
Efficient I/O and Data Intensive
Computing

Ritu Arora (Galen Arnold , Jose Nandez)

(Along With Contributions from Dan Stanzione, Doug
James, John Cazes, Robert McLay)

Email: rauta@tacc.utexas.edu

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

2

Before Running Applications Involving Large
Datasets

• Prepare a data management plan

– Determine the type of data, amount of data, and the rate at
which the data will be produced or consumed

– Determine the data retention value

– Identify the required hardware and software for storing and
accessing the data

– Be aware of any compliance needs or policies for data usage

• Learn about the usage policies associated with the systems that
you would like to use
– Know your filesystem

– Know about do’s and don’ts on resources of interest

• A sample checklist for data management plan:
http://www.dcc.ac.uk/resources/data-management-plans/checklist

3

 I/O in Compute- or Data-Intensive Applications

• Compute- or data-intensive applications often
– Read initial conditions or datasets for processing

– Write numerical data from simulations

• Saving application-level checkpoints

• In case of large distributed HPC applications, the total execution
time can be broken down into the computation time,
communication time, and the I/O time

• Optimizing the time spent in computation, communication and I/O
can lead to overall improvement in the application performance

• However, doing efficient I/O without stressing out the HPC system is
challenging and often an afterthought

4

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

5

Protocols for Data Transfer

• Different protocols exist for data transfer to (and
between) remote sites, e.g.,
1. Linux command-line utilities scp & rsync
2. Globus' globus-url-copy command-line utility

3. Globus Connect

• Check the user-guide of the resource that you are
wanting to use to see the list of supported protocols

6

Data Transfer Using scp or WinSCP

• If your local computer is a Mac or a Linux laptop, you can use the
scp commands to transfer data to and from a remote resource
like Stampede

scp filename username@hostname:/path/to/directory

• If you are using a Windows computer, you can download and use
the WinSCP application (GUI-based), or download and use Cygwin
(command-line based, can run the aforementioned commands)
– For small amounts of data, you may also use the “File Transfer Window”

available in the SSH client – drag an drop the files across the local laptop
and a remote resource

7

More Information on Using WinSCP

• For learning the usage of WinSCP the following slides and
video might be useful for the Windows users

• Slides:
https://drive.google.com/open?id=0B8zOSeBE0p0rUDZvVVR4aHl5b0k

• Video:
https://www.youtube.com/watch?v=Nn7Ofb0lYwM

8

https://drive.google.com/open?id=0B8zOSeBE0p0rUDZvVVR4aHl5b0k
https://drive.google.com/open?id=0B8zOSeBE0p0rUDZvVVR4aHl5b0k
https://www.youtube.com/watch?v=Nn7Ofb0lYwM
https://www.youtube.com/watch?v=Nn7Ofb0lYwM

Data Transfer Using rsync

• The rsync command is another way to transfer data and to keep
the data at the source and destination in sync

 rsync <path-to-source-file> <path-to-destination-file>

• If transferring the data for the first time to a remote resource,
rsync and scp might show similar performance except when the
connection drops
– If a connection drops, upon restart of the data transfer, rsync will

automatically transfer only the remaining files to the destination, it will skip
the already transferred files

• rsync transfers only the actual changed parts of a file (instead of
transferring an entire file)
– this selective method of data transfer can be much more efficient than scp

because it reduces the amount of data sent over the network

9

Using Globus Connect

• Globus Connect provides fast, secure transport via an easy-to-
use web interface using pre-defined and user-created
"endpoints”

• Globus Connect makes it possible to create a transfer
endpoint on any machine (including campus servers and
home laptops) with few clicks

• For more information on Globus Connect:

https://www.globus.org/globus-connect

http://www.cac.cornell.edu/vw/DataTransfer/globus.aspx

10

https://www.globus.org/globus-connect
https://www.globus.org/globus-connect
http://www.cac.cornell.edu/vw/DataTransfer/globus.aspx
http://www.cac.cornell.edu/vw/DataTransfer/globus.aspx

