in light of these experimental developments.

approach developed by the authors, Quantum Measurement of a
Single S ) es ans to three long-standing questions that have been debated by
such thinkers as Bohr, Einstein, Heisenberg, and Schrédinger. It establishes the quantum
theoretical limits to information obtained in the measurement of a single system on the
qu;lntum wavefur n of the ystem, the time evolution of the qu;mtum observables

associated with the system, and the classical potentials or forces which shape this time

evolution. The technological relevance of the theory Iso dem ted through examples

from atomic physics, quantum optics, and mesoscopic physics.

Suitable for prof nals, students, or readers with a general interest in quantum mechanics,
the book features recent formulations as well as humorous illustrations of the basic concepts
of quantum measurement. Researchers in physics and engineering will find Quantum

surement of a Sing s guide to one of the most stimulating fields of

science today.
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Global Mathematical Vocabulary for
Molecular Biological Discovery

Develop generalizations
of the matrix and tensor
decompositions that
underlie the theoretical
description of the
physical world;

Create models that
compare and integrate
different types of large-
scale molecular
biological data;

Predict global
mechanisms that govern
the activity of DNA and
RNA.




Physics-Inspired Matrix (and Tensor) Models

Mathematical frameworks for the description of the data, in which the
mathematical variables and operations might represent biological reality.

SVD

Alter, Brown & Botstein,
PNAS 97, 10101 (2000).
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Eigenarrays 9e

“Eigengenes” and
“e1genarrays” = cellular
processes and states
in a single dataset.
Eigenvalue Decomposition

Comparative
GSVD

Alter, Brown & Botstein,
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“Genelets” and
“arraylets” = phenomena
exclusive to one of, or
common to two datasets.

Generalized Eigenvalue
Decomposition

Integrative

Pseudoinverse

Alter & Golub,
PNAS 101, 16577 (2004).

“Pseudoinverse
correlation” =
causal coordination
between two datasets.
Inverse Projection




Effects of DNA Replication on RNA Expression:
Experimental Verification of a
Computationally Predicted Mode of Regulation

Omberg, Meyerson, Kobayashi, Drury, Diffley & Alter, MSB 5, 312 (2009);
http://alterlab.org/verification_of_prediction/
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Matrix and tensor modeling of large-scale molecular biological data can be
used to correctly predict previously unknown cellular mechanisms.



HOSVD for Integrative Analysis of a

High-Dimensional Dataset
Omberg, Golub & Alter, PNAS 104, 18371 (2007); http://alterlab.org/HOSVD/

The data tensor 1s a superposition of
all rank-1 “subtensors,” i.e., outer
products of an eigenarray, an x- and
a y-eigengene,

J = %izﬂamé’(a b,c).

a=1 b=1 c=1

The significance of a subtensor
1s defined by the corresponding
“fraction,” computed from the
higher—order singular Values,

De Lathauwer, De Moor & Vandewalle, SIMAX 21, 1253 (2000).



HOSVD for Integrative Analysis of a

High-Dimensional Dataset
Omberg, Golub & Alter, PNAS 104, 18371 (2007); http://alterlab.org/HOSVD/

The complexity of the data is defined by the “normalized entropy,”
IM L M
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A “degenerate subtensor space rotation” gives one umque subtensor,
RipSla+k,b,c)=R, 8a,b,c)+ R, Sk,b,c).

abc

De Lathauwer, De Moor & Vandewalle, SIMAX 21, 1253 (2000).



HOSVD Detection and Removal of Artifacts

Reconstructing the data tensor of 4,270 genes X 12 time points, or x-
settings X 8 time courses, or y-settings, filtering out “x-eigengenes” and
“y-eigengenes’ that represent experimental artifacts.
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Swinnen, Van Huffel, Van Loven & Jacobs, Med Biol Eng Comput 38,297 (2000).



Patterns Underlie Principles of Nature:

Global Correlations to Causal Coordination

Alter, PNAS 103, 16063 (2006);
Alter, in Microarray Data Analysis: Methods and Applications (Humana Press, 2007), pp. 17-59.

Kepler’s discovery of his first law of planetary motion from

mathematical modeling of Brahe’s astronomical data.
Kepler, Astronomia Nova (Voegelinus, Heidelberg, 1609).




Computational Discovery and Validation of a

Genomic Predictor of GBM Survival

Lee, Alpert, Sankaranarayanan & Alter, PLoS One 7,¢30098 (2012);
http://alterlab.org/GBM_prognosis/
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The number of large-scale datasets recording multiple aspects of a single
phenomenon is increasing in many areas, €.g., personalized medicine.



