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Who are we? What type of careers have we had since we were students?

Why are we working with HPC? What are the challenges in our field?

How do large HPC codes evolve? Who develops them?

How do you write fast & parallel programs for real problems?

How do you extract more parallelism from an algorithm?

How do you evolve the code with new hardware?

How will we use next-generation extremely large machines?



Why multiple life sciences lectures? 
XSEDE usage over the past 7 days (prior to 2015 iHPC-SS)



GPU 
nodes



AMBER 
(Cheatham) 
ambermd.org

& GROMACS 
(Lindahl) 

gromacs.org

history, code development, philosophy, 
approach, synergies, differences, 

challenges, futures, lessons learned

http://ambermd.org
http://gromacs.org
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What do we want to do?  Accurately model 
the structure and dynamics of molecules in 

their native environment 
(i.e. follow the motions of the atoms subject to an energetic 

potential or “force field” as a function of time…)



Accurate modeling of molecules requires: 
  accurate and fast simulation methods  
  validated RNA, protein, water, ion, and ligand “force fields” 
  “good” experiments to assess results 
  dynamics and complete sampling: (convergence, reproducibility) 

               Question: Is the movement real or artifact?



δ+ δ-

bonds

electrostatics

angles

van der Waals

dihedrals

U= kr
bonds
∑ r−req( )

2

+ kθ
angles
∑ θ−θ

eq
( )

2

+
Vη
2η

∑
dihedrals
∑ 1+cos η − )[ ( φ γ ]

+
ii=1

atoms

∑
Aij
rij

12
j>

atoms

∑ −
Bij
rij

6
+
qiqj
εrij
][

Key assumption: transferability of bonding

 What is a molecular mechanical “force field” ?



…is not new, 
has a rich history, 

and is largely solved (?)

 molecular simulation / molecular dynamics



Michael Levitt: ““It’s sort of nice in more general terms to see that computational science, 
computational biology is being recognized,” he added. “It’s become a very large field and 
it’s always in some ways been the poor sister, or the ugly sister, to experimental biology.”

9 October 2013

“for the development of multiscale models for complex chemical systems



Molecular simulations

Simulations

Extreme detail

Sampling issues?

Parameter quality?

Experiments

Efficient averaging

Less detail

Chemistrys -3 0-6-15 -12 -9 310 10 10 10 10 10 10s s s s s s
Where we 

want to be

BiologyPhysics

Where we 

need to be

Where we are

-9 -6 -3 0 3



Larger machines have 
mostly enabled larger 

systems, not longer 
simulations

When we started, programs 
could use O(10) cores

How do we develop these codes 
and problems to use O(10,000+) cores?

Challenge 1:



amber
~1978 - present

Assisted Model Building with Energy Refinement

An example of code evolution



amber
~1978 - present

code   vs. force field
the setup and 

calculation 
engines

the parameters 
and potentials

Assisted Model Building with Energy Refinement

An example of code evolution



amber
~1978 - present

code   vs. force field
the setup and 

calculation 
engines

the parameters 
and potentials

• not really a professional code (some experts, some beginners) 
• not really software engineered (parts were, like GPU code, optimizations) 
• it is continually evolving; one of the first “community codes”… 
• development efforts are not directly funded (except maybe GPU)

Assisted Model Building with Energy Refinement

An example of code evolution



amber
~1978 - present

code   vs. force field
late 60’s: CFF (consistent force field) + early code 

       {Warshel, Levitt, Lifson} 

1978: Bruce Gelin thesis @ Harvard {Karplus}

Amber 1.1, 1981 
(minimization only, f’’)GROMOS CHARMM ENCAD Discover

Amber 2, 1984 
(+ dynamics) NAMDGROMACS

Assisted Model Building with Energy Refinement

first protein 
simulation ~1975

first nucleic acid 
simulation in H2O ~1985

An example of code evolution



1990-1994: SPASMS

1989: amber3a 

 1991: amber4.0

code cleanup, bug fixes 
       increased performance, portability 
 vectorization, || on hypercube, 
 shared memory 
 Intel Paragon 1/3 speed of Y-MP

? 
(blue matter) 

~2004

1986: amber3
ΔG, QM/MM, non-additivity

amber
TIMELINE

NMR refinement, normal modes, ΔG 
serious code bifurcation 

|| message passing 
(TCGMSG, PVM, MPI, …)

1994: amber4.1
particle mesh Ewald ☺ 

more shared memory, MPI only 
#ifdef MPI

Special purpose? 
MD-GRAPE 

SFE, Tera, …



roar

rdparm, ptraj 
  CPPTRAJ

sleap, gleap, ???

dead

incorrect #’s

…evolution of AMBER 4.1 codes



roar
rdparm, ptraj 
  CPPTRAJ

sleap, gleap, ???

