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Projected Performance Development
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Sunway TaihuLight

« Peak: 125 Petaflops B N ®

+ Cores: 10 Million, SW26010 |

« Linpack: 93 Petaflops, 73% eff.

 Clock: 1.45 GHz

« Memory: 1.3 Petabytes

« Power: 15.4 Megawatts

 Located: National o
Supercomputing Center in Wuxi Fme

« Vendor: NRCPC o
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Node Architecture

40,960 nodes
SIS My Main memory — System Interface — PCle, 16 GBps

: | Node of 4 core groups
< | o pp— - - — NoC
Wil ™ — e — System Interface (SI) to external devices
MPE MPE — 32 Gbytes of DDR3 memory

Group G Each group has

l | — acluster of 64 computing processing

(; NC s elements (CPE)
I « RISC SIMD architecture 8 ops/cycle

Qe i «  64-bit floating point

* 11.6 Gflops

* 64KByte scratchpad, 16 Kbyte IC

e N I IBE e o — 1 management processing element (MPE)
MC ML « 23.2 Gflops

— 1 memory controller (MC)

Main memory S— — Its own memory space

Designed by the Shanghai High 5
Performance IC Design Center
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Source: HPCwire
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40 cabinets, 3.1 Pflops each
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4 super-nodes per cabinet 256 nodes per super-node 6
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Architecture Constraints

« Memory
— Really lightweight

— 125 Pflops with only 1.3 Petabytes for a
ratio of 100:1 inverse capacity

« Bandwidth
— 22.4 flops/byte of transfer

« HPCG 0.3% peak

« Cache-less
— Small instruction cache (12KBytes)
— Small scratchpad (16KBytes)

 Bi-section Band Width of only 70
Thytes/sec.

* slow clock rate
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Three-segment approximation
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Three worlds of supercomputing: average R,ax
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Knights Landing o
Next Generation Intel® Xeon Phi™ Product Family

inside’
Platform XEON PHI’
Memory ]

oo 384 GB // F 4

DDR4 plin

mpa
ad) p

Processor

Over 3 Teraflops of peak theoretical double-precision performance is preliminary and based on current expectations.of cores, clock frequency and floating point operations per cycle. FLOPS = cores x clock frequency
floating-point operations per second per cycle. .

2Projected peak theoretical single-thread performance relative to 1%t Generation/Intel® Xeon Phi™ Coprocessor.7420P (formerly codenamed Knights Corner). )
iﬁ’rOJ?cted relsult based on internal Intel analysis of STREAM benchmark using a Knights Landing processorwith 46GB of ultra high-bandwidth versus DDR4 memory only with all channels populated.
ntal intarnal actimata



Knights Landing Overview

2x16 X4
ix4 DM
Mmm‘l Mcnmj s BSETIAM m’\ Chip: 36 Tiles interconnected by 2D Mesh
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7 Tile: 2 Cores + 2 VPU/core + 1 MB L2

PCle
Gen 3

w
w

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)
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Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ |
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(Webinare released Monday, July 13th 2015 at 9:00pm CET)

Intel® Omni-Path Architecture 100 Series
Many new disclosures released: [ ROIN=INE:]'

Intel's HPC Scalable
System Framework

High Message Rate’

195M messages/s per switch port

Other Details Found in the Webinar
Up to 73 percent higher switch messaging rate per chip compared to .
InfitBand EDE Advanced Features - delivering high

performance and optimized traffic movement
Traffic flow optimization

Low Latency?

Port-to-port latency as low as 100-110ns. Top-to-bottom product line coverage

23% lower port-to-port latency than InfiniBand EDR HOstRaprgs eien: Cle card): 1-poit
Edge Switch: 24 — and 48-port

Dynamic lane scaling

60% lower switch fabric latency clusters than InfiniBand
Director Switch: 192-port and 768-port (QSFP-based leaf

switch)
Resiliency without Performance Compromises
Packet integrity protection

No additional latency for error detection!

