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Before Running Applications Involving Large 
Datasets 

• Prepare a data management plan

– Determine the type of data, amount of data, and the rate at 
which the data will be produced or consumed 

– Determine the data retention value 

– Identify the required hardware and software for storing and 
accessing the data

– Be aware of any compliance needs or policies for data usage 

• Learn about the usage policies associated with the systems that 
you would like to use
– Know your filesystem

– Know about do’s and don’ts on resources of interest

• A sample checklist for data management plan: 
http://www.dcc.ac.uk/resources/data-management-plans/checklist 
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 I/O in Compute- or Data-Intensive Applications

• Compute- or data-intensive applications often
– Read initial conditions or datasets for processing

– Write numerical data from simulations

• Saving application-level checkpoints

• In case of large distributed HPC applications, the total execution 
time can be broken down into the computation time, 
communication time, and the I/O time

• Optimizing the time spent in computation, communication and I/O 
can lead to overall improvement in the application performance

• However, doing efficient I/O without stressing out the HPC system is 
challenging and often an afterthought
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Protocols for Data Transfer

• Different protocols exist for data transfer to (and 
between) remote sites, e.g.,
1. Linux command-line utilities scp & rsync 
2. Globus' globus-url-copy command-line utility

3. Globus Connect 

• Check the user-guide of the resource that you are 
wanting to use to see the list of supported protocols 
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Data Transfer Using scp or WinSCP

• If your local computer is a Mac or a Linux laptop, you can use the 
scp commands to transfer data to and from a remote resource 
like Stampede

scp filename username@hostname:/path/to/directory

• If you are using a Windows computer, you can download and use 
the WinSCP application (GUI-based), or download and use Cygwin 
(command-line based, can run the aforementioned commands)
– For small amounts of data, you may also use the “File Transfer Window” 

available in the SSH client – drag an drop the files across the local laptop 
and a remote resource
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More Information on Using WinSCP

• For learning the usage of WinSCP the following slides and 
video might be useful for the Windows users 

• Slides: 
https://drive.google.com/open?id=0B8zOSeBE0p0rUDZvVVR4aHl5b0k

• Video: 
https://www.youtube.com/watch?v=Nn7Ofb0lYwM
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Data Transfer Using rsync

• The rsync command is another way to transfer data and to keep 
the data at the source and destination in sync

   rsync <path-to-source-file> <path-to-destination-file>

• If transferring the data for the first time to a remote resource, 
rsync and scp might show similar performance except when the 
connection drops
– If a connection drops, upon restart of the data transfer, rsync will 

automatically transfer only the remaining files to the destination, it will skip 
the already transferred files

• rsync transfers only the actual changed parts of a file (instead of 
transferring an entire file)
– this selective method of data transfer can be much more efficient than scp 

because it reduces  the  amount  of data  sent over the network
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Using Globus Connect

• Globus Connect provides fast, secure transport via an easy-to-
use web interface using pre-defined and user-created 
"endpoints”

• Globus Connect makes it possible to create a transfer 
endpoint on any machine (including campus servers and 
home laptops) with few clicks

• For more information on Globus Connect:

https://www.globus.org/globus-connect

http://www.cac.cornell.edu/vw/DataTransfer/globus.aspx
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Data Transfer Issues – Real World Scenario

• During one project, transferring 4.3 TB of data from the Stampede 
Supercomputer in Austin to the Gordon Supercomputer in San 
Diego, took approx. 210 hours

• The transfer was restarted about 14 times during June 3 to June 
18, 2014 - about 15 days

• If the data transfer would have completed without any 
interruptions, it would have completed in about 9 days at the 
given speed

• Multiple reasons for interruption - sometimes maintenance on 
Stampede or Gordon, some other file-system issue, network 
traffic/available bandwidth - all are factors affecting the data 
transfer rate
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Culling the Data Collection 

