
Theano (an alternative to numexpr)

Theano is a numerical computation library.

Much like numexpr, it takes an (array) expression and compiles it.

Theano is frequently use in machine learning applications.

Unlike numexpr, it can use multi-dimensional arrays and slices, like
NumPy.

Unlike numexpr, it does not natively use threads (though it may link
to multithreaded blas libraries).

But it can use GPUs (haven’t tried).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 49 / 127

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix(’dens’)

t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +

t_dens[1:nrows+1,2:ncols+2] +

t_dens[1:nrows+1,0:ncols+0] -

4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)

laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 28 cores?

$ etime python diff2d_numpy

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr

Elapsed: 4.16 seconds

$ etime python diff2d_theano

Elapsed: 13.12 seconds

Numexpr wins.

How about serially?

$ #with "ne.set_num_threads(1)"

$ etime python diff2d_numexpr

Elapsed: 14.05 seconds

$ etime python diff2d_theano

Elapsed: 12.91 seconds

Theano wins, just.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 50 / 127

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix(’dens’)

t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +

t_dens[1:nrows+1,2:ncols+2] +

t_dens[1:nrows+1,0:ncols+0] -

4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)

laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 28 cores?

$ etime python diff2d_numpy

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr

Elapsed: 4.16 seconds

$ etime python diff2d_theano

Elapsed: 13.12 seconds

Numexpr wins.

How about serially?

$ #with "ne.set_num_threads(1)"

$ etime python diff2d_numexpr

Elapsed: 14.05 seconds

$ etime python diff2d_theano

Elapsed: 12.91 seconds

Theano wins, just.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 50 / 127

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix(’dens’)

t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +

t_dens[1:nrows+1,2:ncols+2] +

t_dens[1:nrows+1,0:ncols+0] -

4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)

laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 28 cores?

$ etime python diff2d_numpy

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr

Elapsed: 4.16 seconds

$ etime python diff2d_theano

Elapsed: 13.12 seconds

Numexpr wins.

How about serially?

$ #with "ne.set_num_threads(1)"

$ etime python diff2d_numexpr

Elapsed: 14.05 seconds

$ etime python diff2d_theano

Elapsed: 12.91 seconds

Theano wins, just.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 50 / 127

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix(’dens’)

t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +

t_dens[1:nrows+1,2:ncols+2] +

t_dens[1:nrows+1,0:ncols+0] -

4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)

laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 28 cores?

$ etime python diff2d_numpy

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr

Elapsed: 4.16 seconds

$ etime python diff2d_theano

Elapsed: 13.12 seconds

Numexpr wins.

How about serially?

$ #with "ne.set_num_threads(1)"

$ etime python diff2d_numexpr

Elapsed: 14.05 seconds

$ etime python diff2d_theano

Elapsed: 12.91 seconds

Theano wins, just.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 50 / 127

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix(’dens’)

t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +

t_dens[1:nrows+1,2:ncols+2] +

t_dens[1:nrows+1,0:ncols+0] -

4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)

laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 28 cores?

$ etime python diff2d_numpy

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr

Elapsed: 4.16 seconds

$ etime python diff2d_theano

Elapsed: 13.12 seconds

Numexpr wins.

How about serially?

$ #with "ne.set_num_threads(1)"

$ etime python diff2d_numexpr

Elapsed: 14.05 seconds

$ etime python diff2d_theano

Elapsed: 12.91 seconds

Theano wins, just.
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 50 / 127

Forking

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 51 / 127

Forking (linux specific)
Another simple way to run code in
parallel is to “fork” the process.

The system call fork() creates a
copy of the process that called
it, and runs it as a child
process.

The child gets ALL the data of
the parent process.

The child gets its own process
number (PID), and as such
runs independently of the
parent.

We use the return value of
fork() to determine which
process we are; 0 means we’re
the child.

Probably doesn’t work in
windows

firstfork.py

import os

Our child process.

def child():

print "Hello from", os.getpid()

os._exit(0)

The parent process.

while (True):

newpid = os.fork()

if newpid == 0:

child()

else:

print "Hello from parent", os.getpid(), newpid

if raw_input() == "q": break

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 52 / 127

Process forking, continued

What does that look like?

$ python firstfork.py

Hello from parent 27089 27090

Hello from 27090

q

$

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 53 / 127

Forking/executing

What if we prefer to run a
completely different code, rather
than copying the existing code to
the child?

we can run one of the os.exec
series of functions.

The os.execlp call replaces the
currently running program with
the new one specified, in the
child process only.

If os.execlp is successful at
lauching the program, it never
returns. Hence the assert
statement is only invoked if
something goes wrong.

child.py

import os

print "Hello from", os.getpid()

os._exit(0)

secondfork.py

import os

while (True):

pid = os.fork()

if pid == 0:

os.execlp("python", "python",

"child.py")

assert False, "Error starting program"

else:

print "The child is", pid

if raw_input() == "q": break

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 54 / 127

Notes about fork()
Fork was an early implementation used to spawn sub-processes, and is no
longer commonly used. Some things to remember if you try to use this
approach:

use os.waitpid(child pid) if you need to wait for the child process
to finish. Otherwise the parent will exit and the child will live on.

fork() is a Unix command. It doesn’t work on Windows, except under
Cygwin.

This must be used very carefully, ALL the data is copied to the child
process, including file handles, open sockets, database connections. . .

Be sure to exit using os. exit(0) rather than os.exit(0), or else the
child process will try to clean up resources that the parent process is
still using.

Because of the above, fork() can lead to code that is diffcult to
maintain long-term.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 55 / 127

Using fork in data analysis

Some notes about using forks in the context of data analysis:

Something you may have noticed the about fork examples thus far is
the lack of return from the functions.