Data Transfer Issues – Real World Scenario

• During one project, transferring 4.3 TB of data from the Stampede
Supercomputer in Austin to the Gordon Supercomputer in San
Diego, took approx. 210 hours

• The transfer was restarted about 14 times during June 3 to June
18, 2014 - about 15 days

• If the data transfer would have completed without any
interruptions, it would have completed in about 9 days at the
given speed

• Multiple reasons for interruption - sometimes maintenance on
Stampede or Gordon, some other file-system issue, network
traffic/available bandwidth - all are factors affecting the data
transfer rate

11

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

12

Culling the Data Collection

• Filtering
– By name, size, date

– By type

– By author, tags, metadata

• De-duplication

– Exact binary match by
checksum

• Required

– Culling

– Scripts for automation

– Human intelligence

Eliminate undesirable data

Improve quality

Reduce processing needs

13

Interactive Visualization for Data Culling and Quality
Control

14

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

15

Modern HPC Cluster

16

Modern HPC Cluster

…we need some magic to
make the collection of
spinning disks act like a

single disk for the user…

17

…Parallel Filesystem (e.g., Lustre) Provides the Magic

Source: Reference 2, 4

H
u

n
d

red
s o

f th
o

u
san

d
s o

f p
ro

cesso
rs

A
 few

 h
u

n
d

red
 sp

in
n

in
g d

isks => O
ST

18

Lustre Filesystem at TACC

• Each Lustre filesystem has a different number of OSTs

• The greater the number of OSTs the better the I/O capability

$HOME $WORK $SCRATCH

Stampede 24 672 348

Lonestar N/A (NFS) 30 90

19

myfile : 8 MB file
4 stripes
1 MB stripe size

Lustre File System - Striping

• Lustre supports the striping of files across several I/O
servers (similar to RAID 0)

• Each stripe is a fixed size block

OST
118

OST
63

OST
21

OST
249

….. ….. …..

20

Lustre File System – Striping on TACC
Resources

• Administrators set a default stripe count and stripe size that
applies to all newly created files

– Stampede: $SCRATCH: 2 stripes/1MB
 $WORK: 1 stripe /1MB

– Lonestar: $SCRATCH: 2 stripes/1MB
 $WORK: 1 stripe /1MB

• However, users can reset the default stripe count or stripe
size using the Lustre commands

21

Lustre Commands
• Get stripe count

% lfs getstripe ./testfile
./testfile
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_stripe_offset: 50
 obdidx objid objid group
 50 8916056 0x880c58 0
 38 8952827 0x889bfb 0

• Set stripe count
% lfs setstripe -c 4 -s 4M testfile2
% lfs getstripe ./testfile2
./testfile2
lmm_stripe_count: 4
lmm_stripe_size: 4194304
lmm_stripe_offset: 21
 obdidx objid objid group
 21 8891547 0x87ac9b 0
 13 8946053 0x888185 0
 57 8906813 0x87e83d 0
 44 8945736 0x888048 0

22

Need for High-Level Support for Parallel I/O

• Parallel I/O can be hard to coordinate
and optimize if working directly at the
level of Lustre API

• Therefore, specialists implement a
number of intermediate layers for
coordination of data access and
mapping from application layer to I/O
layer

• Hence, application developers only
have to deal with a high-level interface
built on top of a software stack, that in
turn sits on top of the underlying
hardware

• e.g., MPI-I/O, parallel HDF5, T3PIO

23

Applications, e.g., FLASH, WRF,
OpenFOAM

IO Libraries, e.g., Parallel HDF5,
PNetCDF

Parallel I/O libraries, e.g., MPI-I/O

Data stored on Disk

Parallel File Systems, e.g., GPFS,
Lustre

Implementation Layers

See Reference # 4

You Can Stress Out Lustre Easily if You…

• Open and close the same file every few milliseconds

– Stresses the MDS

• Too often, too many

– Stresses the MDS and OSTs

• Write large files to $HOME or $WORK
– $SCRATCH should be used

• ls in a crowded directory

– ls is aliased to “ls --color=tty"

– Every directory item incurs the overhead of an extra “stat" call to the
MDS

– Use /bin/ls in a crowded directory

• Create thousands of files in the same directory

– A directory too is a file managed by the MDS

24

What happens when Lustre
gets stressed out?