• Filtering
– By name, size, date

– By type

– By author, tags, metadata

• De-duplication

– Exact binary match by 
checksum

• Required

– Culling

– Scripts for automation

– Human intelligence

Eliminate undesirable data

Improve quality 

Reduce processing needs
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Interactive Visualization for Data Culling and Quality 
Control

14



Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media 

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D 

RAID configuration to tolerate failures 

15



Modern HPC Cluster
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Modern HPC Cluster

…we need some magic to 
make the collection of 
spinning disks act like a 

single disk for the user…

17



…Parallel Filesystem (e.g., Lustre) Provides the Magic

Source: Reference 2, 4
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Lustre Filesystem at TACC

• Each Lustre filesystem has a different number of OSTs

• The greater the number of OSTs the better the I/O capability

$HOME $WORK $SCRATCH

Stampede 24 672 348

Lonestar N/A (NFS) 30 90
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myfile : 8 MB file
4 stripes
1 MB stripe size

Lustre File System - Striping

• Lustre supports the striping of files across several I/O 
servers (similar to RAID 0)

• Each stripe is a fixed size block

OST 
118

OST 
63

OST 
21

OST 
249

….. ….. …..
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Lustre File System – Striping on TACC 
Resources

• Administrators set a default stripe count and stripe size that 
applies to all newly created files

– Stampede:  $SCRATCH: 2 stripes/1MB
            $WORK:  1 stripe /1MB

– Lonestar:    $SCRATCH:  2 stripes/1MB
                     $WORK:      1 stripe /1MB

• However, users can reset the default stripe count or stripe 
size using the Lustre commands 
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Lustre Commands
• Get stripe count

% lfs getstripe ./testfile
./testfile
lmm_stripe_count:   2
lmm_stripe_size:    1048576
lmm_stripe_offset:  50
        obdidx           objid          objid            group
            50         8916056       0x880c58                0
            38         8952827       0x889bfb                0

• Set stripe count
% lfs setstripe -c 4 -s 4M testfile2
% lfs getstripe ./testfile2
./testfile2
lmm_stripe_count:   4
lmm_stripe_size:    4194304
lmm_stripe_offset:  21
        obdidx           objid          objid            group
            21         8891547       0x87ac9b                0
            13         8946053       0x888185                0
            57         8906813       0x87e83d                0
            44         8945736       0x888048                0
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Need for High-Level Support for Parallel I/O

• Parallel I/O can be hard to coordinate 
and optimize if working directly at the 
level of Lustre API 

• Therefore, specialists implement a 
number of intermediate layers for 
coordination of data access and 
mapping from application layer to  I/O 
layer

• Hence, application developers only 
have to deal with a high-level interface 
built on top of a software stack, that in 
turn sits on top of the underlying 
hardware

• e.g., MPI-I/O, parallel HDF5, T3PIO
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Applications, e.g., FLASH, WRF, 
OpenFOAM

IO Libraries, e.g., Parallel HDF5, 
PNetCDF

Parallel I/O libraries, e.g., MPI-I/O

Data stored on Disk

Parallel File Systems, e.g., GPFS, 
Lustre

Implementation Layers

See Reference # 4



You Can Stress Out Lustre Easily if You… 

• Open and close the same file every few milliseconds

– Stresses the MDS

•  Too often, too many

– Stresses the MDS and OSTs

•  Write large files to $HOME or $WORK
– $SCRATCH should be used

• ls in a crowded directory

– ls is aliased to “ls --color=tty"

– Every directory item incurs the overhead of an extra “stat" call to the 
MDS

– Use /bin/ls in a crowded directory

• Create thousands of files in the same directory

– A directory too is a file managed by the MDS
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Typical Pattern: Parallel Programs Doing 
Sequential I/O

• All processes send data to master process, and then the process 
designated as master writes the collected data to the file

• This sequential nature of I/O  can limit performance and 
scalability of many applications
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Another Pattern: Each Process Writing to a 
Separate File
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Desired Pattern: Parallel Programs Doing 
Parallel I/O

