
Advanced OpenACC

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2016

Outline

Loop Directives

Data Declaration Directives

Data Regions Directives

Cache directives

Wait / update directives

Runtime Library Routines

Environment variables

.

.

.

Outline

How OpenACC work is organized
Gangs/Workers/Threads

kernels

parallel regions

Things you didn’t know were missing (OpenACC 2.0)
Procedure calls

Nested Parallelism

More complex hardware configurations
Device Specific Tuning

Multi-threading and multiple devices

Alternative threading approaches

Using asynchronous features

Manual Data Management

Profiling

Targeting the Architecture

(But Not Admitting It)

Part of the awesomeness of OpenACC has been that you have been able to

ignore the hardware specifics. But, now that you know a little bit more

about CUDA/GPU architecture, you might suspect that you can give the

compiler still more help in optimizing. In particular, you might know the

hardware specifics of a particular model. The compiler might only know

which “family” it is compiling for (Fermi, Kepler, etc.).

Indeed, the OpenACC spec has some clauses to target architecture

hierarchies, and not just GPUs (think Intel MIC). Let’s see how they map

to what we know about GPUs.

OpenACC Task Granularity
The OpenACC execution model has three levels: gang, worker and vector

This is supposed to map to any architecture that is a collection of Processing Elements (PEs) where each PE is

multithreaded and each thread can execute vector instructions.

Worker

Gang Worker

Worker

Worker

Gang Worker

Worker

Vector

Vector

Vector

Vector

Vector

Vector

Targeting the Architecture

As we said, OpenACC assumes a device will contain multiple processing elements

(PE) that run in parallel. Each PE also has the ability to efficiently perform vector-

like operations. For NVIDIA GPUs, it is reasonable to think of a PE as a streaming

multiprocessor (SM). Then an OpenACC gang is a threadblock, a worker is

effectively a warp, and an OpenACC vector is a CUDA thread. Phi, or similar Intel

SMP architectures also map in a logical, but different, fashion.

Vector

Worker

Gang

GPU

Thread

Warp

SM

SMP (Phi)

SSE Vector

Core

CPU

NVIDIA GPU Task Granularity (Take Notes!)

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…

…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by one

SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

Warps – on Kepler (Still taking notes?)

Blocks are divided into 32 thread wide units called warps
Size of warps is implementation specific and can change in the future

The SM creates, manages, schedules and executes threads at warp granularity
Each warp consists of 32 threads of contiguous threadIds

All threads in a warp execute the same instruction
If threads of a warp diverge the warp serially executes each branch path taken

When a warp executes an instruction that accesses global memory it
coalesces the memory accesses of the threads within the warp into as few
transactions as possible

Determining block size – on Kepler (You can stop now)

32 thread wide blocks are good for Kepler, since warps are allocated

by row first.

32 thread wide blocks will mean all threads in a warp are reading and writing

contiguous pieces of memory

Coalescing

Try to keep total threads in a block to be a multiple of 32 if possible

Non-multiples of 32 waste some resources & cycles

Total number of threads in a block: between 256 and 512 is usually a

good number.

Determining grid size – on Kepler

Most people start with having each thread do one unit of work

Usually better to have fewer threads so that each thread could do
multiple pieces of work.

What is the limit to how much smaller we can make the number
of total blocks?

We still want to have at least as many threads as can fill the GPU many
times over (for example 4 times). That means we need at least 2880 x
15 x 4 = ~173,000 threads

Experiment by decreasing the number of threads

Mapping OpenACC to CUDA Threads and Blocks

#pragma acc kernels

for(int i = 0; i < n; ++i)

y[i] += a*x[i];

#pragma acc kernels loop gang(100) vector(128)

for(int i = 0; i < n; ++i)

y[i] += a*x[i];

#pragma acc parallel num_gangs(100) vector_length(128)

{

#pragma acc loop gang vector

for(int i = 0; i < n; ++i) y[i] += a*x[i];

}

100 thread blocks, each with 128

threads, each thread executes one

iteration of the loop.

100 thread blocks, each with 128

threads, each thread executes one

iteration of the loop, using parallel

16 blocks, 256 threads each.