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

25

Typical Pattern: Parallel Programs Doing
Sequential I/O

• All processes send data to master process, and then the process
designated as master writes the collected data to the file

• This sequential nature of I/O can limit performance and
scalability of many applications

26

Another Pattern: Each Process Writing to a
Separate File

27

Desired Pattern: Parallel Programs Doing
Parallel I/O

• Multiple processes participating in reading data from or writing
data to a common file in parallel

• This strategy improves performance and provides a single file
for storage and transfer purposes

28

MPI for Parallel I/O
• A parallel I/O system for distributed memory architectures will

need a mechanism to specify collective operations and specify
noncontiguous data layout in memory and file

• Reading and writing in parallel is like receiving and sending
messages

• Hence, an MPI-like machinery is a good setting for Parallel I/O
(think MPI communicators and MPI datatypes)

• MPI-I/O featured in MPI-2 which was released in 1997, and it
interoperates with the filesystem to enhance I/O performance for
distributed-memory applications

29

Using MPI-I/O
• Given N number of processes, each process participates in

reading or writing a portion of a common file

• There are three ways of positioning where the read or write takes
place for each process:
– Use individual file pointers (e.g., MPI_File_seek/MPI_File_read)

– Calculate byte offsets (e.g., MPI_File_read_at)
• Explicit offset operations perform data access at the file position given directly

as an argument — no file pointer is used nor updated

– Access a shared file pointer (e.g., MPI_File_seek_shared,
MPI_File_read_shared)

FILE

P0 P1 P2 P(N-1)

Source: Reference 3
30

MPI-I/O API Opening and Closing a File
• Calls to the MPI functions for reading or writing must be preceded

by a call to MPI_File_open
– int MPI_File_open(MPI_Comm comm, char *filename, int
amode, MPI_Info info, MPI_File *fh)

• The parameters below are used to indicate how the file is to be
opened

• To combine multiple flags, use bitwise-or “|” in C, or addition “+”
in Fortran

• Close the file using: MPI_File_close(MPI_File fh)

MPI_File_open mode Description

MPI_MODE_RDONLY read only

MPI_MODE_WRONLY write only

MPI_MODE_RDWR read and write

MPI_MODE_CREATE create file if it doesn’t exist

31

MPI-I/O API for Reading Files
After opening the file, read data from files by either using MPI_File_seek &
MPI_File_read Or MPI_File_read_at

int MPI_File_seek(MPI_File fh, MPI_Offset offset,
int whence)
int MPI_File_read(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

whence in MPI_File_seek updates the individual file pointer according to

MPI_SEEK_SET: the pointer is set to offset

MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

MPI_SEEK_END: the pointer is set to the end of file plus offset

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void
*buf, int count, MPI_Datatype datatype, MPI_Status *status)

32

Reading a File: readFile2.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
 int rank, size, bufsize, nints;
 MPI_File fh;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 bufsize = FILESIZE/size;
 nints = bufsize/sizeof(int);
 int buf[nints];
 MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
 MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
 MPI_File_read(fh, buf, nints, MPI_INT, &status);
 printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
 MPI_File_close(&fh);
 MPI_Finalize();
 return 0;
}

33

Reading a File: readFile2.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
 int rank, size, bufsize, nints;
 MPI_File fh;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 bufsize = FILESIZE/size;
 nints = bufsize/sizeof(int);
 int buf[nints];
 MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
 MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
 MPI_File_read(fh, buf, nints, MPI_INT, &status);
 printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
 MPI_File_close(&fh);
 MPI_Finalize();
 return 0;
}

Declaring a File Pointer

Calculating Buffer Size

Opening a File

Closing a File

File seek &
Read

34

Reading a File: readFile1.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
 int rank, size, bufsize, nints;
 MPI_File fh;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 bufsize = FILESIZE/size;
 nints = bufsize/sizeof(int);
 int buf[nints];
 MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
 MPI_File_read_at(fh, rank*bufsize, buf, nints, MPI_INT, &status);
 printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
 MPI_File_close(&fh);
 MPI_Finalize();
 return 0;
}