• Multiple processes participating in reading data from or writing 
data to a common file in parallel

• This strategy improves performance and provides a single file 
for storage and transfer purposes
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MPI for Parallel I/O
• A parallel I/O system for distributed memory architectures will 

need a mechanism to specify collective operations and specify 
noncontiguous  data layout in memory and file

• Reading and writing in parallel is like receiving and sending 
messages

• Hence, an MPI-like machinery is a good setting for Parallel I/O 
(think MPI communicators and MPI datatypes)

• MPI-I/O featured in MPI-2 which was released in 1997, and it 
interoperates with the filesystem to enhance I/O performance for 
distributed-memory applications
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Using MPI-I/O 
• Given N number of processes, each process participates in 

reading or writing a portion of a common file

• There are three ways of positioning where the read or write takes 
place for each process: 
– Use individual file pointers (e.g., MPI_File_seek/MPI_File_read)

– Calculate byte offsets (e.g., MPI_File_read_at) 
• Explicit offset operations perform data access at the file position given directly 

as an argument — no file pointer is used nor updated

– Access a shared file pointer (e.g., MPI_File_seek_shared, 
MPI_File_read_shared)

FILE

P0 P1 P2 P(N-1)

Source: Reference 3
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MPI-I/O API Opening and Closing a File
• Calls to the MPI functions for reading or writing must be preceded 

by a call to MPI_File_open
– int MPI_File_open(MPI_Comm comm, char *filename, int 
amode, MPI_Info info, MPI_File *fh)

• The parameters below are used to indicate how the file is to be 
opened

       

• To combine multiple flags, use bitwise-or “|” in C, or addition “+” 
in Fortran

• Close the file using: MPI_File_close(MPI_File fh)

MPI_File_open mode Description

MPI_MODE_RDONLY read only

MPI_MODE_WRONLY write only

MPI_MODE_RDWR read and write

MPI_MODE_CREATE create file if it doesn’t exist
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MPI-I/O API for Reading Files
After opening the file, read data from files by either using MPI_File_seek & 
MPI_File_read Or MPI_File_read_at

int MPI_File_seek( MPI_File fh, MPI_Offset offset, 
int whence )
int MPI_File_read(MPI_File fh, void *buf, int count, 
MPI_Datatype datatype, MPI_Status *status)

whence in MPI_File_seek updates the individual file pointer according to

MPI_SEEK_SET: the pointer is set to offset 

MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset 

MPI_SEEK_END: the pointer is set to the end of file plus offset 

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void 
*buf, int count, MPI_Datatype datatype, MPI_Status *status)
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Reading a File: readFile2.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
  int rank, size, bufsize, nints;
  MPI_File fh;
  MPI_Status status;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  bufsize = FILESIZE/size;
  nints = bufsize/sizeof(int);
  int buf[nints];
  MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
  MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
  MPI_File_read(fh, buf, nints, MPI_INT, &status);
  printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
  MPI_File_close(&fh);
  MPI_Finalize();
  return 0;
}
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Reading a File: readFile2.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
  int rank, size, bufsize, nints;
  MPI_File fh;
  MPI_Status status;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  bufsize = FILESIZE/size;
  nints = bufsize/sizeof(int);
  int buf[nints];
  MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
  MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
  MPI_File_read(fh, buf, nints, MPI_INT, &status);
  printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
  MPI_File_close(&fh);
  MPI_Finalize();
  return 0;
}

Declaring a File Pointer

Calculating Buffer Size

Opening a File

Closing a File

File seek & 
Read
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Reading a File: readFile1.c
#include<stdio.h>
#include "mpi.h"
#define FILESIZE 80
int main(int argc, char **argv){
  int rank, size, bufsize, nints;
  MPI_File fh;
  MPI_Status status;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  bufsize = FILESIZE/size;
  nints = bufsize/sizeof(int);
  int buf[nints];
  MPI_File_open(MPI_COMM_WORLD,"dfile",MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
  MPI_File_read_at(fh, rank*bufsize, buf, nints, MPI_INT, &status);
  printf("\nrank: %d, buf[%d]: %d", rank, rank*bufsize, buf[0]);
  MPI_File_close(&fh);
  MPI_Finalize();
  return 0;
}