GSVD for Comparative Analysis of

Two Different Two-Dimensional Datasets
Alter, Brown & Botstein, PNAS 100, 3351 (2003); http://alterlab.org/GSVD/

The GSVD  simultaneously
separates the two datasets into
paired weighted sums of outer
products, of each normalized right
basis vector, or a “probelet” (a
pattern of variation across the
patients), which is identical for both
datasets, combined with one of the
two corresponding orthonormal left
basis vectors, or “arraylets” (the
tumor- and normal-specific patterns
of variation across the genome),

N
D,=UZV' =Y 0, u,®v,, i=12.
n=1

in’vin

The significance of a probelet and its corresponding arraylet in one dataset
relative to the second 1s defined by the “angular distance,”
- /4 <arctan(o,, /0,,)-nw/4 <m/4.

Van Loan, SINUM 13,76 (1976); Paige & Saunders, SINUM 18,398 (1981);
Van Loan, Numer Math 46,479 (1985).




Copy-Number Variations (CNVs)
Common to the GBM Tumor and Normal Brain

GSVD identifies CNVs that occur in the normal human genome and are
preserved in the GBM tumors, e.g., female-specific X chromosome
amplification, without a-prior1 knowledge of these variations.
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Patients’ gender 1s correctly identified also where the TCGA database
entries and the copy-number gender assignments are in discrepancy.

NHGRTI’s Interest in Applications to Analyze and Develop Methods for X Chromosome Genome-
wide Association (GWA) Data; http://grants.nih.gov/grants/guide/notice-files/NOT-HG-11-021 .html



Experimental Variations
Exclusive to the Tumor or Normal Profiles

GSVD identifies experimental variations, e.g., in tissue batch, genomic
center, hybridization date and scanner.
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Global Pattern of Tumor-Exclusive Copy-
Number Alterations Predicts Drug Targets

Lee & Alter, 60th Annual Meeting of the ASHG (Washington, DC, November 2—-6, 2010).
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The pattern includes most known GBM-associated changes in chromosome
numbers and focal copy-number alterations (CNAs), as well as several
previously unreported CNAs in >3% of the patients: the biochemically
putative drug target, cell cycle-regulated serine/threonine kinase-encoding
TLK?2, the tRNA methyltransterase METTL2A, and the cyclin El-encoding
CCNE].



Global, Genomic Predlctor of GBM Survival

The global pattern 1is
correlated with, and
possibly causally related
to, brain cancer survival.

The GBM survival
phenotype 1s the outcome
of its global genotype.

Despite recent large-scale
profiling efforts, the best
prognostic indicator of
GBM prior to the
discovery of this pattern
was the patient’s age at
diagnosis.

The pattern performs as
well as age, and 1s
independent of age, such
that combined with age it
makes a better predictor
than age alone.
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Astrocytoma Outcome

Aiello & Alter, under review;
Aiello & Alter, BMES Annual Meeting (Tampa, FL, October 7-10, 2015).

The GBM pattern identifies among grades III and II, 1.e.,
lower-grade astrocytoma (LGA) patients a subtype,
statistically indistinguishable from that among the GBM
patients, where the @ Chemothorepy B sasistion
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Statistically Better Than, and Independent of
Age, Grade and Laboratory Tests

(a) Age (Years) Grade (a) MGMT Methylation IDH1 Mutation
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Recurring DNA CNAs were observed in astrocytoma tumors’ genomes for
decades, however, copy-number subtypes predictive of patients’ outcomes
were not identified before, despite the growing number of datasets recording
different aspects of the disease, and due to a need for frameworks that can
simultaneously find similarities and dissimilarities across the datasets.



Computational Discovery and Validation of
Genomic Predictors of OV Outcome

Sankaranarayanan, Schomay, Aiello & Alter,
PLoS One 10,e121396 (2015);
http://alterlab.org/OV_prognosis/

1

D=Rx,Ux,V xV,

LM L M
= Ezzﬁ,ﬂbcgi(a’ blc)l
a=1 b=1 c=1
51-(61, b,C) = ui,a ® Uz,b ® v;,c’
1=1,2.

This exact decomposition extends the
GSVD and the tensor HOSVD from a
decomposition of either two column-
matched matrices or one tensor,
respectively, to a decomposition of two
order-matched, column-matched, and
row-independent tensors.

