
David Henty

d.henty@epcc.ed.ac.uk

EPCC, University of Edinburgh

MPI / OpenMP Track

IHPCSS 2016, 

Ljubljana

Overview



Who am I?

• David Henty

– EPCC (Edinburgh Parallel Computing Centre)

– University of Edinburgh, Scotland, UK

– background in theoretical particle physics

– (computational)

– at EPCC since 1995

– in charge of training including our 1-year masters course in HPC, 

PRACE Advanced Training Centre, ARCHER training, ...

– generally interested in parallel languages and models

• EPCC runs the UK national supercomputer ARCHER

– Cray XC30 with 118,000 cores

– around 70 full time staff

– a range of work: national systems, research projects, European 

collaborations, MSc in HPC, commercial software development, ...

MPI / OpenMP IHPCSS 2016 2

http://www.epcc.ed.ac.uk/


Edinburgh

MPI / OpenMP IHPCSS 2016 3

http://www.epcc.ed.ac.uk/


ARCHER

MPI / OpenMP IHPCSS 2016 4

http://www.epcc.ed.ac.uk/


MPI / OpenMP IHPCSS 2016 5

Overview

• An introduction to

– message-passing programming with MPI

– shared-memory programming with OpenMP

– hybrid (both MPI and OpenMP at the same time)

• Assumptions

– you have used MPI

– you have some knowledge of OpenMP

– you have looked at the background material:

– www.xsede.org/web/international-hpc-summer-school/2016-wiki

– see Hands-on Session Prerequisites -> MPI/OpenMP (Classic Track)

• All exercises are based around the parallel traffic model

http://www.epcc.ed.ac.uk/
http://www.xsede.org/web/international-hpc-summer-school/2016-wiki


Materials

• Slides on XSEDE wikiw

– www.xsede.org/web/international-hpc-summer-school/2016-wiki

• Also at: tinyurl.com/ihpcss-mpi-openmp

• Additional material other than slides:

– intructions for running on Bridges: Bridges-cribsheet.pdf

– MPI/OpenMP exercise sheet: traffic-ihpcss16.pdf

– MPI/OpenMP codes: IHPCSS-pi.tar and IHPCSS-traffic.tar

– challenge talk: IHPCSS2016_Hybrid_Computing_Challenge.pdf

– challenge code: challenge.tar

MPI / OpenMP IHPCSS 2016 6

http://www.epcc.ed.ac.uk/
http://www.xsede.org/web/international-hpc-summer-school/2016-wiki


Timetable: Monday

• 13:30 Introduction and recap

• 14:00 Log on; walkthrough of pi example

• 14:30 Communicators, tags and modes

• 15:00 Break

• 15:30 Non-blocking communications

• 16:15 Practical session: traffic model

• 17:30 Close

MPI / OpenMP IHPCSS 2016 7

http://www.epcc.ed.ac.uk/


Timetable: Tuesday

• 11:45 OpenMP overview

• 12:15 Walkthrough of pi example

• 12:30 Lunch

• 13:30 Advanced worksharing and orphaning

• 14:15 Practical session: traffic model

• 15:00 Coffee

• 15:30 Hybrid MPI / OpenMP

• 16:15 Practical session

• 17:15 HPC Challenge example

• 17:30 Close

MPI / OpenMP IHPCSS 2016 8

http://www.epcc.ed.ac.uk/


Lecture / practical rationale

• A challenge to teach an audience with such a wide variety of 

previous experiences ...

• Practical

– a range of options from basic to advanced

– identical parallelisation to HPC challenge so a useful playground

• Lectures

– I am happy to cover whatever you want to know

– let me know!

MPI / OpenMP IHPCSS 2016 9

http://www.epcc.ed.ac.uk/


Message-Passing
Parallel Programming using Processes



Outline

• Message-Passing Parallelism

• processes

• messages

• communications patterns

• Practicalities

• usage on real HPC architectures

2



Analogy

• Two whiteboards in different single-person offices

• the distributed memory

• Two people working on the same problem

• the processes on different nodes attached to the interconnect

• How do they collaborate?