Combining file seek & read in 
one step for thread safety in
MPI_File_read_at
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MPI-I/O API for Writing Files
• While opening the file in the write mode, use the appropriate 

flag/s in MPI_File_open:  MPI_MODE_WRONLY Or 
MPI_MODE_RDWR and if needed, MPI_MODE_CREATE

• For writing, use MPI_File_set_view and MPI_File_write or 
MPI_File_write_at

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, 
MPI_Datatype etype, MPI_Datatype filetype, char 
*datarep, MPI_Info info)

int MPI_File_write(MPI_File fh, void *buf, int count, 
MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, 
void *buf, int count, MPI_Datatype datatype, 
MPI_Status *status)
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Writing a File: writeFile1.c (1)

1.  #include<stdio.h>
2.  #include "mpi.h"
3.  int main(int argc, char **argv){
4.    int i, rank, size, offset, nints, N=16 ;
5.    MPI_File fhw;
6.    MPI_Status status;
7.    MPI_Init(&argc, &argv);
8.    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
9.    MPI_Comm_size(MPI_COMM_WORLD, &size);

10.   int buf[N];
11.   for ( i=0;i<N;i++){
12.         buf[i] = i ;
13.   }
14.  ...
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Writing a File: writeFile1.c (2)
15.  offset = rank*(N/size)*sizeof(int);

16.  MPI_File_open(MPI_COMM_WORLD, "datafile", 
MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, &fhw);

17.  printf("\nRank: %d, Offset: %d\n", rank, offset);

18.  MPI_File_write_at(fhw, offset, buf, (N/size), 
MPI_INT, &status);

19.  MPI_File_close(&fhw);

20.  MPI_Finalize();
21.  return 0;
22. }
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Compile & Run the Program on Compute Node

c401-204$ mpicc -o writeFile1 writeFile1.c
c401-204$ ibrun -np 4 ./writeFile1
TACC: Starting up job 1754636

TACC: Setting up parallel environment for MVAPICH2+mpispawn.

Rank: 0, Offset: 0

Rank: 1, Offset: 16

Rank: 3, Offset: 48

Rank: 2, Offset: 32

 

TACC: Shutdown complete. Exiting.

c401-204$ hexdump -v -e '7/4 "%10d "' -e '"\n"' datafile
         0          1          2          3          0          1          2

         3          0          1          2          3          0          1

         2          3                                                       
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File Views for Writing to a Shared File (1)
When processes need to write to a shared file, assign regions of the file to 
separate processes using MPI_File_set_view
int MPI_File_set_view(MPI_File fh, MPI_Offset disp, 
MPI_Datatype etype, MPI_Datatype filetype, char 
*datarep, MPI_Info info)
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File Views for Writing to a Shared File (2)

• File views are specified using a triplet - (displacement, etype, and 
filetype) – that is passed to MPI_File_set_view

displacement = number of bytes to skip from the start of the file

etype = unit of data access (can be any basic or derived datatype)

filetype = specifies which portion of the file is visible to the process

• Data representation (datarep above) can be native, internal, 
or external32
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Writing a File: writeFile2.c (1)
1. #include<stdio.h>
2. #include "mpi.h"
3. int main(int argc, char **argv){
4.   int i, rank, size, offset, nints, N=16;
5.   MPI_File fhw;
6.   MPI_Status status;
7.   MPI_Init(&argc, &argv);
8.   MPI_Comm_rank(MPI_COMM_WORLD, &rank);
9.   MPI_Comm_size(MPI_COMM_WORLD, &size);

