
Exercise 1 C Solution

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;
}

Generate a GPU kernel

Generate a GPU kernel

Exercise 1 Fortran Solution
do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1))
enddo

enddo
!$acc end kernels

dt=0.0

!$acc kernels
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Generate a GPU kernel

Generate a GPU kernel

Exercise 1: Compiler output (C)

instr009@h2ologin2:~/Update> cc -acc -Minfo=accel laplace_bad_acc.c
main:

62, Generating present_or_copyout(Temperature[1:1000][1:1000])
Generating present_or_copyin(Temperature_last[0:][0:])
Generating NVIDIA code
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

63, Loop is parallelizable
64, Loop is parallelizable

Accelerator kernel generated
63, #pragma acc loop gang /* blockIdx.y */
64, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

73, Generating present_or_copyin(Temperature[1:1000][1:1000])
Generating present_or_copy(Temperature_last[1:1000][1:1000])
Generating NVIDIA code
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

74, Loop is parallelizable
75, Loop is parallelizable

Accelerator kernel generated
74, #pragma acc loop gang /* blockIdx.y */
75, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

76, Max reduction generated for dt

Compiler was able to

parallelize

Compiler was able to

parallelize

Exercise 1: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 18 --

CPU 2 OpenMP threads 9.4 1.99

CPU 4 OpenMP threads 4.7 3.98

CPU 8 OpenMP threads 2.5 7.48

CPU 16 OpenMP threads 1.4 13.4

CPU 28 OpenMP threads 0.9 21.5

OpenACC GPU 29 0.6x

What’s with the OpenMP?

We can compare our GPU results to the best the multi-core CPUs can do.

If you are familiar with OpenMP, or even if you are not, you can compile and run the

OpenMP enabled versions in your OpenMP directory as:

pgcc –mp laplace_omp.c or pgf90 -mp laplace_omp.f90

then to run on 8 threads do:

export OMP_NUM_THREADS=8

a.out

Note that you probably only have 8 real cores if you are still on a GPU node. Do

something like “interact –n28” if you want a full node of cores.

What went wrong?
export PGI_ACC_TIME=1 to activate profiling and run again:

Accelerator Kernel Timing data
/mnt/a/u/training/instr009/Update/laplace_bad_acc.c
main NVIDIA devicenum=0
time(us): 22,902,870
62: compute region reached 3372 times

62: data copyin reached 3372 times
device time(us): total=4,561,531 max=1,362 min=1,350 avg=1,352

64: kernel launched 3372 times
grid: [8x1000] block: [128]
device time(us): total=441,105 max=268 min=129 avg=130
elapsed time(us): total=487,585 max=282 min=141 avg=144

70: data copyout reached 3372 times
device time(us): total=4,063,246 max=1,230 min=1,202 avg=1,204

73: compute region reached 3372 times
73: data copyin reached 6744 times

device time(us): total=9,135,367 max=1,428 min=1,346 avg=1,354
75: kernel launched 3372 times

grid: [8x1000] block: [128]
device time(us): total=546,820 max=296 min=155 avg=162
elapsed time(us): total=593,424 max=309 min=171 avg=175

75: reduction kernel launched 3372 times
grid: [1] block: [256]
device time(us): total=91,638 max=161 min=25 avg=27
elapsed time(us): total=136,871 max=174 min=38 avg=40

82: data copyout reached 3372 times
device time(us): total=4,063,163 max=1,259 min=1,202 avg=1,204

4.5 seconds

4.0 seconds

0.6 seconds

0.5 seconds

0.1 seconds

9.1 seconds

4.0 seconds

Basic Concept
Simplified, but sadly true

PCI Bus GPU

GPU Memory

CPU

CPU Memory

Multiple Times Each Iteration

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j)A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

Excessive Data Transfers
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device
4 copies happen

every iteration of

the outer while

loop!

#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_old[i+1][j] + …

}
}

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on host

Temperature, Temperature_old

resident on device

Temperature, Temperature_old

resident on device

}

dt = 0.0;

Data Management

The First, Most Important, and possibly Only OpenACC Optimization

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0;

#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

.

.
iteration++;

}

First, about that “reduction”

Exiting this loop,

each processor has

a different idea of

what the max dt is.

That the compiler recognizes this and

does a reduction is a wonderful thing.

Indeed, we can get too sophisticated

for it to happen automatically.

loop reduction (max:dt)

This explicitly declares the

reduction.

This will be combined with

(intelligently) initialized

parallel copies at end.

Data Construct Syntax and Scope

Fortran

!$acc data [clause …]

structured block

!$acc end data

C

#pragma acc data [clause …]

{

structured block

}

Data Clauses

copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this

is a logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when

entering region.

Principal use: Think of this like an array that you would use as just

an input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting

region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

Array Shaping

Compilers sometimes cannot determine the size of arrays, so we must specify

explicitly using data clauses with an array “shape”. The compiler will let you know

if you need to do this. Sometimes, you will want to for your own efficiency reasons.