Combining file seek & read in
one step for thread safety in
MPI_File_read_at

35

MPI-I/O API for Writing Files
• While opening the file in the write mode, use the appropriate

flag/s in MPI_File_open: MPI_MODE_WRONLY Or
MPI_MODE_RDWR and if needed, MPI_MODE_CREATE

• For writing, use MPI_File_set_view and MPI_File_write or
MPI_File_write_at

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, char
*datarep, MPI_Info info)

int MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

36

Writing a File: writeFile1.c (1)

1. #include<stdio.h>
2. #include "mpi.h"
3. int main(int argc, char **argv){
4. int i, rank, size, offset, nints, N=16 ;
5. MPI_File fhw;
6. MPI_Status status;
7. MPI_Init(&argc, &argv);
8. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
9. MPI_Comm_size(MPI_COMM_WORLD, &size);

10. int buf[N];
11. for (i=0;i<N;i++){
12. buf[i] = i ;
13. }
14. ...

37

Writing a File: writeFile1.c (2)
15. offset = rank*(N/size)*sizeof(int);

16. MPI_File_open(MPI_COMM_WORLD, "datafile",
MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fhw);

17. printf("\nRank: %d, Offset: %d\n", rank, offset);

18. MPI_File_write_at(fhw, offset, buf, (N/size),
MPI_INT, &status);

19. MPI_File_close(&fhw);

20. MPI_Finalize();
21. return 0;
22. }

38

Compile & Run the Program on Compute Node

c401-204$ mpicc -o writeFile1 writeFile1.c
c401-204$ ibrun -np 4 ./writeFile1
TACC: Starting up job 1754636

TACC: Setting up parallel environment for MVAPICH2+mpispawn.

Rank: 0, Offset: 0

Rank: 1, Offset: 16

Rank: 3, Offset: 48

Rank: 2, Offset: 32

TACC: Shutdown complete. Exiting.

c401-204$ hexdump -v -e '7/4 "%10d "' -e '"\n"' datafile
 0 1 2 3 0 1 2

 3 0 1 2 3 0 1

 2 3

39

File Views for Writing to a Shared File (1)
When processes need to write to a shared file, assign regions of the file to
separate processes using MPI_File_set_view
int MPI_File_set_view(MPI_File fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, char
*datarep, MPI_Info info)

40

File Views for Writing to a Shared File (2)

• File views are specified using a triplet - (displacement, etype, and
filetype) – that is passed to MPI_File_set_view

displacement = number of bytes to skip from the start of the file

etype = unit of data access (can be any basic or derived datatype)

filetype = specifies which portion of the file is visible to the process

• Data representation (datarep above) can be native, internal,
or external32

41

Source: https://www.chpc.utah.edu/images/news/sp2002_Martin07.jpg

https://www.chpc.utah.edu/images/news/sp2002_Martin07.jpg

Writing a File: writeFile2.c (1)
1. #include<stdio.h>
2. #include "mpi.h"
3. int main(int argc, char **argv){
4. int i, rank, size, offset, nints, N=16;
5. MPI_File fhw;
6. MPI_Status status;
7. MPI_Init(&argc, &argv);
8. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
9. MPI_Comm_size(MPI_COMM_WORLD, &size);

10. int buf[N];
11. for (i=0;i<N;i++){
12. buf[i] = i ;
13. }
14. offset = rank*(N/size)*sizeof(int);
15. ...

42

Writing a File: writeFile2.c (2)

16. MPI_File_open(MPI_COMM_WORLD, "datafile3",
MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL,
&fhw);

17. printf("\nRank: %d, Offset: %d\n", rank,
offset);

18. MPI_File_set_view(fhw, offset, MPI_INT,
MPI_INT, "native", MPI_INFO_NULL);

19. MPI_File_write(fhw, buf, (N/size), MPI_INT,
&status);

20. MPI_File_close(&fhw);
21. MPI_Finalize();
22. return 0;
23. }

43

Compile & Run the Program on Compute Node

c402-302$ mpicc -o writeFile2 writeFile2.c
c402-302$ ibrun -np 4 ./writeFile2
TACC: Starting up job 1755476

TACC: Setting up parallel environment for MVAPICH2+mpispawn.