Forked processes, being processes and not threads, do not share
anything with the parent process.

As such, the only way they can return anything to the parent function
is through inter-process communication.

This is possible, though a bit tricky. We’ll look at one way to do this
later in the class.

Your best bet, from a data processing point of view, is to just use
fork for one-time functions that do not return anything to the parent.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 56 / 127

Threads in Python

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 57 / 127

Processes versus threads
There is often confusion on the difference between threads and processes.

A process provides the resources needed to execute a program. A
thread is a path of execution within a process. As such, a process
contains at least one thread, possibly many.

A process contains a considerable amount of state information
(handles to system objects, PID, address space, . . .). As such they
are more resource-intensive to create. Threads are very light weight in
comprison.

Threads within the same process share the same address space. This
means they can share the same memory and can easily communicate
with each other.

Different processes do not share the same address space. Different
processes can only communicate with each other through OS-supplied
mechanisms.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 58 / 127

Notes about threads

Are there advantages to using threads, versus processes?

As noted about, threads are light-weight compared to processes. As a
result, they start up more quickly.

Threads can be simpler to program, especially when the threads need
to communicate with each other.

Threads share memory, which can simplify (as well as obfuscate)
programming.

Threads are more portable than forked processes, as they are fully
supported by Windows.

These points aside, there are downsides to using threads in a data-analysis
application, as we’ll see in a moment.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 59 / 127

How much faster is it using threads?
summer_threaded.py

import time, threading

from summer import my_summer

begin = time.time()

threads = []

for i in range(10):

t = threading.Thread(

target = my_summer,

args = (0, 5000000))

threads.append(t)

t.start()

Wait for all threads to finish.

for t in threads: t.join()

print ("Elasped: %f"%

time.time() - begin,"seconds")

summer.py - used in all summer*py

def my_summer(start, stop):

tot = 0

for i in xrange(start,stop):

tot += i

summer_serial.py

import time

from summer import my_summer

begin = time.time()

threads = []

for i in range(10):

my_summer(0, 5000000)

print "Elapsed:", time.time() - begin,"seconds"

Timings
$ python summer_serial.py

Elapsed: 11.58 seconds

$ python summer_threaded.py

Elapsed: 38.48 seconds

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 60 / 127

How much faster is it using threads?
summer_threaded.py

import time, threading

from summer import my_summer

begin = time.time()

threads = []

for i in range(10):

t = threading.Thread(

target = my_summer,

args = (0, 5000000))

threads.append(t)

t.start()

Wait for all threads to finish.

for t in threads: t.join()

print ("Elasped: %f"%

time.time() - begin,"seconds")

summer.py - used in all summer*py

def my_summer(start, stop):

tot = 0

for i in xrange(start,stop):

tot += i

summer_serial.py

import time

from summer import my_summer

begin = time.time()

threads = []

for i in range(10):

my_summer(0, 5000000)

print "Elapsed:", time.time() - begin,"seconds"

Timings
$ python summer_serial.py

Elapsed: 11.58 seconds

$ python summer_threaded.py

Elapsed: 38.48 seconds

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 60 / 127

Not faster at all, slower!
The threading code is no faster than the serial code, even on my computer
with two cores. Why?

The Python Interpreter uses the Global Interpreter Lock (GIL).

To prevent race conditions, the GIL prevents threads from the same
Python program from running simultaneously. As such, only one core
is used at any given time.

Consequently the threaded code is no faster than the serial code, and
is generally slower due to thread-creation overhead.

As a general rule, threads are not used for most Python applications
(GUIs being one important exception). This example is for
demonstration purposes only.

Instead, we will use one of several other modules, depending on the
application in question. These modules will launch subprocesses,
rather than threads.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 61 / 127

Multiprocessing

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 62 / 127

Multiprocessing

The multiprocessing module tries to strike a balance between forks and
threads:

Unlike fork, multiprocessing works on Windows (better portability).

Slightly longer start-up time than threads.

Multiprocessing spawns separate processes, like fork, and as such they
each have their own memory.

Multiprocessing requires pickleability for its processes on Windows,
due to the way in which it is implemented. As such, passing
non-pickleable objects, such as sockets, to spawned processes is not
possible.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 63 / 127

The multiprocessing module, continued

A few notes about the
multiprocessing module:

The Process function launches
a separate process.

The syntax is very similar to
the threading module. This is
intentional.

The details under the hood
depend strongly upon the
system involved (Windows,
Mac, Linux), thus the
portability of code written with
this module.

summer_multiprocessing.py

import time, multiprocessing

from summer import my_summer

begin = time.time()

processes = []

for i in range(10):

p = multiprocessing.Process(

target = my_summer,

args = (0, 5000000))

processes.append(p)

p.start()

Wait for all processes to finish.

for p in processes: p.join()

print ("Elapsed:%f"%

time.time() - begin)

$ python summer_multiprocessing.py

Elapsed: 0.127079

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 64 / 127

Shared memory with multiprocessing
multiprocess allows one to
seamlessly share memory
between processes. This is done
using ‘Value’ and ‘Array’.

Value is a wrapper around a
strongly typed object called a
ctype. When creating a Value,
the first argument is the
variable type, the second is that
value.

Code on the right has 10
processes add 50 increments of
1 to the Value v.

multiprocessing_shared.py

from multiprocessing import Process

from multiprocessing import Value

def myfun(v):

for i in range(50):

time.sleep(0.001)

v.value += 1

v = Value(’i’, 0);

procs = []

for i in range(10):

p=Process(target=myfun,args=(v,))

procs.append(p)

p.start()

for proc in procs: proc.join()

print(v.value)

$ etime python multiprocessing_shared.py

480

Elapsed: 0.12 seconds
Did the code behave as expect?