10.   int buf[N];
11.   for ( i=0;i<N;i++){
12.         buf[i] = i ;
13.   }
14.   offset = rank*(N/size)*sizeof(int);
15.  ...
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Writing a File: writeFile2.c (2)

16. MPI_File_open(MPI_COMM_WORLD, "datafile3", 
MPI_MODE_CREATE|MPI_MODE_WRONLY, MPI_INFO_NULL, 
&fhw);

17.   printf("\nRank: %d, Offset: %d\n", rank, 
offset);

18.   MPI_File_set_view(fhw, offset, MPI_INT, 
MPI_INT, "native", MPI_INFO_NULL);

19.   MPI_File_write(fhw, buf, (N/size), MPI_INT, 
&status);

20.   MPI_File_close(&fhw);
21.   MPI_Finalize();
22.   return 0;
23. }
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Compile & Run the Program on Compute Node 

c402-302$ mpicc -o writeFile2 writeFile2.c
c402-302$ ibrun -np 4 ./writeFile2
TACC: Starting up job 1755476

TACC: Setting up parallel environment for MVAPICH2+mpispawn.

Rank: 1, Offset: 16

Rank: 2, Offset: 32

Rank: 3, Offset: 48

Rank: 0, Offset: 0

 

TACC: Shutdown complete. Exiting.

c402-302$ hexdump -v -e '7/4 "%10d "' -e '"\n"' datafile3
         0          1          2          3          0          1          2

         3          0          1          2          3          0          1

         2          3                                                       
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Collective I/O (1)
• Collective I/O is a critical optimization strategy for reading from, 

and writing to, the parallel file system

• The collective read and write calls force all processes in the 
communicator to read/write  data simultaneously and to wait for 
each other

• The MPI implementation optimizes the read/write request based 
on the combined requests of all processes  and can merge the 
requests of different processes for efficiently servicing the 
requests

• This is particularly effective when the accesses of different 
processes are noncontiguous
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Collective I/O (2)

• The collective functions for reading and writing are:

– MPI_File_read_all
– MPI_File_write_all 
– MPI_File_read_at_all
– MPI_File_write_at_all 

• Their  signature is the same as for the non-collective versions
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MPI-I/O Hints

• MPI-IO hints are extra information supplied to the MPI 
implementation through the following function calls for 
improving the  I/O performance
– MPI_File_open 
– MPI_File_set_info 
– MPI_File_set_view 

• Hints are optional and implementation-dependent

– you may specify hints but the implementation can ignore 
them

• MPI_File_get_info used to get list of hints, examples of 
Hints: striping_unit, striping_factor
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Lustre – setting stripe count in MPI Code

• MPI may be built with Lustre support
– MVAPICH2 & OpenMPI support Lustre

• Set stripe count in MPI code
Use MPI I/O hints to set Lustre stripe count, stripe size, and # of writers

Fortran:
call mpi_info_set(myinfo,  "striping_factor", stripe_count, mpierr)
call mpi_info_set(myinfo,  "striping_unit", stripe_size, mpierr)
call mpi_info_set(myinfo, "cb_nodes", num_writers, mpierr)

C:
mpi_info_set(myinfo,  "striping_factor",stripe_count);
mpi_info_set(myinfo, "striping_unit", stripe_size);
mpi_info_set(myinfo, "cb_nodes", num_writers);

• Default: 
– # of writers = # Lustre stripes
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HDF5 and Parallel HDF5

49



Hierarchical Data Format (HDF)

• HDF is a set of file formats (HDF4, HDF5) designed to store and 
organize large amounts of numerical data

• It is portable across operating systems and architectures, and it 
supports flexible user-defined types

• HDF5 file structure includes two major types of objects:

– Datasets, which are multidimensional arrays of a homogeneous type

– Groups, which are container structures which can hold datasets and 
other groups

• Any HDF5 group or dataset may have an associated attribute list

– An HDF5 attribute is a user-defined HDF5 structure that provides 
extra information about an HDF5 object
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Open HDF5
Open File