dead

incorrect #’s

Lessons 
• simplify, make portable 
• reuse 
• if development stops, code dies 
• replace functioning code with new code most often fails

…evolution of AMBER 4.1 codes



early days: ftp repository, makefiles (many), MACHINEFILE 

4.1-7.0:  CVS, C memory allocation move to F90, makefiles 
  compile script recognizing MACHINEFILE 
  (fight w/ compiler for giganet vs. myrinet vs. …) 

8.0: (2004) introduce fast engine pmemd, configure scripts 

simplify, unify (as machines are becoming homogeneous) 
drop vectorization, drop shared memory, drop machine specific opts

focus on fewer compilers: gnu, intel, pgi, pathscale 
minimize #ifdefs to infrequently used code paths

~1995-2005: homogeneous hardware, standard MPI ||

optimize ||
accelerators special 

purpose

floating point precision: single vs. double vs. mixed/fixed

…to present day…



early days: ftp repository, makefiles (many), MACHINEFILE 

4.1-7.0:  CVS, C memory allocation move to F90, makefiles 
  compile script recognizing MACHINEFILE 
  (fight w/ compiler for giganet vs. myrinet vs. …) 

8.0: (2004) introduce fast engine pmemd, configure scripts 

10.0: (2008) AmberTools (open source), OpenMP 
  separate configure for AmberTools, sander, pmemd 

11:0: (2010) git tree, full F90, make depend 

12.0: (2012) Unified “configure” script, easy compile, … 
  !!! automatic bug patching !!! 
14.0: (2012) GPU 1.23x, multi-GPU on node ||, …

simplify, unify (as machines are becoming homogeneous) 
drop vectorization, drop shared memory, drop machine specific opts

focus on fewer compilers: gnu, intel, pgi, pathscale 
minimize #ifdefs to infrequently used code paths

Challenge: building/patching 
the code!



AMBER 16 (released ~May 2016)



are the force fields reliable? 
(structure, dynamics, free energies) 

can we fully sample the 
conformational ensemble? 

(convergence, reproducibility)

en
er

gy

“reaction coordinate”

Computer power?

experimental ☺

vs.

Challenge 2:



How to fully sample conformational ensemble?

fs                ps                 ns                 µs                 ms                   s

brute force – long contiguous in time MD 
requires: special purpose / unique hardware 

          D.E. Shaw’s Anton machine 

16 µs/day!



How to fully sample conformational ensemble?

fs                ps                 ns                 µs                 ms                   s

brute force – long contiguous in time MD 
requires: special purpose / unique hardware 

          D.E. Shaw’s Anton machine 

16 µs/day!

fs     ps      ns  

ensembles of 
independent 
simulations 

AMBER on GPUs

220 ns/day!



2 ns intervals (10 ns running average), render every 5th frame: ~10 us total time

d(GCACGAACGAACGAACGC) – Anton vs. GPUs

Convergence, force field and salt dependence 
in simulations of nucleic acids



How to test for convergence between two simulations? 

• Aggregate independent runs into a single trajectory 
• Calculate principal components and/or clustering 
• Project principal components independently on each separate run, 

compare cluster populations between individual runs 
• Visualize results 

                         

2013



Test for convergence within and between simulations…



Test for convergence within and between simulations…



If we cannot scale to larger machine (more cores), 
couple independent MD simulations: i.e., use ensembles 
(replica exchange, || tempering, Markov State modeling, …)

independent || 
MD engines

…

…

exchanging information 
(e.g. T, force field, pH, …)



! o  All MPI communications should be done using the new  
!    communicators rather than MPI_COMM_WORLD.  A number 
!    of new communicators are defined: 
!     CommSander  -- communications within a given sander job 
!                    (replaces MPI_COMM_WORLD) 
!     CommWorld   -- communications to ALL processors across 
!                    multiple sander jobs 
!     CommMaster  -- communications to the master node of each 
!                    separate sander job each has corresponding 
!                    size and rank, 
!                    i.e. MasterRank, MasterSize 

   CommWorld = MPI_COMM_WORLD 
   call mpi_comm_rank( CommWorld, worldrank,  ierror ) 
   call mpi_comm_size( CommWorld, worldsize,  ierror ) 
   call mpi_barrier( CommWorld, ierror )



CommWorld

…

…



…

…

CommSander



…

…

CommMaster



! Create a communicator for each group of -ng NumGroup processors 

   commsander = mpi_comm_world 
   sandersize = worldsize 
   sanderrank = worldrank 
   nodeid = mod(worldrank, numgroup) 
      if (numgroup > 1) then 
      commsander = mpi_comm_null 
      call mpi_comm_split(commworld, nodeid, worldrank, & 
            commsander, ierror) 
      if (commsander == mpi_comm_null) then 
         if (worldrank == 0) then 
            write(6,'(a,i5,a,i5)') 'Error: NULL Communicator', & 
                  ’ on PE’, worldrank, ' from group ', nodeid 
         end if 
         call mexit(6,1) 
      end if 
      call mpi_comm_size(commsander, sandersize, ierror) 
      call mpi_comm_rank(commsander, sanderrank, ierror) 
   end if



