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Targeting the Architecture

(But Not Admitting It)

Part of the awesomeness of OpenACC has been that you have been able to 

ignore the hardware specifics.  But, now that you know a little bit more 

about CUDA/GPU architecture, you might suspect that you can give the 

compiler still more help in optimizing.  In particular, you might know the 

hardware specifics of a particular model.  The compiler might only know 

which “family” it is compiling for (Fermi, Kepler, etc.).

Indeed, the OpenACC spec has some clauses to target architecture 

hierarchies, and not just GPUs (think Intel MIC).  Let’s see how they map 

to what we know about GPUs.



OpenACC Task Granularity
The OpenACC execution model has three levels: gang, worker and vector

This is supposed to map to any architecture that is a collection of Processing Elements (PEs) where each PE is 

multithreaded and each thread can execute vector instructions.
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Targeting the Architecture

As we said, OpenACC  assumes a device will contain multiple processing elements 

(PE) that run in parallel. Each PE also has the ability to efficiently perform vector-

like operations. For NVIDIA GPUs, it is reasonable to think of a PE as a streaming 

multiprocessor (SM).  Then an OpenACC gang is a threadblock, a worker is 

effectively a warp, and an OpenACC vector is a CUDA thread.  Phi, or similar Intel 

SMP architectures also map in a logical, but different, fashion.
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NVIDIA GPU Task Granularity (Take Notes!)

• Each kernel is executed on 

one device

• Multiple kernels can execute 

on a device at one time

…
…

…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a 

core

CUDA core

CUDA thread block

• Each block is executed by one 

SM and does not migrate

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources

…

CUDA Streaming 

Multiprocessor

CUDA kernel grid

...



Warps – on Kepler (Still taking notes?)

Blocks are divided into 32 thread wide units called warps
Size of warps is implementation specific and can change in the future

The SM creates, manages, schedules and executes threads at warp granularity
Each warp consists of 32 threads of contiguous threadIds

All threads in a warp execute the same instruction
If threads of a warp diverge the warp serially executes each branch path taken 

When a warp executes an instruction that accesses global memory it 
coalesces the memory accesses of the threads within the warp into as few 
transactions as possible



Determining block size – on Kepler (You can stop now)

32 thread wide blocks are good for Kepler, since warps are allocated 

by row first.

32 thread wide blocks will mean all threads in a warp are reading and writing 

contiguous pieces of memory

Coalescing  

Try to keep total threads in a block to be a multiple of 32 if possible

Non-multiples of 32 waste some resources & cycles

Total number of threads in a block: between 256 and 512 is usually a 

good number.



Determining grid size – on Kepler

Most people start with having each thread do one unit of work

Usually better to have fewer threads so that each thread could do 
multiple pieces of work.

What is the limit to how much smaller we can make the number 
of total blocks?

We still want to have at least as many threads as can fill the GPU many 
times over (for example 4 times). That means we need  at least 2880 x 
15 x 4 = ~173,000 threads

Experiment by decreasing the number of threads



Mapping OpenACC to CUDA Threads and Blocks

#pragma acc kernels

for( int i = 0; i < n; ++i )

y[i] += a*x[i]; 

#pragma acc kernels loop gang(100) vector(128)

for( int i = 0; i < n; ++i ) 

y[i] += a*x[i];

#pragma acc parallel num_gangs(100) vector_length(128) 

{

#pragma acc loop gang vector

for( int i = 0; i < n; ++i ) y[i] += a*x[i];

}

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop.

100 thread blocks, each with 128 

threads, each thread executes one 

iteration of the loop, using parallel

16  blocks, 256 threads each.



SAXPY Returns For Some Fine Tuning

The default (will work OK):

#pragma acc kernels loop
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Some suggestions to the compiler:

#pragma acc kernels loop gang(100), vector(128)
for( int i = 0; i < n; ++i )

y[i] += a*x[i];

Specifies that the kernel will use 100 thread blocks, each with 128 threads, where 

each thread executes one iteration of the loop.  This beat the default by ~20% last 

time I tried…



Rapid Evolution
Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Maxwell

GM107

Pascal

GP100

Compute Capability 2.0 2.1 3.0 3.5 5.0 6.0

Threads / Warp 32 32 32 32 32

Max Warps / Multiprocessor 48 48 54 64 64

Max Threads / 

Multiprocessor
1536 1536 2048 2048 2048

Max Thread Blocks / 

Multiprocessor
8 8 16 16 32

32‐bit Registers / 

Multiprocessor
32768 32768 65536 131072 65536

Max Registers / Thread 63 63 63 255 255

Max Threads / Thread Block 1024 1024 1024 1024 1024

Shared Memory Size 

Configurations
16k/48k 16k/48k 16k/32k/48k 16k/32k/48k 16k/32k/48k

Max X Grid Dimension 2^16 2^16 2^32 2^32 2^32

Hyper‐Q No No No Yes Yes Yes

Dynamic Parallelism No No No Yes Yes Yes

• Do you want to have to keep 

up with this?