SAXPY Returns For Some Fine Tuning

The default (will work OK):

#pragma acc kernels loop
for(int i = 0; i < n; ++i)

y[i] += a*x[i];

Some suggestions to the compiler:

#pragma acc kernels loop gang(100), vector(128)
for(int i = 0; i < n; ++i)

y[i] += a*x[i];

Specifies that the kernel will use 100 thread blocks, each with 128 threads, where

each thread executes one iteration of the loop. This beat the default by ~20% last

time I tried…

Rapid Evolution
Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Maxwell

GM107

Pascal

GP100

Compute Capability 2.0 2.1 3.0 3.5 5.0 6.0

Threads / Warp 32 32 32 32 32

Max Warps / Multiprocessor 48 48 54 64 64

Max Threads /

Multiprocessor
1536 1536 2048 2048 2048

Max Thread Blocks /

Multiprocessor
8 8 16 16 32

32‐bit Registers /

Multiprocessor
32768 32768 65536 131072 65536

Max Registers / Thread 63 63 63 255 255

Max Threads / Thread Block 1024 1024 1024 1024 1024

Shared Memory Size

Configurations
16k/48k 16k/48k 16k/32k/48k 16k/32k/48k 16k/32k/48k

Max X Grid Dimension 2^16 2^16 2^32 2^32 2^32

Hyper‐Q No No No Yes Yes Yes

Dynamic Parallelism No No No Yes Yes Yes

• Do you want to have to keep

up with this?

• Maybe the compiler knows

more about this than you? Is

that possible?

• CUDA programmers do have

to worry about all of this,

and much more.

• But doesn’t hurt much to try.

Rapid Evolution
Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Maxwell

GM107

Pascal

GP100

Compute Capability 2.0 2.1 3.0 3.5 5.0 6.0

Threads / Warp 32 32 32 32 32

Max Warps / Multiprocessor 48 48 54 64 64

Max Threads /

Multiprocessor
1536 1536 2048 2048 2048

Max Thread Blocks /

Multiprocessor
8 8 16 16 32

32‐bit Registers /

Multiprocessor
32768 32768 65536 131072 65536

Max Registers / Thread 63 63 63 255 255

Max Threads / Thread Block 1024 1024 1024 1024 1024

Shared Memory Size

Configurations
16k/48k 16k/48k 16k/32k/48k 16k/32k/48k 16k/32k/48k

Max X Grid Dimension 2^16 2^16 2^32 2^32 2^32

Hyper‐Q No No No Yes Yes Yes

Dynamic Parallelism No No No Yes Yes Yes

• Do you want to have to keep

up with this?

• Maybe the compiler knows

more about this than you? Is

that possible?

• CUDA programmers do have

to worry about all of this,

and much more.

• But doesn’t hurt much to try.

Parallel Regions vs. Kernels

We have been using kernels thus far, to great effect. However OpenACC allows us to

more explicitly control the creation of tasks via the gang, worker and vector clauses. We

can do this inside of parallel regions.

These approaches come from different backgrounds.

PGI Accelerator

region

OpenMP

parallel

OpenACC

kernels

OpenACC

parallel

Parallel Construct

Fortran
!$acc parallel [clause …]

structured block
!$acc end parallel

Clauses
if(condition)

async(expression)

num_gangs(expression)

num_workers(expression)

vector_length(expression)

C
#pragma acc parallel [clause …]

{ structured block }

private(list)

firstprivate(list)

reduction(operator:list)

Also any data clause

Parallel Clauses

num_gangs (expression) Controls how many parallel gangs are

created.

num_workers (expression) Controls how many workers are created

in each gang.

vector_length (list) Controls vector length of each worker.

private(list) A copy of each variable in list is

allocated to each gang.

firstprivate (list) private variables initialized from host.

reduction(operator:list) private variables combined across gangs.

Parallel Regions

As in OpenMP, the OpenACC parallel construct creates a number of parallel gangs

that immediately begin executing the body of the construct redundantly. When a

gang reaches a work-sharing loop, that gang will execute a subset of the loop

iterations. One difference between the OpenACC parallel construct and OpenMP

is that there is no barrier at the end of a work-sharing loop in a parallel

construct.

SAXPY as a parallel region

#pragma acc parallel num_gangs(100), vector_length(128)
{
#pragma acc loop gang, vector
for(int i = 0; i < n; ++i)

y[i] += a*x[i];
}

Compare and Contrast
Let’s look at how this plays out in actual code.