Open Group
Open Dataset
    Write Dataset
Close Dataset

Close Group
Close File
Close HDF5

Code Samples: https://www.hdfgroup.
org/HDF5/examples

General Structure of HDF5 Code

https://www.hdfgroup.org/HDF5/examples
https://www.hdfgroup.org/HDF5/examples
https://www.hdfgroup.org/HDF5/examples


HDF5 Code Example (1)
Source: https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

1. //Example to create a dataset that is a 4 x 6 array
2. #include "hdf5.h"
3. #define FILE "dset.h5"
4. int main() {
5.    hid_t file_id, dataset_id, dataspace_id;      
6.    //identifiers
7.    hsize_t dims[2];herr_t  status;
8.    //Create a new file using default properties
9.    file_id = H5Fcreate(FILE, H5F_ACC_TRUNC, 

H5P_DEFAULT, H5P_DEFAULT);
10.    //Create the data space for the dataset
11.    dims[0] = 4; dims[1] = 6; 
12.    dataspace_id = H5Screate_simple(2, dims, NULL);
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HDF5 Code Example (2)
Source: https://www.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_crtdat.c

13.    //Create the dataset
14.    dataset_id = H5Dcreate2(file_id, "/dset", 

H5T_STD_I32BE, dataspace_id, H5P_DEFAULT, H5P_DEFAULT, 
H5P_DEFAULT);

15.    //End access to dataset & release resources it uses     
16.    status = H5Dclose(dataset_id);
17.    //Terminate access to the data space
18.    status = H5Sclose(dataspace_id);
19.    //Close the file
20.    status = H5Fclose(file_id);
21. }
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Compiling and Running the HDF5 Code
For Unix platforms, the following compile scripts are included with the binary 
distribution of the HDF5 software: 

h5cc:   compile script for HDF5 C programs. 

h5fc:   compile script for HDF5 F90 programs.

h5c++:   compile script for HDF5 C++ programs.

Following are examples of compiling and running an application with the Unix 
compile scripts: 

 h5fc myprog.f90

 ./a.out

 h5cc -o myprog myprog.c

 ./myprog 
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Dump of the Output File from the HDF5 
Example Program

staff$ h5dump dset.h5
HDF5 "dset.h5" {
GROUP "/" {
   DATASET "dset" {
      DATATYPE  H5T_STD_I32BE
      DATASPACE  SIMPLE { ( 4, 6 ) / ( 4, 6 ) }
      DATA {
      (0,0): 0, 0, 0, 0, 0, 0,
      (1,0): 0, 0, 0, 0, 0, 0,
      (2,0): 0, 0, 0, 0, 0, 0,
      (3,0): 0, 0, 0, 0, 0, 0
      }
   }
}
}
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Highly Recommend to Explore Parallel HDF5 on your own ☺

https://www.hdfgroup.org/HDF5/Tutor/parallel.html

https://www.hdfgroup.org/HDF5/PHDF5/

56

https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/
https://www.hdfgroup.org/HDF5/PHDF5/


Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media 

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D 

RAID configuration to tolerate failures 
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Storage, Archival, and Information 
Visualization

• After your application has finished running, you might need to move the data 
involved to secondary or tertiary storage

• Depending upon the analysis that you might be doing, you could be 
generating multiple data products from your dataset

– Preserve the raw data and the algorithms to generate the data products 
for data provenance purposes

• Note: what might be noise for you could be useful data for someone 
else

– As per your need (which should already be explained in the data 
management plan), you might want to retain different data products for 
different periods of time
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Overview

• Introduction

• I/O During Pre-Processing Stage
– Choose the right data transfer protocol

– Remove unnecessary data before processing

• I/O During Processing Stage
– Understand your parallel file system

– Use parallel I/O

• I/O During Post-Processing Stage
– Move your data to secondary or tertiary storage media 

• An Example of a System for Data Intensive Computing
– Interesting features: array of about 100,000 NAND flash dies - a 3-D 