Omberg, Golub & Alter, PNAS 104, 18371 (2007);
http://alterlab.org/HOSVD/




Tensor GSVD for Comparative Analysis of
Two Different High-Dimensional Datasets

Schomay, Aiello & Alter, in preparation; Schomay, Aiello & Alter, 2016 Tensor Decompositions and
Applications Workshop (Leuven, Belgium, January 18-22,2016).
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Tensor GSVD for Comparative Analysis of
Two Different High-Dimensional Datasets

Schomay, Aiello & Alter, in preparation;
Schomay, Aiello & Alter, SIAM Annual Meeting (Chicago, IL, July 7-11, 2014).

The mathematical properties of the tensor GSVD allow interpreting its
variables and operations in terms of the similar as well as dissimilar, e.g.,
biomedical reality between the datasets.

Supplementary Lemma 1:
The tensor GSVD exists for two tensors of the same order since it 18
constructed from the GSVDs of the tensors unfolded into full column
rank matrices.

Supplementary Lemma 2:
The tensor GSVD has the same uniqueness properties as the GSVD.

Supplementary Corollary 1:
The tensor GSVD of two second-order tensors reduces to the GSVD of
the corresponding matrices.

Supplementary Theorem 1:
The tensor GSVD of the tensor, which row mode unfolding gives the
identify matrix, and a tensor of the same column dimensions reduces to
the HOSVD of the tensor.

Theorem 1:
The tensor GSVD angular distance equals that of the row mode GSVD.



Chromosome Arm-Wide Patterns of Tumor-
Exclusive Platform-Consistent Alterations
Encoding for Cell Transformation

Ep+12p
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Loss of the p21-encoding CDKNIA and the p38-encoding MAPK 14 on 6p,
and gain of KRAS on 12p, combined but not separately, can lead to

transformation of human normal to tumor cells. There exist drugs that
interact with CDKNIA, MAPK14,and RAD5SIAPI.

Hahn, Counter, Lundberg, Beijersbergen, Brooks & Weinberg, Nature 400, 464 (1999).



Predictors of
OV Survival

Chromosome arm-wide
patterns are correlated
with, and possibly
causally related to,
ovarian cancer survival.

Despite recent large-
scale profiling efforts,
the best prognostic
indicator of OV prior to
the discovery of these
patterns was the tumor’s
age at diagnosis.

The patterns are
independent of stage,
and combined with
stage make better
predictors than stage
alone.
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Predictors of OV Survival and
Response to Platinum-Based Chemotherapy

(a) Three Probelets (Comb.) (b) Three Probelets (Comb.)
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HO GSVD for Comparative Analysis of

Multiple Two-Dimensional Datasets
Ponnapalli, Golub & Alter, Stanford University and Yahoo! Research Workshop on Algorithms for

Definition:
D, = UiZiVT ; 2, =diag(o;;)
SV =VA

N N
S= o ), O (AA + A AT
i=1 j>i
N JN
- N(I%f—l) 2 E Si]
i=1 j>i
Assumption: D, € R™™ A,=D/D;, S;=1(AA] +AAT)

The matrix V, identical in all factorizations, i1s obtained from the balanced
eigensystem of S, which does not depend upon the ordering of D..



HO GSVD for Comparative Analysis of

Multiple Two-Dimensional Datasets
Ponnapalli, Saunders, Van Loan & Alter, PLoS One 6, 28072 (2011); http://alterlab.org/HO_GSVD/

This exact decomposition extends to higher orders all of the mathematical
properties of the GSVD except for complete orthogonality of U, for all i.

Supplementary Theorems 1-5:

Theorem 1:

Theorem 2:
Theorem 3:

Corollary 1:

For N=2, our HO GSVD leads algebraically to the GSVD.

S has n independent eigenvectors, and the eigenvectors and
eigenvalues of S are real.

The eigenvalues of S satisfy A >1.

The common HO GSVD subspace. An eigenvalue satisfies
A=1 if and only if the corresponding right basis vector v, is
of equal significance in all matrices D; and D, 1.€., 0;;, /0;;=1
for all i and j, and the corresponding left basis vector u;, 1S
orthonormal to all other left basis vectors in U, for all i.

An eigenvalue satisfies A, =1 if and only if the corresponding
right basis vector v, 1s a generalized singular vector of all
pairwise GSVD factorizations of the matrices D; and D; with
equal corresponding generalized singular values for all for all
i and ;.

Supplementary Theorem 6 and Conjecture 1:

A role 1n iterative approximation algorithms.