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 65 / 127

Shared memory with multiprocessing
multiprocess allows one to
seamlessly share memory
between processes. This is done
using ‘Value’ and ‘Array’.

Value is a wrapper around a
strongly typed object called a
ctype. When creating a Value,
the first argument is the
variable type, the second is that
value.

Code on the right has 10
processes add 50 increments of
1 to the Value v.

multiprocessing_shared.py

from multiprocessing import Process

from multiprocessing import Value

def myfun(v):

for i in range(50):

time.sleep(0.001)

v.value += 1

v = Value(’i’, 0);

procs = []

for i in range(10):

p=Process(target=myfun,args=(v,))

procs.append(p)

p.start()

for proc in procs: proc.join()

print(v.value)

$ etime python multiprocessing_shared.py

480

Elapsed: 0.12 seconds
Did the code behave as expect?

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 65 / 127

Race conditions

What went wrong?

Race conditions occur when program instructions are executed in an
order not intended by the programmer. The most common cause is
when multiple processes are given access to a resource.

In the example here, we’ve modified a location in memory that is
being accessed by multiple processes.

Note that it need not only be processes or threads that can modify a
resource, anything can modify a resource, hardware or software.

Bugs caused by race conditions are extremely hard to find.

Disasters can occur.

Be very very careful when sharing resources between multiple processes or
threads!

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 66 / 127

Using shared memory, continued
The solution, of course, is to be more explicit in your locking.

If you use shared memory, be sure to test everything thoroughly.

multiprocessing_shared_fixed.py

from multiprocessing import Process

from multiprocessing import Value

from multiprocessing import Lock

def myfun(v, lock):

for i in range(50):

time.sleep(0.001)

with lock:

v.value += 1

multiprocessing_shared_fixed.py

continued

v = Value(’i’, 0)

lock = Lock()

procs = []

for i in range(10):

p=Process(target=myfun,

args=(v,lock))

procs.append(p)

p.start()

for proc in procs: proc.join()

print(v.value)

$ etime python multiprocessing_shared_fixed.py

500

Elapsed: 0.09 seconds

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 67 / 127

Using shared memory, arrays

Multiprocessing also allows
you to share a block of memory
through the Array ctypes
wrapper.

Only 1-D arrays are permitted.

Note that
multiprocessing.Process must
be used; shared memory does
not work with
multiprocessing.Pool.map.

Note that, since arr is actually
a ctypes object, you must print
the contents of arr to see the
result.

multiprocessing_shared_array.py

from numpy import arange

from multiprocessing import Process,Array

def myfun(a, i):

a[i] = -a[i]

arr = Array(’d’, arange(10.))

procs = []

for i in range(10):

p = Process(target=myfun,

args=(arr, i))

procs.append(p)

p.start()

for proc in procs:

proc.join()

print(arr[:])

[-0.0, -1.0, -2.0, -3.0, -4.0,

-5.0, -6.0, -7.0, -8.0, -9.0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 68 / 127

Using shared memory, arrays

Multiprocessing also allows
you to share a block of memory
through the Array ctypes
wrapper.

Only 1-D arrays are permitted.

Note that
multiprocessing.Process must
be used; shared memory does
not work with
multiprocessing.Pool.map.

Note that, since arr is actually
a ctypes object, you must print
the contents of arr to see the
result.

multiprocessing_shared_array.py

from numpy import arange

from multiprocessing import Process,Array

def myfun(a, i):

a[i] = -a[i]

arr = Array(’d’, arange(10.))

procs = []

for i in range(10):

p = Process(target=myfun,

args=(arr, i))

procs.append(p)

p.start()

for proc in procs:

proc.join()

print(arr[:])

[-0.0, -1.0, -2.0, -3.0, -4.0,

-5.0, -6.0, -7.0, -8.0, -9.0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 68 / 127

But there’s more!

The multiprocessing module is loaded with functionality. Other features
include:

Inter-process communciation, using Pipes and Queues.

multiprocessing.manager, which allows jobs to be spread over multiple
‘machines’ (nodes).

subclassing of the Process object, to allow further customization of
the child process.

multiprocessing.Event, which allows event-driven programming
options.

multiprocess.condition, which is used to synchronize processes.

We’re not going to cover these features today.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 69 / 127

MPI4PY

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 70 / 127

Message Passing Interface

The previous parallel techniques used processors on one node.

Using more than one node requires these nodes to communicate.

MPI is one way of doing that communication.

MPI = Message Passing Interface.

MPI is a C/Fortran Library API.

Sending data = sending a message.

Requires setup of processes through mpirun/mpiexec.

Requires MPI Init(...) in code to collect processes into a
‘communicator’.

Rather low level.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 71 / 127

Mpi4py features

mpi4py is a wrapper around the mpi library

Point-to-point communication (sends, receives)

Collective (broadcasts, scatters, gathers) communications of any
picklable Python object,

Optimized communications of Python object exposing the
single-segment buffer interface (NumPy arrays, builtin
bytes/string/array objects).

Names of functions much the same as in C/Fortran, but are methods
of the communicator (object-oriented).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 72 / 127

MPI C/C++ recap
The following C++ code determines each process’ rank and sends that
rank to its left neighbor.