' Based on Prairie River switch silicon maximum MPI messaging rate (48-port chip), compared to Mellanox CS7500 Director Switch and Mellanox SB7700/SB7790 Edge switch product

briefs (36-port chip) posted on as of July 1, 2015.
Latency reductions based on Mellanox CS7500 Director Switch and Mellanox SB7700/SB7790 Edge switch product briefs posted on as of July 1, 2015, compared to -
Intel measured data that was calculated from difference between back to back osu_latency test and osu_latency test through one switch hop. intel ‘ 6
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ANL Aurora

*  Cray Shasta architecture

*  Over 50,000 nodes

* Peak performance: 180 PFLOPS

« 3" generation Xeon Phi cores (Knight's Hill)

+ Over 7PB of DRAM and persistent system memory

« Intel interconnect based on 2" generation Omni-
Path architecture with silicon photonics

+ 150+PB data storage using Lustre with >1TB/s
throughput

* 13MW peak power consumption

+  Software environment includes MPI+OpenMP 4.x,
Intel compilers and optimization tools, and Cray
y Leadership compilers and libraries
Ar On ne — Compuling ° COSt: $200 m|”|0n
g bR R L . I(_ocate)d at Argonne Leadership Computing Facility
ALCF

* Delivery in 2018 with anticipated start of production
phase Q2 2019

Slide courtesy of Maciej Brodowicz, IU
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The Negative Impact of Global Barriers in Astrophysics Codes

0 5
| Computational phase
25 & diagram from the MPI based
GADGET code (used for N-
50 o body and SPH simulations)
‘ | using 1M particles over four
2 75k time steps on 128 procs.
100 & Red indicates computation
: Blue indicates waiting for
105 = communication

0 0.2 0.4 0.6 0.8

simulation time [s]
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Normalized scalability (5”5““'“)
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Head room, margins, potential innovations
All architectures are von Neumann derivatives
Control Is sequential instruction issue, IP

Costs and burdens

— Variants: out of order, vector, SIMD, MPPs and clusters
— Flow control bottlenecks

— Control state limited to program counters, fork-joins

— Loss of operational precedence

— Not effective in asynchronous operation

Alternatives

— DAGs

— Dataflow

— Systolic arrays
— unums

INDIANA UNIVERSITY
Center for Research in Extreme Scale Technologies



Head room, margins, potential innovations
Floating point ALU optimized resource

« Costs and burdens:
« Cache hierarchy
« Branch prediction
» Speculative execution
* Out of order flow control reservation stations, ...
« Prefetching, many simultaneous in-flight requests

 Alternatives:

« Emphasis on memory access throughput
Response time to incidence of external messages
Scratch pad memory
Multi-threading
Dataflow ISA
« Asynchronous flow control

/4%1 INDIANA UNIVERSITY
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Head room, margins, potential innovations

« Separation of CPU and main memory
— Major bottleneck
— Worse with multi/many core processor sockets
— Adriver for need for cache
— Processor in Memory (PIM)
— On-chip scratch pad memory

« Silicon based semiconductor technology
— Moore’s Law will flat-line by end of decade, ~ 5 nm feature size

— Superconducting single flux quantum logic at 100 — 200 GHz, 100X
energy advantage
— Leakage current a challenge

— Graphene of interest

« CSP/MPI (well, not unquestioned)
— MPI + X, where X = OpenMP maybe
— Fork-joins impose Amdahl bottlenecks
— X could also be DAGs
— Asynchronous Multi-Task execution models

INDIANA UNIVERSITY

Center for Research in Extreme Scale Technologies



Old Technology New Technology
Characteristics Characteristics

Peak clock frequency as primary
limiter for performance improvement

Cost - FLOPs are biggest cost for
system: optimize for compute

Concurrency - Modest growth of
parallelism by adding nodes

Memory scaling maintain byte per
flop capacity and bandwidth

Locality: MPI+X model (uniform costs
within node & between nodes)

Uniformity: Assume uniform system
performance

Reliability: It’s the hardware’s
problem

/"!"ﬂ INDIANA UNIVERSITY

Power is primary design constraint for
future HPC system design

Cost - Data movement dominates:
optimize to minimize data movement

Concurrency: Exponential growth of
parallelism within chips

Memory Scaling: Compute growing
2x faster than capacity or bandwidth

Locality: must reason about data
locality and possibly topology

Heterogeneity: Architectural and
performance non-uniformity increase

Reliability: Cannot depend on
hardware protection alone

—CREST Center for Research in Extreme Scale Technologies



Game Changer — Runtime System

* Runtime system
— Is: ephemeral, dedicated to and exists only with an application
— Is not: the OS, persistent and dedicated to the hardware system

* Moves us from static to dynamic operational regime
— Exploits situational awareness for causality-driven adaptation

— Guided-missile with continuous course correction rather than a fired
projectile with fixed-trajectory