C

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Fortran uses start:end and C uses start:length

Data clauses can be used on data, kernels or parallel

Compiler will (increasingly) often make a good guess…

int main(int argc, char *argv[]) {

int i;
double A[2000], B[1000], C[1000];

#pragma acc kernels
for (i=0; i<1000; i++){

A[i] = 4 * i;
B[i] = B[i] + 2;
C[i] = A[i] + 2 * B[i];

}
}

Smart

pgcc -acc -Minfo=accel loops.c
main:

6, Generating present_or_copyout(C[:])
Generating present_or_copy(B[:])
Generating present_or_copyout(A[:1000])
Generating NVIDIA code

7, Loop is parallelizable
Accelerator kernel generated

Smarter

Smartest

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Have Real Consequences

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0

A[]

Copied

To GPU

A[]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

{

}

A[]

Copied

To GPU

Still

Runs On

Host

A[]

Copied

To Host

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Data Regions Are Different Than Compute Regions

Output:

A[10] = 1.0

#pragma acc data copy(A)

{

}

Data

Region

Compute

Region

Data Movement Decisions

Much like loop data dependencies, sometime the compiler needs your human

intelligence to make high-level decisions about data movement. Otherwise, it

must remain conservative – sometimes at great cost.

You must think about when data truly needs to migrate, and see if that is better

than the default.

Besides the scope based data clauses, there are OpenACC options to let us manage

data movement more intensely or asynchronously. We could manage the above

behavior with the update construct:

Fortran : C:
!$acc update [host(), device(), …] #pragma acc update [host(), device(), …]

Ex: #pragma acc update host(Temp_array) //Gets host a current copy

Exercise 2: Use acc data to minimize transfers
(about 40 minutes)

Q: What speedup can you get with data + kernels directives?

• Start with your Exercise 1 solution or grab laplace_bad_acc.c/f90 from the Solutions

subdirectory. This is just the solution of the last exercise.

• Add data directives where it helps.

• Think: when should I move data between host and GPU? Think how you would do it by

hand, then determine which data clauses will implement that plan.

• Hint: you may find it helpful to ignore the output at first and just concentrate on getting

the solution to converge quickly (at 3372 steps). Then worry about updating the printout.

Exercise 2 C Solution
#pragma acc data copy(Temperature_last), create(Temperature)
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
#pragma acc kernels
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
#pragma acc kernels
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

#pragma acc update host(Temperature)
track_progress(iteration);

}

iteration++;
}

No data movement in this

block.

Except once in a while

here.

Exercise 2 Fortran Solution
!$acc data copy(temperature_last), create(temperature)
do while (dt > max_temp_error .and. iteration <= max_iterations)

!$acc kernels
do j=1,columns

do i=1,rows
temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &

temperature_last(i,j+1)+temperature_last(i,j-1))
enddo

enddo
!$acc end kernels

dt=0.0

!copy grid to old grid for next iteration and find max change
!$acc kernels
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo
!$acc end kernels

!periodically print test values
if(mod(iteration,100).eq.0) then

!$acc update host(temperature)
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo
!$acc end data

Keep these on GPI

Except bring back a copy

here

Extra efficient:

!$acc update host(temperature(columns-5:columns,rows-5:rows))

Exercise 2: Performance
3372 steps to convergence

Execution Time (s) Speedup

CPU Serial 18 --

CPU 2 OpenMP threads 9.4 1.99

CPU 4 OpenMP threads 4.7 3.98

CPU 8 OpenMP threads 2.5 7.48

CPU 16 OpenMP threads 1.4 13.4

CPU 28 OpenMP threads 0.9 21.5

OpenACC GPU 1.5 12

OpenACC or OpenMP?

Don’t draw any grand conclusions yet. We have gotten impressive

speedups from both approaches. But our problem size is pretty small.

Our main data structure is:

1000 x 1000 = 1M elements = 8MB of memory

We have 2 of these (temperature and temperature_last) so we are

using roughly 16 MB of memory. Not very large. When divided over

cores it gets even smaller and can easily fit into cache.

The algorithm is very realistic, but the memory bandwidth stress is

very low.

OpenACC or OpenMP on Larger Data?

We can easily scale this problem up, so why don’t I? Because it is nice to have exercises that finish

in a few minutes or less.

We scale this up to 10K x 10K (1.6 GB problem size) for the hybrid challenge. These numbers start

to look a little more realistic. But the serial code takes over 30 minutes to finish. That would have

gotten us off to a slow start!

Execution Time (s) Speedup

CPU Serial 2187 --

CPU 16 OpenMP threads 183 12

CPU 28 OpenMP threads 162 13.5

OpenACC 103 21

10K x 10K Problem Size

Obvious cusp for core

scaling appears

Latest Happenings In Data Management

Unified Memory

Unified address space allows us to pretend we have

shared memory

Skip data management, hope it works, and then

optimize if necessary

For dynamically allocated memory can eliminate need

for pointer clauses

NVLink

One route around PCI bus (with multiple GPUs)

Further speedups

OpenACC gives us even more detailed control over parallelization

Via gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

But you have already gained most of any potential speedup, and

you did it with a few lines of directives!

General Principles: Finding Parallelism In Code

Nested for/do loops are best for parallelization

Large loop counts are best

Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause

Use subscripted arrays, rather than pointer-indexed arrays (C)

Data regions should avoid wasted transfers

If applicable, could use directives to explicitly control sizes

Various other annoying things can interfere with accelerated regions

IO

Limitations on function calls and nested parallelism (relaxed much in 2.0)

Is OpenACC Living Up To My Claims?

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program

for accelerators or serial, non-GPU programmers can play along.

Efficient. Experience show very favorable comparison to low-level

implementations of same algorithms. kernels is magical!

Performance portable. Supports GPU accelerators and co-processors from

multiple vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as

resources and profiling dictates. No wholesale rewrite required. Which can be

quick.

In Conclusion…

OpenMP

OpenACC

MPI