#include <mpi.h>

#include <iostream>

int main(int argc, char** argv) {
int rank, size, rankr, right, left;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

right = (rank+1)%size;

left = (rank+size-1)%size;

MPI_Sendrecv(&rank, 1, MPI_INT, left, 13,

&rankr, 1, MPI_INT, right, 13,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

std::cout<<"I am rank "<<rank<<"; my right neighbour is "<<rankr<<"\n";
MPI_Finalize();

}

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 73 / 127

MPI Fortran recap
The following Fortran code determines each process’ rank and sends that
rank to its left neighbor.

program rightrank

use mpi

implicit none

integer rank, size, rankr, right, left, e

call MPI_Init(e)

call MPI_Comm_rank(MPI_COMM_WORLD, rank, e)

call MPI_Comm_size(MPI_COMM_WORLD, size, e)

right = mod(rank+1, size)

left = mod(rank+size-1, size)

call MPI_Sendrecv(rank, 1, MPI_INTEGER, left, 13, &

rankr, 1, MPI_INTEGER, right, 13, &

MPI_COMM_WORLD, MPI_STATUS_IGNORE, e)

print *, "I am rank ", rank, "; my right neighbour is ", rankr

call MPI_Finalize(e)

end program rightrank

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 74 / 127

Mpi4py

One of the drudgeries of MPI is to have to express the binary layout
of your data.

The drudgery arises because C and Fortran do not have introspection
and the MPI libraries cannot look inside your code.

With Python, this is potentially different: we can investigate, within
python, what the structure is.

That means we should be able to express sending a piece of data
without having to specify types and amounts.

from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()

size = MPI.COMM_WORLD.Get_size()

right = (rank+1)%size

left = (rank+size-1)%size

rankr = MPI.COMM_WORLD.sendrecv(rank, left, source=right)

print "I am rank", rank, "; my right neighbour is", rankr

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 75 / 127

Mpi4py + numpy

It turns out that mpi4py’s communication is pickle-based.

Pickle is a serialization format which can convert any python object
into a bytestream.

Convenient as any python object can be sent, but conversion takes
time.

For numpy arrays, one can skip the pickling using Uppercase variants
of the same communicator methods.

However, this requires us to preallocate buffers to hold messages to
be received.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 76 / 127

Example: Area under the curve

Let’s consider a code that
numerically computes the
following integral:

b =

∫ 3

x=0

(
7

10
x3 − 2x2 + 4

)
dx

Exact answer b = 8.175

It’s the area under the curve on
the right.

Method: sample y = 7
10

x3 − 2x2 + 4 at a uniform grid of x values
(using ntot number of points), and add the y values.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 77 / 127

Mpi4py+numpy: Upper/lowercase example
import sys

from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()

size = MPI.COMM_WORLD.Get_size()

ntot = int(sys.argv[1])

npnts = ntot/size

dx = 3.0/ntot

width = 3.0/size

x = rank*width

a = 0.0

for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4

a += y*dx

x += dx

b = MPI.COMM_WORLD.reduce(a)

if rank == 0:

print "The area is", b

import sys

from mpi4py import MPI

from numpy import zeros, asarray

rank = MPI.COMM_WORLD.Get_rank()

size = MPI.COMM_WORLD.Get_size()

ntot = int(sys.argv[1])

npnts = ntot/size

dx = 3.0/ntot

width = 3.0/size

x = rank*width

a = 0.0

for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4

a += y*dx

x += dx

b = np.zeros(1)

MPI.COMM_WORLD.Reduce(asarray(a),b)

if rank == 0:

print "The area is", b[0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 78 / 127

Mpi4py+numpy: Upper/lowercase example
import sys

from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()

size = MPI.COMM_WORLD.Get_size()

ntot = int(sys.argv[1])

npnts = ntot/size

dx = 3.0/ntot

width = 3.0/size

x = rank*width

a = 0.0

for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4

a += y*dx

x += dx

b = MPI.COMM_WORLD.reduce(a)

if rank == 0:

print "The area is", b

import sys

from mpi4py import MPI

from numpy import zeros, asarray

rank = MPI.COMM_WORLD.Get_rank()

size = MPI.COMM_WORLD.Get_size()

ntot = int(sys.argv[1])

npnts = ntot/size

dx = 3.0/ntot

width = 3.0/size

x = rank*width

a = 0.0

for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4

a += y*dx

x += dx

b = np.zeros(1)

MPI.COMM_WORLD.Reduce(asarray(a),b)

if rank == 0:

print "The area is", b[0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 78 / 127

Mpi4py Speedup?

$ etime mpirun -np 1 python auc.py 300000000

The area is 8.175000

Elapsed: 15.27 seconds

$ etime mpirun -np 28 python auc.py 30000000

The area is 8.175000

Elapsed: 3.43 seconds

$ etime mpirun -np 28 python auc_numpy.py 30000000

The area is 8.175000

Elapsed: 4.74 seconds

Here, there simply isn’t enough communication to see the difference
between the pickled and non-pickled interface.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 79 / 127

Mpi4py Speedup?

$ etime mpirun -np 1 python auc.py 300000000

The area is 8.175000

Elapsed: 15.27 seconds

$ etime mpirun -np 28 python auc.py 30000000

The area is 8.175000

Elapsed: 3.43 seconds

$ etime mpirun -np 28 python auc_numpy.py 30000000

The area is 8.175000

Elapsed: 4.74 seconds

Here, there simply isn’t enough communication to see the difference
between the pickled and non-pickled interface.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 79 / 127

Mpi4py Speedup?

$ etime mpirun -np 1 python auc.py 300000000

The area is 8.175000

Elapsed: 15.27 seconds

$ etime mpirun -np 28 python auc.py 30000000

The area is 8.175000

Elapsed: 3.43 seconds

$ etime mpirun -np 28 python auc_numpy.py 30000000

The area is 8.175000

Elapsed: 4.74 seconds

Here, there simply isn’t enough communication to see the difference
between the pickled and non-pickled interface.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 79 / 127

Mpi4py Speedup?