RAID configuration to tolerate failures 

59



Hadoop

• In ~2011, we discovered an exciting new failure mode in large-scale 
systems

• We called this failure mode “Hadoop”

• Recipe for successful Hadoop failure: take a big system

• A huge central filesystem

• Optimized for large, sequential, access

• With a highly tuned, low-level C interface 

• And on that run software that: 

• Assumes a small, massively distributed filesystem

• Optimized for very small files 

• With an untuned, well… Java

• Results: Deployed Rustler to keep such users off the supercomputers



Wrangler: An XSEDE Resource for Data 
Intensive Computing 

Wrangler provides many different services to help researchers solve their 
data computing needs, and has

– Massive, replicated, secure high performance data storage (10PB each 
at Indiana and TACC)

– A large scale flash storage tier for analytics, with bandwidth of 1TB/s 
and 250M IOPS (6x faster than Stampede)

– Embedded processing of more than 3,000 processors cores for data 
analysis

– Flexible support for a wide range of data workflows, including those 
using Hadoop and databases

– Integration with Globus Online services for rapid and reliable data 
transfer and sharing

– A fully scalable design that can grow with the amount of users and as 
data applications grow.
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• The flash storage provides the truly “innovative capability” of 
Wrangler

• Not SSD; a custom interface allows access to the NAND flash 
technology performance without the overhead of the 
traditional “disk” interface

• Opportunity to explore APIs that integrate natively with apps 
(i.e., HDFS direct integration)

• Half a petabyte of usable space

• Nearly 100K NAND flash dies

• 960 Gen3 x4 PCI links to the storage system
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What is apache Hadoop?
● A framework (written in Java) that enables distributed processing of large 

datasets across cluster of computers.

● It scales up from single servers to thousands of machines

● It is fault tolerant (applies replication to the data)

● It follows the idea of moving compute to data NOT moving data to compute.

● Hadoop will have many commodity servers to process the data, and uses the 
MapReduce Model.



What is Apache Spark?
● Apache Spark or (just Spark, written in Scala Programming 

Language) is a fast and general engine for processing large-scale 
datasets

● Spark extends the MapReduce model, supporting interactive 
queries and stream processing

● Spark has the ability to run computations in memory or disk 
(MapReduce) depending on the complexity of the problem

● Spark is designed to work on iterative algorithms, interactive 
queries, and Streaming.

● It offers Python, Scala, Java, SQL and R APIs, as well a Machine 
Learning, and Graph libraries.

● It run on Hadoop, Amazon EC2, in a Cloud, Standalone.



Hadoop - python scripts for Word 
Count #!/usr/bin/python

#reducer function for Hadoop
import sys

def main():
    word_count = {}
    for line in sys.stdin:
        line = line.strip()
        try:
            word,count = line.split('\t',1)
        except:
            continue
        try:
            count = int(count)
        except ValueError:
            continue
        try:
            word_count[word] += count
        except:
            word_count[word] = count
    for word in word_count.keys():
        print '%s\t%s' % (word,
word_count[word])

if __name__ == "__main__":
    main()

#!/usr/bin/python
#mapper function for hadoop
import re
import sys

def main():
    for line in sys.stdin:
        words = re.split('\W+',line.strip().
lower())
        for word in words:
            print '%s\t%s' % (word,1)

if __name__ == "__main__":
    main()

$ hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-2.6.4.jar -file .
/mapper.py -mapper ./mapper.py -file ./reducer.py -reducer ./reducer.py -input 
/user/hduser/gutenberg/* -output /user/hduser/gutenberg_hadoop_output