This

#pragma acc kernels
{

for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

}

Is the same as

#pragma acc parallel
{

#pragma acc loop
for(i = 0; i < n; ++i)

a[i] = b[i] + c[i];
}

Compare and Contrast

But not

#pragma acc parallel
{

for(i = 0; i < n; ++i)
a[i] = b[i] + c[i];

}

By leaving out the loop directive we get totally redundant execution of the loop

by each gang. This is not desirable.

Parallel Regions vs. Kernels
From these simple examples you could get the impression that simply putting in

loop directives everywhere would make parallel regions equivalent to kernels.

That is not the case.

The sequence of loops here

#pragma acc kernels
{
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

Does what you might think. Two kernels are generated and the first completes

before the second starts.

A parallel region will work differently

#pragma acc parallel
{
#pragma acc loop
for (i=0; i<n; i++)

a(i) = b(i)*c(i)
#pragma acc loop
for (i=1; i<n-1; i++)

d(i) = a(i-1) + a(i+1)
}

The compiler will start some number of gangs, work-share the iterations of the first loop

across those gangs, and work-share the iterations of the second loop across the same

gangs. There is no guarantee that for the same loop iteration, the same value of i will be

executed by the same gang for both loops. In fact, that's likely to be untrue, and some value

of i will be executed by different gangs between the first and second loop. There is also no

synchronization between the first and second loop, so there's no guarantee that the

assignment to a(i) from the first loop will be complete before its value is fetched by some

other gang for the assignment in the second loop.

Straight from

the pages of

our OpenMP

lecture!

Parallel Regions vs. Kernels

(Which is best?)

To put it simply, kernels leave more decision making up to the compiler. There is

nothing wrong with trusting the compiler (“trust but verify”) and that is probably a

reasonable place to start.

If you are an OpenMP programmer, you will notice a strong similarity between the

tradeoffs of kernels and regions and that of OpenMP parallel for/do versus parallel

regions. We will discuss this later when we talk about OpenMP 4.0.

As you gain experience, you may find that the parallel construct allows you to apply

your understanding more explicitly. On the other hand, as the compilers mature,

they will also be smarter about just doing the right thing. History tends to favor this

second path heavily.

OpenACC 2.0 & 2.5
Things you didn’t know were missing.

The latest version of the specification has a lot of improvements. The most anticipated

ones remove limitations that you, as new users, might not have known about.

However, they may still linger until all of the compilers get up to spec.

Procedure Calls

Nested Parallelism

As well as some other things that you might not have thought about

Device specific tuning

Multiple host thread support

Don’t be afraid to review the full spec at

http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf

Procedure Calls

In OpenACC 1.0, all procedures had to be inlined. This limitation has been removed, but

you do need to follow some rules.

#pragma acc routine worker
extern void solver(float* x, int n);
.
.
.
#pragma acc parallel loop num_gangs(200)
for(int index = 0; index < N; index++){

solver(X, n);
.
.

}

#pragma acc routine worker
void solver(float* x, int n){
.
.

#pragma acc loop
for(int index = 0; index < n; index++){

x[index] = x[index+2] * alpha;
.
.

}
.

}

In this case, the directive tells the compiler that “solver” will be a device executable and

that it may have a loop at the worker level. No caller can do worker level parallelism.

Nested Parallelism

The previous example had gangs invoking workers. But, it is now possible to have kernels

actually launch new kernels.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel loop
for(int index = 0; index < N; index++){

solver(X, index);
}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for(int index = 0; index < n; index++){

x[index] = x[index+2] * alpha
.
.

}
.

}

Having thousands of lightweight threads launching lightweight threads is probably not the

most likely scenario.

Nested Parallelism

This is a more useful case. We have a single thread on the device launching parallelism

from its thread.

#pragma acc routine
extern void solver(float* x, int n);
.
.
#pragma acc parallel num_gangs(1)
{

solver(X, n1);
solver(Y, n2);
solver(Z, n3);

}

#pragma acc routine
void solver(float* x, int n){

#pragma acc parallel loop
for(int index = 0; index < n; index++){

x[index] = x[index+2] * alpha;
.
.

}
.

}

The objective is to move as much of the application to the accelerator and minimize

communication between it and the host.

Device Specific Tuning

I hope from our brief detour into GPU hardware specifics that you have some

understanding of how hardware specific these optimizations can be. Maybe one more

reason to let kernel do its thing. However, OpenACC does have ways to allow you to

account for various hardware details. The most direct is device_type().