$ etime mpirun -np 1 python auc.py 300000000

The area is 8.175000

Elapsed: 15.27 seconds

$ etime mpirun -np 28 python auc.py 30000000

The area is 8.175000

Elapsed: 3.43 seconds

$ etime mpirun -np 28 python auc_numpy.py 30000000

The area is 8.175000

Elapsed: 4.74 seconds

Here, there simply isn’t enough communication to see the difference
between the pickled and non-pickled interface.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 79 / 127

Hands-on

1 Use multiprocessing to parallelize the auc.py code.

2 Use numexpr to parallelize the auc.py code.

3 What else could we do to speed up the code?

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 80 / 127

Map/Reduce variations

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 81 / 127

Map/reduce

The diffusion example is, as already admitted, a hard problem to get
good performance out of with python.

That was because it’s a tightly coupled problem.

Other problems aren’t, e.g.:

I Parameter sweeps

I Reductions

I Big data

For such problems, there are some valuable frameworks of the
map/reduce variety.

We’ll consider two python-enabled map/reduce frameworks:

I IPython Parallel

I Apache Spark (in particular pyspark)

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 82 / 127

Common characteristics in map/reduce

A master process + worker processes

Master divides or requests work, and collects results

Overall workflow is data based:

1 Data is distributed over workers (or already resides there), and workers
perform computation on their local data

2 If reduction: data is moved between workers, and work is done by
‘reducers’. This step is iterative.

3 Result is reported to the master.

Emphasis on distributing the work and bringing the work to the data.
Works well if ‘work chuncks’ take a good bit of time.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 83 / 127

IPython’s Parallel Architecture

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 84 / 127

Ipyparallel

(formerly IPython Parallel)

Interestingly, IPython comes with a
built-in parallel engine. It consists of
four components:

Engines: Do the work. One
core, one engine.

Schedulers: Deliver and divide
the work.

Hub: Coordinates and logs the
engine and schedule activity.

Clients: Request work to be
done on engines.

Schedulers + Hub + Engine = Cluster

Schedulers + Hub = Controller

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 85 / 127

Starting an IPython cluster
Starting up an IPython cluster is not difficult. But there are some steps
that you need to go through carefully:

$ hostname

r003.bridges.psc.edu

$ cd ~/hpcpy/code

$ source setup

$ ipcluster start -n 4

a bunch of messages...

Do this on the compute node, and remember the hostname. You can
minimize this terminal but do not close it.

Open a second terminal on your laptop and

Ssh into your compute node.

$ ssh -Y bridges.psc.edu

$ ssh -Y r003

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 86 / 127

Using the workers in python

Start python and grab the handles to the clients.

$ cd ~/hpcpy/code

$ source setup

$ python

>>> from ipyparallel import Client

>>> clients = Client()

>>>

(older python version? try from IPython.parallel import Client)

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 87 / 127

Accessing the Clients

Let’s see what we’ve got here.

>>>

>>> # use synchronous computations

>>> clients.block = True

>>> print(len(clients))

4

>>> print(clients.ids)

[0, 1, 2, 3]

>>>

Each client has been assigned an id, starting at 0.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 88 / 127

Accessing the Clients, continued

Here’s simple function to execute on the cores:

>>> def minus(a, b):

... return a - b

>>> minus(5, 6)

-1

>>> #Execution on the first engine only:

>>> clients[0].apply(minus, 5, 6)

-1

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 89 / 127

Interfaces to the Engines

Some notes about the engines:

The python environment that holds the ‘Clients’ part is completely
separate from that of the ‘Engines’.

As such, you need to move data and code to the Engines.

You also need to request to execute code on the Engines.

The Controller (Schedulers + Hub) is the single point of contact for
the clients.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 90 / 127

Views
Views are a layer over sets of engines that allow access to engine variables
through a dictionary, storing settings, and scheduling tasks.

There are two kinds of views:

A Direct interface, where engines are addressed explicitly. You get
this view by using square brackets. For example:

Client()[1:8:2]

A LoadBalanced interface, where the Scheduler is trusted with
assigning work to appropriate engines. You get this from

Client().load_balanced_view()

View is selected by the client.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 91 / 127

Parallel Execution

There are a number of ways to invoke the Engines:

clients[:].run takes a script and runs in on the engine(s).

clients[:].execute takes a command, as a string, to run on the
engine(s).

clients[:].apply takes a function and arguments, to run on the
engine(s).

clients[:].map takes a function and a list, to distribute over the
engine(s).

In the last two, the function and arguments get shipped to the engine.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 92 / 127

Blocking/Nonblocking

There are two modes in which execution of code can run:

In blocking mode (“synchronous”), all execution must be finished
before results are recorded.

In non-blocking mode, an “AsyncResult” is returned, which we can
ask if it is done (.ready()), and what the result is (.get()).

The latter is potentially faster, but requires a bit more ‘infrastructure’.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 93 / 127

Examples

Execute minus in parallel on all the engines at once:

>>> clients[:].apply(minus, 5, 6)

[-1, -1, -1, -1]

What if we want different arguments to each engine? In normal Python we
could use “map”:

>>> map(minus, [11, 10, 9, 8], [5, 6, 7, 8])

[6, 4, 2, 0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 94 / 127

Examples, continued

The client view’s “map” function executes in parallel. Using a
load-balanced view, this would look like this:

>>> view = clients.load_balanced_view()

>>> view.map(minus, [11, 10, 9, 8], [5, 6, 7, 8])

[6, 4, 2, 0]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 95 / 127

Direct view

Recall that the “Direct View” allows you to directly command the engines.
To execute a command on all the engines:

>>> clients.block = True

>>> dview = clients.direct_view()

>>> dview.block = True

>>> dview.apply(sum, [1, 2, 3])

[6, 6, 6, 6]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 96 / 127

Direct view, continued

Slicing a Client’s object gets you a Direct view as well:

>>> clients[::2]

<DirectView [0, 2]>

>>> clients[::2].apply(sum, [1, 2, 3])

[6, 6]

Which we saw previously, when we used clients[:].apply(minus, 5, 6).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 97 / 127

Load Balanced View

To execute a command on all the engines, using the Load Balanced View:

>>> dview = Client().load_balanced_view()

>>> dview.block = True

>>> dview.apply(sum, [1, 2, 3])

6

This view is useful if you’re going to execute tasks one by one, or if the
tasks take a varying amount of time.