Spark-python script for 
WordCount

#!/usr/local/spark/bin/spark-submit
from pyspark import SparkContext
import re

def main():
    sc = SparkContext(appName="WordCount")
    data = sc.textFile("hdfs://localhost:54310/user/hduser/gutenberg") #load the data
    mapper = data.flatMap(lambda x: re.split('\W+',x.strip().lower())) #split the words
    key_value = mapper.map(lambda x: (x,1)) #create key-value pair (similar than 
mapper.py
    reducer = key_value.reduceByKey( lambda x,y: x+y) #sum occurrences of each word 
#similar than reducer.py
    reducer.saveAsTextFile("hdfs://localhost:
54310/user/hduser/gutenberg_spark_output") #writes to disk the output

if __name__ == "__main__":
    main()
$ spark-submit 
spark_word_count.py
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Where DSSD Really Shines

• Single thread IO for different block sizes

– Flash is faster than single spinning disk (no surprise)

– DSSD sustains most throughput for small block sizes and 
for sequential and random I/O patterns
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Wrangler in the TACC Ecosystem

• TACC is traditionally a provider of HPC, Visualization, and 
storage systems and we still are

• But new communities provide kinds of data-intensive 
problems our HPC systems just aren’t built for
• Run Hadoop on your favorite supercomputer to see what we need

• Or do a bunch of random access to a bunch of really small files

• Wrangler is not to replace our supercomputer, visualization, 
or cloud offerings;  it supplements this environment.
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Thanks!

Questions or Comments?
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Compute-Intensive Applications Versus 
Data Intensive Applications

• Compute-Intensive Applications devote most of their execution time to 
computational requirements

• Data-Intensive Applications devote most of their execution time to I/O and 
manipulation of data, and read/write large volumes of data, for example:

– Running simulations for studying climate change over last 10 years

– eDiscovery 
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GPFS Topology 1
Direct Attached Storage
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Source: http://www.slideshare.net/GabrielMateescu/sonas-44390281



GPFS Topology 2
Network Attached Storage
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GPFS versus Lustre
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GPFS Lustre

MDS In direct-attached storage 
topology, all nodes acts 
like MDS, whereas in 
network-attached 
topology, some nodes 
(server nodes) act like 
MDS

Often 1 primary + 1 
failover; since version 2.4, 
supported for clustered 
MDS is available

Storage Type RAID, SAN, … RAID, SAN, …

User Control for Tuning None; optimized by 
administrators at the time 
of installation

User can change some 
parameters like stripe size 
and stripe count

Daemon Communication TCP/IP Portal

License Proprietary (IBM product) Open-Source
Source: Reference 6



Note about atomicity Read/Write

int MPI_File_set_atomicity ( MPI_File mpi_fh, int flag );

• Use this API to set the atomicity mode – 1 for true and 0 for false – 
so that only one process can access the file at a time

• When atomic mode is enabled, MPI-IO will guarantee sequential 
consistency and this can result in significant performance drop

• This is a collective function
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This example creates a parallel HDF5 file (1)

1. #include "hdf5.h"
2. #define H5FILE_NAME "SDS_row.h5"
3. int main (int argc, char **argv){
4.     // HDF5 APIs definitions
5.     hid_t file_id;         
6.    //file and dataset identifiers
7.     hid_t plist_id; //property list identifier
8.     herr_t status;
9.     //MPI variables

10.     int mpi_size, mpi_rank;
11.     MPI_Comm comm  = MPI_COMM_WORLD;
12.     MPI_Info info  = MPI_INFO_NULL;
13.     //Initialize MPI
14.     MPI_Init(&argc, &argv);
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This example creates a parallel HDF5 file (2)
15.     MPI_Comm_size(comm, &mpi_size);
16.     MPI_Comm_rank(comm, &mpi_rank);  
17.     //Setup file access property list with parallel I/O access
18.      plist_id = H5Pcreate(H5P_FILE_ACCESS);
19.      H5Pset_fapl_mpio(plist_id, comm, info);
20.      //Create a new file collectively.
21.     file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, 

H5P_DEFAULT, plist_id);
22.      //Close property list.
23.     H5Pclose(plist_id);
24.     // Close the file.
25.     H5Fclose(file_id);
26.     MPI_Finalize();
27.     return 0;
28. }
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