Rank: 1, Offset: 16

Rank: 2, Offset: 32

Rank: 3, Offset: 48

Rank: 0, Offset: 0

TACC: Shutdown complete. Exiting.

c402-302$ hexdump -v -e '7/4 "%10d "' -e '"\n"' datafile3
 0 1 2 3 0 1 2

 3 0 1 2 3 0 1

 2 3

44

Collective I/O (1)
• Collective I/O is a critical optimization strategy for reading from,

and writing to, the parallel file system

• The collective read and write calls force all processes in the
communicator to read/write data simultaneously and to wait for
each other

• The MPI implementation optimizes the read/write request based
on the combined requests of all processes and can merge the
requests of different processes for efficiently servicing the
requests

• This is particularly effective when the accesses of different
processes are noncontiguous

45

Collective I/O (2)

• The collective functions for reading and writing are:

– MPI_File_read_all
– MPI_File_write_all
– MPI_File_read_at_all
– MPI_File_write_at_all

• Their signature is the same as for the non-collective versions

46

MPI-I/O Hints

• MPI-IO hints are extra information supplied to the MPI
implementation through the following function calls for
improving the I/O performance
– MPI_File_open
– MPI_File_set_info
– MPI_File_set_view

• Hints are optional and implementation-dependent

– you may specify hints but the implementation can ignore
them

• MPI_File_get_info used to get list of hints, examples of
Hints: striping_unit, striping_factor

47

Lustre – setting stripe count in MPI Code

• MPI may be built with Lustre support
– MVAPICH2 & OpenMPI support Lustre

• Set stripe count in MPI code
Use MPI I/O hints to set Lustre stripe count, stripe size, and # of writers

Fortran:
call mpi_info_set(myinfo, "striping_factor", stripe_count, mpierr)
call mpi_info_set(myinfo, "striping_unit", stripe_size, mpierr)
call mpi_info_set(myinfo, "cb_nodes", num_writers, mpierr)

C:
mpi_info_set(myinfo, "striping_factor",stripe_count);
mpi_info_set(myinfo, "striping_unit", stripe_size);
mpi_info_set(myinfo, "cb_nodes", num_writers);

• Default:
– # of writers = # Lustre stripes

48

HDF5 and Parallel HDF5

49

Hierarchical Data Format (HDF)

• HDF is a set of file formats (HDF4, HDF5) designed to store and
organize large amounts of numerical data

• It is portable across operating systems and architectures, and it
supports flexible user-defined types

• HDF5 file structure includes two major types of objects:

– Datasets, which are multidimensional arrays of a homogeneous type

– Groups, which are container structures which can hold datasets and
other groups

• Any HDF5 group or dataset may have an associated attribute list

– An HDF5 attribute is a user-defined HDF5 structure that provides
extra information about an HDF5 object

50

51

Open HDF5
Open File

Open Group
Open Dataset
 Write Dataset
Close Dataset

Close Group
Close File
Close HDF5

Code Samples: https://www.hdfgroup.
org/HDF5/examples

General Structure of HDF5 Code

https://www.hdfgroup.org/HDF5/examples
https://www.hdfgroup.org/HDF5/examples
https://www.hdfgroup.org/HDF5/examples

HDF5 Code Example (1)
Source: https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

1. //Example to create a dataset that is a 4 x 6 array
2. #include "hdf5.h"
3. #define FILE "dset.h5"
4. int main() {
5. hid_t file_id, dataset_id, dataspace_id;
6. //identifiers
7. hsize_t dims[2];herr_t status;
8. //Create a new file using default properties
9. file_id = H5Fcreate(FILE, H5F_ACC_TRUNC,