 !  Define a communicator (CommMaster) that only talks between the local 
 !  "master" in each group.  This is equivalent to a SanderRank .eq. 0 

   masterid = 0 
   masterrank = MPI_UNDEFINED 
   mastersize = 0 
   if (numgroup > 1) then 
      commmaster = mpi_comm_null 
      if(sanderrank /= 0) then 
         masterid = MPI_UNDEFINED 
      end if 

      call mpi_comm_split(commworld, masterid, worldrank, & 
            commmaster, ierror) 
      ! will this be emitted when using the default MPI error handler ? 
      if (ierror /= MPI_SUCCESS) then 
         write(6,*) 'Error: MPI_COMM_SPLIT error ', ierror, & 
               ' on PE ', worldrank 
      end if 

      if(commmaster /= mpi_comm_null) then 
         call mpi_comm_size(commmaster, mastersize, ierror) 
         call mpi_comm_rank(commmaster, masterrank, ierror) 
      end if 
   end if



Standard MD

Replica-exchange MD

r(GACC) 
tetranucleotide 
[Turner / Yildirim] 

< explicit solvent >

…a system where 
we can get 
complete 
sampling



Other issues: 
• T-REMD still not “fully” converged (depending on def.) 

 24 replicas, 277-396K 
~3 μs / replica



Change in “energy representation” 
• pH 
• restraints, umbrella potentials, … 
• force field / parameter sets 
• biasing potentials (aMD) 

multi-D REMD

Fukunishi, H., Wanatabe, O., and Takada, S., J. Chem. Phys. 2002.  
Sugita, Y., Kitao, A., and Y. Okamoto, J. Chem. Phys. 2000.





CPPTRAJ 
in AmberTools





Problems with our tightly coupled approach (and/or 
ensembles in general)

• How to analyze? Sort by replica? Temperature? H? 
(need parallel else kills file system or sequential) 

• If one ensemble instance slows, they all slow… 

• Start-up time is non-trivial as number of ensemble 
instances grows…

aprun –n 4 myprogram.exe &
aprun –n 4 myprogram.exe &
aprun –n 4 myprogram.exe &
…
wait

versus 

aprun –n 40 myprogram.exe –np 40 &



Problems with our tightly coupled approach (and/or 
ensembles in general)

• How to analyze? Sort by replica? Temperature? H? 
(need parallel else kills file system or sequential) 

• If one ensemble instance slows, they all slow… 

• Start-up time is non-trivial as number of ensemble 
instances grows…

aprun –n 4 myprogram.exe &
aprun –n 4 myprogram.exe &
aprun –n 4 myprogram.exe &
…
wait

versus 

aprun –n 40 myprogram.exe –np 40 &

Needs: 
  asynchronous 
  fault tolerance 
  heterogeneous 
  easy spec / DSL / API  



Can converge r(GAAC) in 1 day, a tetraloop in ~1-2 weeks!! 

Production MD is no longer rate limiting step in workflow!

Setup, analysis, data management, …

Needs: 
• ensemble management tools 
• workflow tools 
• data management solutions 
• means to compare and share research results and codes 



use tiered resources to facilitate 
data analysis 

flash: moderate size, 
lifetime ~days, 

less trivial analysis 
(fast timescales)

Process data 
(deconvolute, 

cluster) 

Run jobs

QM calcs

Each resource has 
special strengths



2D RMSd

RMSd 
vs. 

time

automate analysis 
& 

tools for deeper 
“interactive” 

analysis





- Do not move the data (?) 
- Tiered resources 
- Persistent storage 
- Re-running the simulations

Solutions?  Analysis “on the fly…” 
[ & more coarse-grained sampling ] 

+ workflow tools for ensembles

Peta- or exa- scale science: the problem will only get worse!

…what will we miss?  Can we only get low hanging fruit?