• Maybe the compiler knows 

more about this than you? Is 

that possible?

• CUDA programmers do have 

to worry about all of this, 

and much more.

• But doesn’t hurt much to try.
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Parallel Regions vs. Kernels

We have been using kernels thus far, to great effect.  However OpenACC allows us to 

more explicitly control the creation of tasks via the gang, worker and vector clauses.  We 

can do this inside of parallel regions.

These approaches come from different backgrounds.

PGI Accelerator

region

OpenMP

parallel

OpenACC

kernels

OpenACC

parallel



Parallel Construct

Fortran
!$acc parallel [clause …]

structured block
!$acc end parallel

Clauses
if( condition )

async( expression )

num_gangs( expression )

num_workers( expression )

vector_length( expression )

C
#pragma acc parallel [clause …]

{ structured block }

private( list )

firstprivate( list )

reduction( operator:list )

Also any data clause



Parallel Clauses

num_gangs ( expression ) Controls how many parallel gangs are 

created.

num_workers ( expression ) Controls how many workers are created 

in each gang.

vector_length ( list ) Controls vector length of each worker.

private( list ) A copy of each variable in list is 

allocated to each gang.

firstprivate ( list ) private variables initialized from host.

reduction( operator:list ) private variables combined across gangs.



Parallel Regions

As in OpenMP, the OpenACC parallel construct creates a number of parallel gangs 

that immediately begin executing the body of the construct redundantly. When a 

gang reaches a work-sharing loop, that gang will execute a subset of the loop 

iterations. One difference between the OpenACC parallel construct and OpenMP

is that there is no barrier at the end of a work-sharing loop in a parallel 

construct. 

SAXPY as a parallel region

#pragma acc parallel num_gangs(100), vector_length(128)
{
#pragma acc loop gang, vector
for( int i = 0; i < n; ++i )

y[i] += a*x[i];
}



Compare and Contrast
Let’s look at how this plays out in actual code.

This

#pragma acc kernels
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

Is the same as

#pragma acc parallel
{

#pragma acc loop
for( i = 0; i < n; ++i )

a[i] = b[i] + c[i];
} 



Compare and Contrast

But not

#pragma acc parallel
{

for( i = 0; i < n; ++i )
a[i] = b[i] + c[i];

} 

By leaving out the loop directive we get totally redundant execution of the loop 

by each gang.  This is not desirable.



Parallel Regions vs. Kernels
From these simple examples you could get the impression that simply putting in 

loop directives everywhere would make parallel regions equivalent to kernels.  

That is not the case.

The sequence of loops here

#pragma acc kernels
{
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

Does what you might think.  Two kernels are generated and the first completes 

before the second starts.



A parallel region will work differently

#pragma acc parallel
{
#pragma acc loop
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
#pragma acc loop
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

The compiler will start some number of gangs, work-share the iterations of the first loop 

across those gangs, and work-share the iterations of the second loop across the same 

gangs. There is no guarantee that for the same loop iteration, the same value of i will be 

executed by the same gang for both loops. In fact, that's likely to be untrue, and some value 

of i will be executed by different gangs between the first and second loop. There is also no 

synchronization between the first and second loop, so there's no guarantee that the 

assignment to a(i) from the first loop will be complete before its value is fetched by some 

other gang for the assignment in the second loop.

Straight from 

the pages of 

our OpenMP

lecture!



Parallel Regions vs. Kernels

(Which is best?)

To put it simply, kernels leave more decision making up to the compiler.  There is 

nothing wrong with trusting the compiler (“trust but verify”) and that is probably a 

reasonable place to start.

If you are an OpenMP programmer, you will notice a strong similarity between the 

tradeoffs of kernels and regions and that of OpenMP parallel for/do versus parallel 

regions.  We will discuss this later when we talk about OpenMP 4.0.

As you gain experience, you may find that the parallel construct allows you to apply 

your understanding more explicitly.  On the other hand, as the compilers mature, 

they will also be smarter about just doing the right thing.  History tends to favor this 

second path heavily.



OpenACC 2.0 & 2.5
Things you didn’t know were missing.

The latest version of the specification has a lot of improvements.  The most anticipated 

ones remove limitations that you, as new users, might not have known about.  

However, they may still linger until all of the compilers get up to spec.

Procedure Calls

Nested Parallelism

As well as some other things that you might not have thought about

Device specific tuning

Multiple host thread support

Don’t be afraid to review the full spec at

http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf



Procedure Calls

In OpenACC 1.0, all procedures had to be inlined.  This limitation has been removed, but 

you do need to follow some rules.

#pragma acc routine worker
extern void solver(float* x, int n);
.
.
.
#pragma acc parallel loop num_gangs(200)
for( int index = 0; index < N; index++ ){

solver( X, n);
.
.

}

#pragma acc routine worker
void solver(float* x, int n){
.
.