We will focus on direct view in the remainder, which is a bit more flexible.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 98 / 127

Data movement to and from engines

Moving data around is straighforward.

You can access variables though a dictionary-like interface.

Indexing a client gives access to the dictionary for a particular engine.

A view has a dictionary interface too, which gives you a list of the
values in all the engines.

>>> v = clients[:]

>>> v.block = True

>>> v.execute(’from os import getpid’)

<AsyncResult: finished>

>>> v.execute(’x = getpid()’)

<AsyncResult: finished>

>>> v[’x’]

[24068, 24067, 24065, 24066]

>>> clients[3][’x’]

24066

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 99 / 127

Scatter/Gather

Some of the parallelization features we saw in the other parallel
programming sessions are built-in as well.

Sometimes you want to explicitly divide a list or array on the engines:
Scatter

Or, reconstruct a larger list on the client from local lists on the
engines: Gather

This is quite simple in IPython.parallel:

>>> v.scatter(’a’, np.arange(16))

>>> v[’a’]

[array([0, 1, 2, 3]),

array([4, 5, 6, 7]),

array([8, 9, 10, 11]),

array([12, 13, 14, 15])]

>>> v.gather(’a’)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 100 / 127

Spark

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 101 / 127

Why Spark?

Suppose you find yourself in a situation where your data is ridiculously
huge:

Facebook’s daily logs: 60TB.

1,000 genomes project: 200TB.

Google web index: > 10 PB.

Cost of 1TB disk: $65.

Time to read 1TB from disk: 3 hours (100 MB/s).

The scale of these data sets means that we cannot analyse them on a
single machine. The analysis must be done in a distributed-memory
setting.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 102 / 127

In the beginning
A few years ago, if you found yourself in this situation, you would have
used Hadoop. Hadoop is essentially a distributed file system, that allows
you to take your computation to the data.

But the original Hadoop had some serious issues:

It was stuck with Map Reduce.

This meant all data was mapped to a key-value pair and then
‘reductions’ were performed on this data.

Each stage of any calculation involved:

1 Read data from disk.
2 Perform calculation.
3 Write result to disk.
4 Communicate the result.

Very I/O heavy! And requires a disk available on all nodes.

Slow! Inefficient!

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 103 / 127

Spark’s approach

Apache Spark does not use I/O so heavily, and has ideal features:

Spark keeps things in memory instead of disk (though on-disk storage
is also supported).

Map and Reduce are not your only available operations (though this
is no longer true for Hadoop 2).

Many language wrappers available (Scala, Java, R, Python).

Uses lazy evaluation, which results in improved pipelining.

Supports batch, interactive and streaming execution models.

Spark has built-in redundancy; it keeps track of how the data are
created, so that if a node fails the data can be rebuilt from scratch
(like Hadoop).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 104 / 127

Spark’s anatomy

A Spark program consists of two parts:

Driver program: runs on the driver machine. This is often called the
‘master’ program.

Worker programs: run on cluster nodes or in local threads. These are
sometimes called “Executors”. When RDDs (Resilient Distributed
Data sets) are created, they are distributed across the workers.

The first step in a Spark program is to create a SparkContext object.

This tells Spark how and where to access a cluster.

This is used to create our RDD.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 105 / 127

Spark’s anatomy, continued

“Driver program” == “Master”. Notice that only one worker

program (executor) runs on each node, but that worker can

launch multiple ‘tasks’.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 106 / 127

About Spark and pySpark

We will use pySpark to access the running Spark machinery:

Using Spark 1.6.1, which may still have some issues with Python 3.

pySpark uses the standard CPython interpreter, so C libraries (like
NumPy) can be used.

Use the “pyspark” command to launch an interactive Python shell.

The pySpark shell comes with a SparkContext built in, in the variable
called “sc”.

You can also invoke an IPython version of the pySpark shell, which
comes with all the usual IPython functionality.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 107 / 127

Setting up a Spark session
Note: Bridges has dedicated hadoop/spark nodes, but here, we will simply
reuse the interactive node you’ve already got.

1 Make sure you’re on an interactive node and have done source

setup
2 Setup the Spark session.

$ source $SPARK_HOME/scripts/setup_spark.sh

starting org.apache.spark.deploy.master.Master, logging

to /home/rzon/.local/spark/spark-1.6.1-bin-hadoop2.6/logs/spark-rzon-org.apache.spark.deploy.master.Master-1-br006.pvt.bridges.psc.edu.out

This script:

Detects which nodes are part of your job.

Starts a master process on the head node.

Creates $SCRATCH/temp, $SCRATCH/spark-logs,
$SCRATCH/spark-workers directories, if necessary.

Starts a worker process on all of your job’s nodes. These are
technically Java Virtual Machines.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 108 / 127

Setting up a Spark session (cont.)

1 Move to the spark directory.

$ cd $HOME/hpcpy/spark

2 Launch pySpark with IPython support.

$ IPYTHON=1 pyspark

...

SparkContext available as sc.