« Based on foundational assumption
— More computational work will yield reduced time and lower power
— Untapped system resources to be harvested
— Opportunities for enhanced efficiencies discovered only in flight
— New methods of control to deliver superior scalability ol

INDIANA UNIVERSITY
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Distinguishing Features of ParalleX/HPX

- )

Si

DTA PERC

DOT

PERC

N

D Locality

Thread

T

/

LTI: local thread instantiation

Process - Suspended Thread RTI: remote thread instantiation
- Local Memory — Local Memory Access RAMO: remote atomic memory operation
m LCo ° AGAS Address Lookup DTA: depleted thread activation
M )ccelerator ----» Local Action DOT: dataflow object trigger
— Parcel FVA: future value access

PERC: percolation
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Performance Model, Full Example System

Example system:
— 2 nodes,
— 2 cores per node,
— 2 memory banks per node

Modeling the full example system

Accounts for:
— Functional unit workload
— Memory workload/latency
— Network overhead/latency
— Context switch overhead

— Lightweight task management (red
regions can have one active task at a
time)

— Memory contention (green regions allow
only a single memory access at a time)

—  Network contention (blue region
represents bandwidth cap)

— NUMA affinity of cores

Assumes:
— Balanced workload
— Homogenous system
— Flat network
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Gain with Respect to Cores per Node and
Overhead,;

Latency of 8192 reg-ops, 64 Tasks per Core

Performance Gain of Non-Blocking Programs over Blocking
Programs with Varying Core Counts (Memory Contention)
and Overheads

Performance Gain
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Motivation for HPX

« Exploit runtime information through introspection to
discover parallelism for scalability and dynamically
manage resources to demand for efficiency

« Expose limitations of conventional computer architecture
and devise mechanisms for lower overhead and latency

« Based on a crosscutting execution model to determine
respective roles, responsibilities, and interoperability

« Serve as a research platform to explore utility, generality,
opportunity, and challenges/limitations

« Target and enabler for parallel programming models
« QOperation in the presence of uncertainty of asynchrony
 First conceived in support of HTMT project and Cascade ..
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SpMV for parcels and memget

“®-Parcels Overdecomposition 2 threads

SpMV on large scale cluster

1000
48-Parcels Overdecomposition 16 threads

=i-Parcels Overdecomposition 32 threads
“@-Memget(1x) 2 threads

“@-Memget(2x) 2threads

100
Parcels, No Overdecomposition, 2 threads

“#-Memget(1x) 16 threads

GFlops

4-Memget(2x) 16 threads

Parcels, No Overdecomposition, 16
threads

=«-Memget(1x) 32 threads

=*Memget(2x) 32 threads

Parcels, No Overdecomposition 32 threads

1 : ; -
128 256 512 1024 2048

Cores
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Wavelet Adaptive Multiresoultion

DB: mhd.00251.pdb
Cycle: 5020 Time:0.980469

Pseudocolor
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Courtesy of Matt Anderson, U
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Time Required to Check if Memory Address Is
Local or Remote in HPX5

0 _Histogram of check local timings

Percentage

B0 0.1 02 03 04 05 06 07 08 09 1.0 1.1 12 13 14 15 16 17 18 19
Time [us]

Chart courtesy of Daniel Kogler, 1U

/"1% INDIANA UNIVERSITY

—CREST Center for Research in Extreme Scale Technologies



Time Required to Perform a Context Switch
Between Lightweight Threads in HPX5

s Histogram of context switch timings

Percentage
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Chart courtesy of Daniel Kogler, 1U
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Time Required to Create a New
Lightweight Thread in HPX5

; _Histogram of thread create timings

Percentage

B 0.1 02 03 04 05 06 07
Time [us]

Chart courtesy of Daniel Kogler, 1U
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Laser Interferometric Gravitational-wave
Observatory (LIGO)

Hanford, WA

Livingston, LA
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LIGO Chirp Filter for Signal Target

Last Second Before Coalescence

hw107'8

t (seconds)
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D Iscove ry LIGO Hanford Data Predicted
* 14 September, 2015

 Combined objects of 29 and 36
solar masses

 Produced a black hole of 62
solar masses.

« Missing 3 solar masses
converted to gravitational waves

Strain (10%)
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LIGO Hanford Data (shifted

 Travelled 1.3 billion years to ; - ‘ B
Earth £ 09f '\JMW‘\JJ\\ j\/\ .A\’f\«‘b-
- 50X all the power of all the stars KRR S— |
In the universe 030 035 040

Time (sec)
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