Mathematical variables — biological reality
Genelets of almost equal significance in all datasets
— processes common to all genomes:

Approximately Common HO GSVD Subspace

(a) Arrays (b) Inverse Eigenvalues hk’l (c) Arrays (d) Arrays

O NM<F N~ . . . . O =N M< N> O = ANM < N O~
NN O~ A A A o o o o o — Nt nNDn O~ A A A A A"~ = AN MM<H nwowr~on A A A~

WOV W

Genelets

Expression Level

In a comparison of global cell cycle mRNA expression from S. pombe, S.
cerevisiae and human, the approximately common HO GSVD subspace
represents the cell cycle mRNA expression oscillations, which are similar
among the datasets.

Simultaneous reconstruction in the common subspace, therefore, removes
the experimental artifacts, which are dissimilar, from the datasets.



Mathematical operations — biological reality
Simultaneous classification in the common HO GSVD subspace

— biological similarity in the regulation of the
cellular programs that are conserved across the species:

Common Cell Cycle Subspace

Schizosaccharomyces pombe
Rustici et al., Nat Genet 36, 809 (2004).

Saccharomyces cerevisiae
Spellman et al., MBC 9, 3273 (1998).

Human
Whitfield et al., MBC 13, 1977 (2002).




Simultaneous Classification
Independent of Sequence Similarity
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Genes of highly conserved sequences
across the three organisms but
significantly different cell cycle peak
times are correctly classified.
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Patterns Underlie Principles of Nature:
Statistics to Processes

— Brownian motion.
Einstein, Ann Phys 17, 549 (1905).

— Bacterial sensitivity and resistance to viruses.
Luria & Delbriick, Genetics 28,491 (1943).



SVD Identifies Transcript Length Distribution

Functions from DNA Microarray Data

Bertagnolli, Drake, Tennessen & Alter, PLoS One 8, ¢€78913 (2013);
http://alterlab.org/GBM_metabolism/

(a) Singular Value Decomposition Uncovers Left Singular Vectors, Singular Values and Right Singular Vectors
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Alter & Golub, PNAS 103, 11828 (2006); http://alterlab.org/harmonic_oscillator/



The interplay between mathematical modeling and experimental
measurement is at the basis of the ‘“‘effectiveness of mathematics” in
phySiCS. Wigner, Commun Pure Appl Math 13,1 (1960).




Mathematical modeling of large-scale molecular biological data can
lead beyond classification of genes and cellular samples to the
discovery and ultimately also control of molecular biological
mechanisms. Alter, PNAS 103, 16063 (2006).

Andrews & Swedlow, Nikon Small World (2002).

Our models bring physicians a step closer to one day being able to
predict and control the progression of cancers as readily as NASA
engineers plot the trajectories of spacecraft today.
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Physics-Inspired
Multi-Tensor Decompositions

Create a single coherent model from multiple high-dimensional
datasets. By using the complex structure of the datasets, rather than
simplifying them as 1s commonly done, the frameworks can:

— detect and remove experimental artifacts or batch effects;

— 1dentify and separate the biologically similar from the dissimilar;

— uncover previously unknown phenomena.

Generalize the SVD from a single two-dimensional dataset to
multiple three- and higher-dimensional datasets. The SVD underlies:
— theoretical physics;

— recommendation systems, e.g., the Netflix challenge;

— Google’s PageRank algorithm.

Find what others miss, and outperform algorithms that:

— are sensitive to artifacts (e.g., hierarchical clustering);

— require a-priori knowledge (e.g., analysis of variance);

— require data modifications (e.g., Bayesian statistics or topological
data analysis);

— vary the single-dataset SVD (e.g., independent component analysis
or randomized decompositions).

Nielsen, West, Linn, Alter et al., Lancet 359, 1301 (2002).



The SVD is also used for the stable computation of principal
component analysis (PCA).

The SVD is Different than PCA

— PCA assumes preprocessing of the data, which limits the data
interpretation (e.g., the SVD of a dataset can identify the probability
distribution function that 1s sampled by the dataset with no a-priori

assumptions; PCA cannot).
Alter & Golub, PNAS 103, 11828 (2006);

Cadima & Jolliffe, Pak J Statist 25, 473 (2009);
Bertagnolli, Drake, Tennessen & Alter, PLoS One 8,¢78913 (2013).

— PCA 1dentifies patterns across the columns separately from patterns
across the rows; the SVD simultaneously computes the corresponding
sets of patterns across the rows and columns, ensuring consistent

data interpretation.
Alter, Brown & Botstein, PNAS 97, 10101 (2000);

Fellenberg, Hauser, Brors, Neutzner, Hoheisel & Vingron, PNAS 98, 10781 (2001).

— PCA, as 1t 1s programmed in most computational packages, i1s limited
to classifying the data based upon the two or three patterns that capture
most of the information in the data (e.g., variance in the case of column
centering); the SVD maintains all data patterns, and not just for data
classification.