In [1]:

We now have a Spark session running, which we access

using pySpark.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 109 / 127

Confirming your cluster

To confirm that your cluster is working:

>>>

>>> from socket import gethostname

>>>

>>> sc.parallelize(range(5)).map(lambda x:gethostname()).collect()

[’r024.pvt.bridges.psc.edu’, ’r024.pvt.bridges.psc.edu’,

’r024.pvt.bridges.psc.edu’,’r024.pvt.bridges.psc.edu’,

’r024.pvt.bridges.psc.edu’]

>>>

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 110 / 127

Creating RDDs

Spark is all about RDDs (Resilient Distributed Data sets), which are what
we use to hold our data:

RDDs are objects; all operations on them consist of one of many
existing functions.

RDDs are immutable: they cannot be changed once created.

To modify data you create new RDDs based on existing RDDs.

Remember that RDDs are lazily evaluated, meaning not calculated
until an ‘action’ is performed.

RDDs can be ‘cached’ so that the results persist.

RDDs contain data of two general types, regular (which are single
values of any type), and (key, value).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 111 / 127

RDD Pipelines

The general procedure for data analysis is a pipeline:

create an RDD from a data source, file or list.

apply various transformations to the RDD.

apply an action to the RDD.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 112 / 127

Creating RDDs, continued

So how do I create an RDD?
There are a few options in pySpark:

parallelize(x): create an RDD
out of the data (list or Numpy
vector) ‘x’.

textFile(file): read a text file,
and return each line as the
data. Will also read all the files
in a directory, if a path is given.

There are also methods for
reading in other types of files.

In [3]: myverbs = [’run’, ’jump’,

’sit’, ’laugh’, ’run’, ’smile’]

In [4]: verbRDD =

sc.parallize(myverbs)

In [5]:

In [5]: myRDD =

sc.textFile(’myfile.txt’)

In [6]:

Note that the file mentioned above
doesn’t (presumably) exist. Why
isn’t an error message thrown?

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 113 / 127

Manipulating RDDs: transformations
Ok, I’ve got my RDD. Now what? Well, the things you can do fall into
two categories. The first is transformations:

map(func): map each value of the RDD to a function; return a new
RDD that contains the return of the function on each RDD value.

filter(func): return a new dataset formed by applying ‘func’ to each
element, and keeping those which return True.

flatMap(func): like map, but returns all elements in a single list.

distinct(): reduce the RDD data points to distinct values only.

groupByKey(): group key values as lists, return as (key, list) pairs.

reduceByKey(func): reduce the elements key-by-key, applying func to
the elements.

sortBy(func)/sortByKey(func): sort the RDD, using func.

Transformations return an RDD, with the elements appropriately
‘transformed.’

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 114 / 127

Manipulating RDDs: actions

The second category of RDD functions are actions:

reduce(func): reduce the elements back to the master process, by
applying func to the elements.

count(): counts the elements.

collect(): bring all the elements back to the master.

take(n): bring in ‘n’ elements to the master.

takeOrdered(n, func): same as take, but re-order based on func.
max(), min(), mean(), stdev(), sum()

Actions return a value, or list. Read the API if you’re not sure of the name
of the function you need.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 115 / 127

Manipulating RDDs, continued

In [6]: def pastTense(s):

...: return s + ’ed’

...:

In [7]:

In [7]: myverbs = [’run’, ’jump’, ’sit’, ’laugh’, ’run’, ’smile’]

In [8]:

In [8]: verbRDD = sc.parallelize(myverbs)

In [9]:

In [9]: pastTenseRDD = verbRDD.map(pastTense)

In [10]:

In [10]: pastTenseRDD.collect()

Out[10]: [’runed’, ’jumped’, ’sited’, ’laughed’, ’runed’, ’smileed’]

In [11]:

In [11]: verbRDD.take(1)

Out[11]: [’run’]

In [12]:

Note that nothing is actually calculated until the ‘collect’ is called.
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 116 / 127

Manipulating RDDs: partitioning

By default your RDD is sliced up into ‘partitions’ and spread across the
workers.

The number of partitions can greatly impact computational efficiency.
When individual functions are applied to the data, one task is
performed per partition.

For load balancing you will want at least as many partitions as cores,
possibly more.

Spark documentation suggests 2-4 partitions per CPU. You will often
see problems broken up into hundreds or thousands of partitions.

Be aware that increasing the number of partitions before the data is
read in can cause I/O issues. It’s better to repartition after the data
is read.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 117 / 127

Manipulating RDDs: partitioning, cont.
There are built-in commands to adjust your partitions on the fly:

You can get the system default minimum number of partitions using
“sc.defaultMinPartitions”.

You can set the number of partitions as an optional argument when
you create your RDD:

I “numSlices”: for parallelize.

I “minPartitions”: for textFile.

You can get the number of partitions for a given RDD using
RDD.getNumPartitions().

You can change the RDD’s number of partitions using
“RDD.repartition(num)”. This can be an expensive operation, as the
data is randomly shuffled.

“RDD.coalesce(num)” also reduces the number of partitions,
without shuffling.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 118 / 127

Manipulating RDDs: partitioning, cont.

In [12]:

In [12]: sc.defaultMinPartitions

Out[12]: 2

In [13]:

In [13]: myverbs = [’run’, ’jump’, ’sit’, ’laugh’, ’run’, ’smile’]

In [14]: verbRDD = sc.parallelize(myverbs, numSlices = 48)

In [15]: verbRDD.getNumPartitions()

Out[15]: 48

In [16]:

In [16]: myRDD=sc.textFile(’data/stopwords.txt’,minPartitions=100)

In [17]: myRDD.getNumPartitions()

Out[17]: 101

In [18]:

In [18]: newRDD = myRDD.repartition(200)

In [19]: newRDD.getNumPartitions()

Out[19]: 200

In [20]:

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 119 / 127

Python’s lambda function

Python contains a function called ‘lambda’. Lambda functions

are small, anonymous functions (not bound to a name).

have the format “lambda arguments: operation on arguments”.

are restricted to a single expression.

example: lambda a, b: a - b.