• to work on single problem

• Explicit communication

• e.g. by telephone

• no shared data

my 

data

my 

data

3



Process 1 Process 2

Program

Data

Process communication

4



a=23

Process 1 Process 2

Program

Data

Process communication

4



a=23

Process 1 Process 2

23

Program

Data

Process communication

4



a=23

Process 1 Process 2

23

Program

Data

Send(2,a)

Process communication

4



a=23

Process 1 Process 2

23

23

Program

Data

Send(2,a)

Process communication

4



a=23 Recv(1,b)

Process 1 Process 2

23

23

Program

Data

Send(2,a)

Process communication

4



a=23 Recv(1,b)

Process 1 Process 2

23

2323

Program

Data

Send(2,a)

Process communication

4



a=23 Recv(1,b)

Process 1 Process 2

23

2323

Program

Data

Send(2,a) a=b+1

Process communication

4



a=23 Recv(1,b)

Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

4



Synchronisation

• Synchronisation is automatic in message-passing

• the messages do it for you

• Make a phone call …

• … wait until the receiver picks up

• Receive a phone call

• … wait until the phone rings

• No danger of corrupting someone else’s data

• no shared blackboard

5



Communication modes

• Sending a message can either be synchronous or 

asynchronous

• A synchronous send is not completed until the message 

has started to be received 

• An asynchronous send completes as soon as the 

message has gone

• Receives are usually synchronous - the receiving process 

must wait until the message arrives

6



Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

7



Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been 

received.

8



Point-to-Point Communications

• We have considered two processes

• one sender

• one receiver

• This is called point-to-point communication

• simplest form of message passing

• relies on matching send and receive

• Close analogy to sending personal emails

9



Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between 

groups of processes is required

• Can be built from simple messages, but often 

implemented separately, for efficiency

10



Broadcast: one to all communication

11



Broadcast

• From one process to all others

12



Broadcast

• From one process to all others

8

12



Broadcast

• From one process to all others

8

12



Broadcast

• From one process to all others

8

8 8

8

8

8

12



Scatter

• Information scattered to many processes

0 1 2 3 4 5

13



Scatter

• Information scattered to many processes

0 1 2 3 4 5

13



Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2

13



Gather

• Information gathered onto one process

0

1

3

4

5

2

14



Gather

• Information gathered onto one process

0

1

3

4

5

2

14



Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2

14



Reduction Operations

• Combine data from several processes to form a single result

Strike?

15



Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

16



Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

15

16



Hardware

• Natural map to 

distributed-memory

• one process per 

processor-core

• messages go over 

the interconnect, 

between nodes/OS’s 

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

17



Practicalities
• 8-core machine might only have 2 

nodes

• how do we run MPI on a real HPC 
machine?

• Mostly ignore architecture

• pretend we have single-core nodes

• one MPI process per processor-core

• e.g. run 8 processes on the 2 nodes

• Messages between processes on 
the same node are fast

• but remember they also share access 
to the network

Interconnect

18



Message Passing on Shared Memory

• Run one process per core

• don’t directly exploit shared memory

• analogy is phoning your office mate

• actually works well in practice!

my 

data

my 

data
• Message-passing 

programs run by a 

special job launcher

• user specifies #copies

• some control over 

allocation to nodes

19



Issues

• Sends and receives must match

• danger of deadlock

• program will stall (forever!)

• Possible to write very complicated programs, but …

• most scientific codes have a simple structure

• often results in simple communications patterns

• Use collective communications where possible

• may be implemented in efficient ways

20



Summary (i)

• Messages are the only form of communication

• all communication is therefore explicit

• Most systems use the SPMD model

• Single Program Multiple Data

• all processes run exactly the same code

• each has a unique ID

• processes can take different branches in the same codes

• Basic communications form is point-to-point

• collective communications implement more complicated patterns 

that often occur in many codes 

21



Summary (ii)

• Message-Passing is a programming model

• that is implemented by MPI

• the Message-Passing Interface is a library of function/subroutine calls

• Essential to understand the basic concepts

• private variables

• explicit communications

• SPMD

• Major difficulty is understanding the Message-Passing model

• a very different model to sequential programming

if (x < 0)

print(“Error”);

exit;

22



Exercise: computing pi

• Will use this as a simple example for MPI and OpenMP

• Traffic Model (see later) is a much better analogue of a 

real simulation code

• but pi calculation illustrates basic concepts

23