#pragma acc parallel loop device_type(nvidia) num_gangs(200) \
device_type(radeon) num_gangs(800)

for(index = 0; index < n; index++){
x[i] += y[i];
solver(x, y, n);

}

Multiple Devices and Multiple Threads

Multiple threads and one device: fine. You are responsible for making sure that the data is on

the multi-core host when it needs to be, and on the accelerator when it needs to be there. But,

you have those data clauses in hand already (present_or_copy will be crucial), and OpenMP has

its necessary synchronization ability.

Multiple threads and multiple devices. One might hope that the compilers will eventually make

this transparent, but at the moment you need to:

Assign threads to devices:

omp_get_thread_num

call acc_set_device_num

Manually break up the data structure into several pieces:

!$acc kernels loop copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))

From excellent example on Page 15 of the PGI 12.6 OpenACC Getting Started Guide

Asynchronous Behavior

There are synchronization rules associated with each type of loop construct, and

some of the data constructs (involving updates and independent data

management). You may want to keep them in mind if you drift very far from a

kernels model. In those cases you have wait(), asynch() and atomic clauses,

directives or APIs to manage your flow. There are several variations of each to

accommodate multiple types of conditions to continue (one or multiple waits,

test or block).

As data movement can take so much time, overlapping computation by using

these commands can be very effective.

Data Management

Create global data:
declare create (create on host and device, you will probably use update to manage)

declare device_resident (create on device only, only accessible in compute regions)

declare link and declare create pointer (pointers are created for data to be copied)

Create data transfer regions: enter data (in effect until exit data).
Like copyin, etc. except that they do not need to apply to a structured block. Can just stick one in some
initialization routine.

Update data directly: update

Again, as you get farther from a simple kernels model, you may find yourself needing to manage data transfers

in a more explicit manner. You can manually:

You should never find yourself frustrated for lack of control. You can move data at will with the available

options. And you can be fearless with the new “OK to copy even if data is already there” default (the old

present_ commands are obsolete).

There are clause, directive and even API versions of these, depending on appropriateness.

Profiling

So, how do you recognize these problems (opportunities!) besides the relatively

simple timing output we have used in this class?

One benefit of the NVIDIA ecosystem is the large number of tools from the CUDA

community that we get to piggyback upon.

The following uses the NVIDIA Visual Profiler which is part of the CUDA Toolkit.

Mandlebrot Code

This is for an OpenACC Mandlebrot set image generation code from NVIDIA . You can grab it

at

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources

https://github.com/NVIDIA-OpenACC-Course/nvidia-openacc-course-sources

Step 1 Profile

Half of our time is copying,

none of it is overlapped.

We’re still much faster than the

CPU because there’s a lot of

work.

PCIe Transfers
PCIe

Transfers

Lots of Data Transfer Time

Pipelining with 32 blocks

Broken Into Blocks With Asynchronous Transfers

Optimized In A Few Well-Informed Stages

1,00X

4,23X

7,38X 7,36X

9,78X

1,00X

2,00X

3,00X

4,00X

5,00X

6,00X

7,00X

8,00X

9,00X

10,00X

11,00X

Baseline runs

in parallel on

16 cores

1. Parallelized

2. Blocked

4.

Asynchronous

3. Update

Added

OpenACC Things Not Covered

Environment variables: Useful for different hardware configurations

if clauses, macros and conditional compilation: allow both runtime and compile
time control over host or device control flow.

API versions of nearly all directives and clauses

Hybrid programming. Works great! Don’t know how meaningful this is to you…

The OpenACC specification has grown quite accommodating as of Version 2.5. You have already seen

some redundancy between directives, clauses and APIs, so I have made no attempt to do “laundry lists”

of every option along the way. It would be quite repetitive. I think you are well prepared to glance at

the OpenACC Specification and grasp just about all of it.

We have omitted various and sundry peripheral items. Without attempting to be comprehensive, here

are a few topics of potential interest to some of you.

Credits

Some of these examples are derived from excellent explanations by these
gentlemen, and more than a little benefit was derived from their
expertise.

Michael Wolfe, PGI

Jeff Larkin, NVIDIA

Mark Harris, NVIDIA

Cliff Woolley, NVIDIA