H5P_DEFAULT, H5P_DEFAULT);
10. //Create the data space for the dataset
11. dims[0] = 4; dims[1] = 6;
12. dataspace_id = H5Screate_simple(2, dims, NULL);

52

https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

HDF5 Code Example (2)
Source: https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

13. //Create the dataset
14. dataset_id = H5Dcreate2(file_id, "/dset",

H5T_STD_I32BE, dataspace_id, H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);

15. //End access to dataset & release resources it uses
16. status = H5Dclose(dataset_id);
17. //Terminate access to the data space
18. status = H5Sclose(dataspace_id);
19. //Close the file
20. status = H5Fclose(file_id);
21. }

53

https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

Compiling and Running the HDF5 Code
For Unix platforms, the following compile scripts are included with the binary
distribution of the HDF5 software:

h5cc: compile script for HDF5 C programs.

h5fc: compile script for HDF5 F90 programs.

h5c++: compile script for HDF5 C++ programs.

Following are examples of compiling and running an application with the Unix
compile scripts:

 h5fc myprog.f90

 ./a.out

 h5cc -o myprog myprog.c

 ./myprog

54

Dump of the Output File from the HDF5
Example Program

staff$ h5dump dset.h5
HDF5 "dset.h5" {
GROUP "/" {
 DATASET "dset" {
 DATATYPE H5T_STD_I32BE
 DATASPACE SIMPLE { (4, 6) / (4, 6) }
 DATA {
 (0,0): 0, 0, 0, 0, 0, 0,
 (1,0): 0, 0, 0, 0, 0, 0,
 (2,0): 0, 0, 0, 0, 0, 0,
 (3,0): 0, 0, 0, 0, 0, 0
 }
 }
}
}

55

Highly Recommend to Explore Parallel HDF5 on your own ☺

https://www.hdfgroup.org/HDF5/Tutor/parallel.html

https://www.hdfgroup.org/HDF5/PHDF5/

56

https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

57

Storage, Archival, and Information
Visualization

• After your application has finished running, you might need to move the data
involved to secondary or tertiary storage

• Depending upon the analysis that you might be doing, you could be
generating multiple data products from your dataset

– Preserve the raw data and the algorithms to generate the data products
for data provenance purposes

• Note: what might be noise for you could be useful data for someone
else

– As per your need (which should already be explained in the data
management plan), you might want to retain different data products for
different periods of time

58

Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D

RAID configuration to tolerate failures

59

Hadoop

• In ~2011, we discovered an exciting new failure mode in large-scale
systems

• We called this failure mode “Hadoop”

• Recipe for successful Hadoop failure: take a big system

• A huge central filesystem

• Optimized for large, sequential, access

• With a highly tuned, low-level C interface

• And on that run software that:

• Assumes a small, massively distributed filesystem

• Optimized for very small files

• With an untuned, well… Java

• Results: Deployed Rustler to keep such users off the supercomputers

Wrangler: An XSEDE Resource for Data
Intensive Computing

Wrangler provides many different services to help researchers solve their
data computing needs, and has

– Massive, replicated, secure high performance data storage (10PB each
at Indiana and TACC)

– A large scale flash storage tier for analytics, with bandwidth of 1TB/s
and 250M IOPS (6x faster than Stampede)

– Embedded processing of more than 3,000 processors cores for data
analysis

– Flexible support for a wide range of data workflows, including those
using Hadoop and databases

– Integration with Globus Online services for rapid and reliable data
transfer and sharing

– A fully scalable design that can grow with the amount of users and as
data applications grow.

61

• The flash storage provides the truly “innovative capability” of
Wrangler

• Not SSD; a custom interface allows access to the NAND flash
technology performance without the overhead of the
traditional “disk” interface

• Opportunity to explore APIs that integrate natively with apps
(i.e., HDFS direct integration)

• Half a petabyte of usable space

• Nearly 100K NAND flash dies

• 960 Gen3 x4 PCI links to the storage system

62

DSSD Storage

A brief intro to
Hadoop and
Spark

JOSE NANDEZ
jnandez@sharcnet.ca

SHARCNET, UNIVERSITY OF WESTERN ONTARIO

COMPUTE CANADA

INTERNATIONAL HPC SUMMER SCHOOL 2016

What is apache Hadoop?
● A framework (written in Java) that enables distributed processing of large

datasets across cluster of computers.