#pragma acc loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha;
.
.

}
.

}

In this case, the directive tells the compiler that “solver” will be a device executable and 

that it may have a loop at the worker level.  No caller can do worker level parallelism.



Nested Parallelism

The previous example had gangs invoking workers.  But, it is now possible to have kernels 

actually launch new kernels.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel loop
for( int index = 0; index < N; index++ ){

solver( X, index);
}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++ ){

x[index] = x[index+2] * alpha
.
.

}
.

}

Having thousands of lightweight threads launching lightweight threads is probably not the 

most likely scenario.



Nested Parallelism

This is a more useful case.  We have a single thread on the device launching parallelism 

from its thread.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel num_gangs(1)
{

solver( X, n1 );
solver( Y, n2 );
solver( Z, n3 );

}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for( int index = 0; index < n; index++){

x[index] = x[index+2] * alpha;
.
.

}
.

}

The objective is to move as much of the application to the accelerator and minimize 

communication between it and the host.



Device Specific Tuning

I hope from our brief detour into GPU hardware specifics that you have some 

understanding of how hardware specific these optimizations can be.  Maybe one more 

reason to let kernel do its thing.  However, OpenACC does have ways to allow you to 

account for various hardware details.  The most direct is device_type().

#pragma acc parallel loop  device_type(nvidia) num_gangs(200) \
device_type(radeon) num_gangs(800)

for( index = 0; index < n; index++ ){
x[i] += y[i];
solver( x, y, n );

}



Multiple Devices and Multiple Threads

Multiple threads and one device: fine.  You are responsible for making sure that the data is on 

the multi-core host when it needs to be, and on the accelerator when it needs to be there.  But, 

you have those data clauses in hand already (present_or_copy will be crucial), and OpenMP has 

its necessary synchronization ability.

Multiple threads and multiple devices.  One might hope that the compilers will eventually make 

this transparent, but at the moment you need to:

Assign threads to devices:

omp_get_thread_num

call acc_set_device_num

Manually break up the data structure into several pieces:

!$acc kernels loop copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))

From excellent example on Page 15 of the PGI 12.6 OpenACC Getting Started Guide



Asynchronous Behavior

There are synchronization rules associated with each type of loop construct, and 

some of the data constructs (involving updates and independent data 

management).  You may want to keep them in mind if you drift very far from a 

kernels model.  In those cases you have wait(), asynch() and atomic clauses, 

directives or APIs to manage your flow.  There are several variations of each to 

accommodate multiple types of conditions to continue (one or multiple waits, 

test or block).

As data movement can take so much time, overlapping computation by using 

these commands can be very effective.



Data Management

Create global data:
declare create (create on host and device, you will probably use update to manage)

declare device_resident (create on device only, only accessible in compute regions)

declare link and declare create pointer (pointers are created for data to be copied)

Create data transfer regions: enter data (in effect until exit data).
Like copyin, etc. except that they do not need to apply to a structured block.  Can just stick one in some 
initialization routine.

Update data directly: update

Again, as you get farther from a simple kernels model, you may find yourself needing to manage data transfers 

in a more explicit manner.  You can manually:

You should never find yourself frustrated for lack of control.  You can move data at will with the available 

options.  And you can be fearless with the new “OK to copy even if data is already there” default (the old 

present_ commands are obsolete).

There are clause, directive and even API versions of these, depending on appropriateness.



Profiling

So, how do you recognize these problems (opportunities!) besides the relatively 

simple timing output we have used in this class?

One benefit of the NVIDIA ecosystem is the large number of tools from the CUDA 

community that we get to piggyback upon.

The following uses the NVIDIA Visual Profiler which is part of the CUDA Toolkit.



Mandlebrot Code

This is for an OpenACC Mandlebrot set image generation code from NVIDIA .  You can grab it 

at

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources


Step 1 Profile

Half of our time is copying, 

none of it is overlapped.

We’re still much faster than the 

CPU because there’s a lot of 

work.

PCIe Transfers
PCIe

Transfers

Lots of Data Transfer Time



Pipelining with 32 blocks

Broken Into Blocks With Asynchronous Transfers



Optimized In A Few Well-Informed Stages
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OpenACC Things Not Covered

Environment variables: Useful for different hardware configurations

if clauses, macros and conditional compilation: allow both runtime and compile 
time control over host or device control flow.

API versions of nearly all directives and clauses

Hybrid programming.  Works great!  Don’t know how meaningful this is to you…

The OpenACC specification has grown quite accommodating as of Version 2.5.  You have already seen 

some redundancy between directives, clauses and APIs, so I have made no attempt to do “laundry lists” 

of every option along the way.  It would be quite repetitive.  I think you are well prepared to glance at 

the OpenACC Specification and grasp just about all of it.

We have omitted various and sundry peripheral items.  Without attempting to be comprehensive, here 

are a few topics of potential interest to some of you.
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