Who cares? Well, if you combine lambda with the RDD ‘map’ command,
you can do some pretty impressive things.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 120 / 127

Using lambda

In [20]:

In [20]: range(10)

Out[20]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [21]:

In [21]: myRDD = sc.parallelize(range(10))

In [22]:

In [22]: myRDD.map(lambda x: 2 * x)

Out[22]: PythonRDD[1] at RDD at PythonRDD.scala:37

In [23]:

In [23]: myRDD.map(lambda x: 2 * x).collect()

Out[23]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In [24]:

In [24]: myRDD.filter(lambda x: x % 3 == 0).collect()

Out[24]: [0, 3, 6, 9]

In [25]:

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 121 / 127

Creating (key, value) pairs
The lambda function can be used to create compound variables, as well as
to create (key, value) pairs.

In [25]: myRDD = sc.parallelize([3, 4, 5])

In [26]:

In [26]: myRDD.map(lambda x: [x, x - 2]).collect()

Out[26]: [[3, 1], [4, 2], [5, 3]]

In [27]:

In [27]: myRDD.flatMap(lambda x: [x, x - 2]).collect()

Out[27]: [3, 1, 4, 2, 5, 3]

In [28]:

In [28]: # create (key, value) pairs

In [28]: myRDD.map(lambda x: (x, 1)).collect()

Out[28]: [(3, 1), (4, 1), (5, 1)]

In [29]:

Note that once the data has been scattered to the workers, all operations
occur locally, at the workers, until the ‘collect’ command.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 122 / 127

(key, value) example
What is the frequency of words in “Moby Dick”? First prep the data:

In [29]: MD = sc.textFile("data/mobydick.txt")

In [30]:

In [30]: # the first 5 lines

In [30]: MD.take(5)

Out[30]: [u’MOBY DICK;’, u’’, u’or, THE WHALE’, u’’, u’’]

In [31]:

In [31]: # We need to clean this data up.

In [31]: import string

In [32]:

In [32]: # convert from unicode to string.

In [32]: strMD = MD.map(lambda x: x.encode(’ascii’, ’ignore’))

In [33]:

In [33]: # Remove the punctuation.

In [33]: MDNoPu=strMD.map(

...: lambda x:x.translate(None,string.punctuation))

In [34]:

In [34]: MDNoPu.take(5)

Out[34]: [’MOBY DICK’, ’’, ’or THE WHALE’, ’’, ’’]
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 123 / 127

(key, value) example, data cleaning

In [35]: MDNoPu.take(5)

Out[35]: [’MOBY DICK’, ’’, ’or THE WHALE’, ’’, ’’]

In [36]:

In [36]: # We want the words, not the whole lines, so split.

In [36]: MDSplit = MDNoPu.flatMap(lambda x: x.split(’ ’))

In [37]:

In [37]: MDSplit.take(5)

Out[37]: [’MOBY’, ’DICK’, ’’, ’or’, ’THE’]

In [38]:

In [38]: # Make all the words lower case, and remove empty strings.

In [38]: MDlower = MDSPlit.map(

...: lambda x: x.lower()).filter(lambda x: x != ’’)

In [39]:

In [39]: MDlower.take(5)

Out[39]: [’moby’, ’dick’, ’or’, ’the’, ’whale’]

In [40]:

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 124 / 127

(key, value) example, data cleaning, cont.

In [40]:

In [40]: MDlower.take(5)

Out[40]: [’moby’, ’dick’, ’or’, ’the’, ’whale’]

In [41]:

In [41]: # stopwords are words which are considered ’uninteresting’

In [41]: stopwords = open(’data/stopwords.txt’,

...: ’r’).read().split(’\n’)
In [42]:

In [42]: stopwords[0:5]

Out[42]: [’a’, ’about’, ’above’, ’across’, ’after’]

In [43]:

In [43]: MDReady = MDlower.filter(lambda x: x not in stopwords)

In [44]:

In [44]: MDReady.take(5)

Out[44]: [’moby’, ’dick’, ’whale’, ’herman’, ’melville’]

In [45]:

Ready to start counting.
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 125 / 127

(key, value) example, counting occurences
Using the (key, value) approach, 1) count the number of times each word
appears and 2) give the top 5 words, in terms of frequency.

In [45]: kvMD = MDReady.map(lambda word: (word, 1))

In [46]:

In [46]: result = kvMD.reduceByKey(lambda x, y: x + y)

In [47]:

In [47]: result.take(5)

Out[47]:

[(’knockers’, 1),

(’brevet’, 1),

(’yellow’, 19),

(’prefix’, 1),

(’looking’, 56)]

In [48]:

In [48]: result.takeOrdered(5, lambda (k, v): -v)

Out[48]: [(’whale’, 892), (’like’, 567), (’old’, 436), (’man’, 433),

(’ahab’, 417)]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 126 / 127

Useful web sites for Spark

There is much more too spark, obviously.

One of the nice things is that it comes with a machine learning framework
called mllib.

There are a number of useful web sites out there to find more information.
Here are some of them:

spark.apache.org/docs/latest/api/python/pyspark.html

spark.apache.org/docs/latest/programming-guide.html

spark.apache.org/docs/latest/api/python/pyspark.mllib.html

spark.apache.org/docs/latest/api/python/pyspark.sql.html

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 127 / 127

http://spark.apache.org/docs/latest/api/python/pyspark.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html

	Getting started
	Introduction
	Performance tuning tools for Python
	Numpy: faster numerical arrays for python
	Parallel Python
	Numexpr
	Forking
	Threads in Python
	Multiprocessing
	MPI4PY
	Map/Reduce variations
	IPython's Parallel Architecture
	Spark