● It scales up from single servers to thousands of machines

● It is fault tolerant (applies replication to the data)

● It follows the idea of moving compute to data NOT moving data to compute.

● Hadoop will have many commodity servers to process the data, and uses the
MapReduce Model.

What is Apache Spark?
● Apache Spark or (just Spark, written in Scala Programming

Language) is a fast and general engine for processing large-scale
datasets

● Spark extends the MapReduce model, supporting interactive
queries and stream processing

● Spark has the ability to run computations in memory or disk
(MapReduce) depending on the complexity of the problem

● Spark is designed to work on iterative algorithms, interactive
queries, and Streaming.

● It offers Python, Scala, Java, SQL and R APIs, as well a Machine
Learning, and Graph libraries.

● It run on Hadoop, Amazon EC2, in a Cloud, Standalone.

Hadoop - python scripts for Word
Count #!/usr/bin/python

#reducer function for Hadoop
import sys

def main():
 word_count = {}
 for line in sys.stdin:
 line = line.strip()
 try:
 word,count = line.split('\t',1)
 except:
 continue
 try:
 count = int(count)
 except ValueError:
 continue
 try:
 word_count[word] += count
 except:
 word_count[word] = count
 for word in word_count.keys():
 print '%s\t%s' % (word,
word_count[word])

if __name__ == "__main__":
 main()

#!/usr/bin/python
#mapper function for hadoop
import re
import sys

def main():
 for line in sys.stdin:
 words = re.split('\W+',line.strip().
lower())
 for word in words:
 print '%s\t%s' % (word,1)

if __name__ == "__main__":
 main()

$ hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-2.6.4.jar -file .
/mapper.py -mapper ./mapper.py -file ./reducer.py -reducer ./reducer.py -input
/user/hduser/gutenberg/* -output /user/hduser/gutenberg_hadoop_output

Spark-python script for
WordCount

#!/usr/local/spark/bin/spark-submit
from pyspark import SparkContext
import re

def main():
 sc = SparkContext(appName="WordCount")
 data = sc.textFile("hdfs://localhost:54310/user/hduser/gutenberg") #load the data
 mapper = data.flatMap(lambda x: re.split('\W+',x.strip().lower())) #split the words
 key_value = mapper.map(lambda x: (x,1)) #create key-value pair (similar than
mapper.py
 reducer = key_value.reduceByKey(lambda x,y: x+y) #sum occurrences of each word
#similar than reducer.py
 reducer.saveAsTextFile("hdfs://localhost:
54310/user/hduser/gutenberg_spark_output") #writes to disk the output

if __name__ == "__main__":
 main()
$ spark-submit
spark_word_count.py

References

● https://dennyglee.com/2012/01/31/moving-data-to-
compute-or-compute-to-data-that-is-the-big-data-
question/

● http://spark.apache.org/

● http://hadoop.apache.org/

● https://www.gutenberg.org/

https://dennyglee.com/2012/01/31/moving-data-to-compute-or-compute-to-data-that-is-the-big-data-question/
https://dennyglee.com/2012/01/31/moving-data-to-compute-or-compute-to-data-that-is-the-big-data-question/
https://dennyglee.com/2012/01/31/moving-data-to-compute-or-compute-to-data-that-is-the-big-data-question/
https://dennyglee.com/2012/01/31/moving-data-to-compute-or-compute-to-data-that-is-the-big-data-question/
http://spark.apache.org/
http://spark.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://www.gutenberg.org/
https://www.gutenberg.org/

Where DSSD Really Shines

• Single thread IO for different block sizes

– Flash is faster than single spinning disk (no surprise)

– DSSD sustains most throughput for small block sizes and
for sequential and random I/O patterns

69

Wrangler in the TACC Ecosystem

• TACC is traditionally a provider of HPC, Visualization, and
storage systems and we still are

• But new communities provide kinds of data-intensive
problems our HPC systems just aren’t built for
• Run Hadoop on your favorite supercomputer to see what we need

• Or do a bunch of random access to a bunch of really small files

• Wrangler is not to replace our supercomputer, visualization,
or cloud offerings; it supplements this environment.

70

References

1. HDF5 Tutorial:
 www.hdfgroup.org/HDF5/Tutor/introductory.html

2. NICS I/O guide:
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-
tips#lustre-fundamentals

3. T3PIO: github.com/TACC/t3pio

4. Introduction to Parallel I/O:
 http://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

5. Introduction to Parallel I/O and MPI-IO by Rajeev Thakur

6. An Analysis of State-of-the-Art Parallel File Systems for Linux
 http://www.linuxclustersinstitute.org/conferences/archive/2004/PDF/20-
Margo_M.pdf

71

http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips%23lustre-fundamentals
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips%23lustre-fundamentals
http://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips%23lustre-fundamentals
http://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2004/PDF/20-Margo_M.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2004/PDF/20-Margo_M.pdf
http://www.linuxclustersinstitute.org/conferences/archive/2004/PDF/20-Margo_M.pdf

Thanks!

Questions or Comments?

72

Compute-Intensive Applications Versus
Data Intensive Applications

• Compute-Intensive Applications devote most of their execution time to
computational requirements

• Data-Intensive Applications devote most of their execution time to I/O and
manipulation of data, and read/write large volumes of data, for example:

– Running simulations for studying climate change over last 10 years

– eDiscovery

73

GPFS Topology 1
Direct Attached Storage

74

Source: http://www.slideshare.net/GabrielMateescu/sonas-44390281

GPFS Topology 2
Network Attached Storage

75

Source: http://www.slideshare.net/GabrielMateescu/sonas-44390281

GPFS versus Lustre

76

GPFS Lustre

MDS In direct-attached storage
topology, all nodes acts
like MDS, whereas in
network-attached
topology, some nodes
(server nodes) act like
MDS

Often 1 primary + 1
failover; since version 2.4,
supported for clustered
MDS is available

Storage Type RAID, SAN, … RAID, SAN, …

User Control for Tuning None; optimized by
administrators at the time
of installation

User can change some
parameters like stripe size
and stripe count

Daemon Communication TCP/IP Portal

License Proprietary (IBM product) Open-Source
Source: Reference 6

Note about atomicity Read/Write

int MPI_File_set_atomicity (MPI_File mpi_fh, int flag);

• Use this API to set the atomicity mode – 1 for true and 0 for false –
so that only one process can access the file at a time

• When atomic mode is enabled, MPI-IO will guarantee sequential
consistency and this can result in significant performance drop

• This is a collective function

77

This example creates a parallel HDF5 file (1)

1. #include "hdf5.h"
2. #define H5FILE_NAME "SDS_row.h5"
3. int main (int argc, char **argv){
4. // HDF5 APIs definitions
5. hid_t file_id;
6. //file and dataset identifiers
7. hid_t plist_id; //property list identifier
8. herr_t status;
9. //MPI variables

10. int mpi_size, mpi_rank;
11. MPI_Comm comm = MPI_COMM_WORLD;
12. MPI_Info info = MPI_INFO_NULL;
13. //Initialize MPI
14. MPI_Init(&argc, &argv);

78

This example creates a parallel HDF5 file (2)
15. MPI_Comm_size(comm, &mpi_size);
16. MPI_Comm_rank(comm, &mpi_rank);
17. //Setup file access property list with parallel I/O access
18. plist_id = H5Pcreate(H5P_FILE_ACCESS);
19. H5Pset_fapl_mpio(plist_id, comm, info);
20. //Create a new file collectively.
21. file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC,

H5P_DEFAULT, plist_id);
22. //Close property list.
23. H5Pclose(plist_id);
24. // Close the file.
25. H5Fclose(file_id);
26. MPI_Finalize();
27. return 0;
28. }

 79