Data challenges: 
• no longer feasible to save all data (on local resources) 
• insufficient local resources (back-up, HSM) 
• data risk: can reboot compute, not disk… 
• unclear cost models 
• domain specific 
Solutions? 
• save / distribute only what you need 

• reduced data vs. raw vs. input decks 
• host data on national servers, remote analysis



Data challenges: 
• no longer feasible to save all data (on local resources) 
• insufficient local resources (back-up, HSM) 
• data risk: can reboot compute, not disk… 
• unclear cost models 
• domain specific 
Solutions? 
• save / distribute only what you need 

• reduced data vs. raw vs. input decks 
• host data on national servers, remote analysis 

Barriers to sharing data 
• culture: “hidden gold” vs. exposing flaws 
• cost models: how to pay? 
Benefits: 
• benchmarking results, assessment / validation



People:    Hamed Hayatshahi, Dan Roe, Rodrigo Galindo, 
      Christina Bergonzo, Sean Cornillie, James Robertson, 
                Zahra Heidari [+ Henriksen, Thibault, Shahrokh] 

$$$:   

NIH R01-GM098102   “RNA-ligand interactions: simulation & experiment”            
NSF CHE-1266307     “CDS&E: Tools to facilitate deeper data analysis, …” 
NSF ACI-1521728     “RAPID: Optimizing … Ebola membrane fusion inhibitor … design” 
NSF ACI-1443054     “CIF21 DIBBS: Middleware and high performance analytics…” 
NSF ACI-1341034      “CC-NIE Integration: Science slices…” network DMZ 
NSF “Blue Waters”    PetaScale Resource Allocation for AMBER RNA 
Computer time: 

XRAC MCA01S027 
~12M core hours ~3M hours“Anton” 

(3 past awards)

PITTSBURGH 
SUPERCOMPUTING 
CENTER

~7-14M GPU hours 

!!!
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Update coordinates & 
velocities according to 
equations of motion

More steps?

Compute potential V(r) and
forces Fi = iV(r) on atoms

Initial input data:
Interaction function V(r) - "force field"

coordinates r, velocities v

Collect statistics and write 
energy/coordinates to 

trajectory files

Done!
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The challenge: 
•  ~100,000 atoms 
•  Each has ~500 neighbors 
•  ~50M interactions/step 
•  ~2B FLOPS per step 
•  ~1ms real time per step

1 interaction



1970-1990: Reduce floating-point operations 
(the fastest FLOP is the one we don’t calculate)

1990-2000: Try to parallelize the existing algorithms 
where we removed FLOPS

2000-: Change algorithms to extract parallelism

Historical approaches to make our codes faster:



Example: Remove FLOPS 
by taking longer steps

• Δt limited by fast motions - 1fs 
• Remove bond vibrations 

• SHAKE - 2fs 
• Problematic in parallel (won’t work) 
• Compromise: constrain h-bonds only - 1.4fs 

• LINCS: 
• LINear Constraint Solver 
• Approximate matrix inversion expansion 
• Fast & stable - much better than SHAKE 
• Non-iterative 
• Enables 2-3 fs timesteps 
• Parallel: P-LINCS (from Gromacs 4.0)

t=1

t=2’

t=1

t=2’’

LINCS:

t=1

t=2

A) Move w/o constraint

B) Project out motion 
along bonds

C) Correct for rotational 
extension of bond

These algorithms are complex to  
parallelize, but provide tremendous speedup 
Performance is more important than relative scaling!



Example: Remove FLOPS 
by using smaller simulation boxes

3

rc rc
1
2
rc

(a) (b) (c)

FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-o� radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.
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rc

FIG. 2: The domain decomposition cells (1-7) that communi-
cate coordinates to cell 0. Cell 2 is hidden below cell 7. The
zones that need to be communicated to cell 0 are dashed, rc

is the cut-o� radius.

are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-o� radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-o� radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To

8th-sphere

4

0

C B

B’

A’

cr

A

1

3 2C’

FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups
can be assigned to a processor, it is su⌅cient to ensure
that the charge groups within a sphere of radius rc are
present on at least one processor for every possible cen-
ter of the sphere. In Fig. ?? this means we also need to
communicate volumes B’ and C’. When no bonded inter-
actions are present between charge groups, these volumes
are not communicated. For 2D decomposition A’, B’ and
C’ are the only extra volumes that need to be considered.
For 3D domain decomposition the pictures becomes quite
a bit more complicated, but the procedure is analogous
apart from more extensive book-keeping. All three cases
have been fully implemented for general triclinic cells.

The communication of the coordinates and charge
group indices can be performed e⌅ciently by ’pulsing’ the
information in one direction simultaneously for all cells.
This needs to be repeated for each dimension. Consider
a 3D domain decomposition where we decompose in the
order x, y, z; meaning that the x boundaries are aligned,
the y boundaries are staggered in along the x direction
and the z boundaries are staggered along the x and y
directions. Each processor first sends the zone that its
neighboring cell in -z needs to this cell. Now each pro-
cessor can send the zone it neighboring cell in -y needs,
plus the part of the zone it received from +z, that is also
required by the neighbor in -y. The last step consists
of a pulse in -x where (parts of) 4 zones are sent over.
In this way on 3 communication steps are required to
communicate with 7 processors, while no information is
sent over that is not directly required by the neighbor-
ing processor. The communication of the forces happens
according to the same procedure, but in reversed order
and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from
atoms in other charge groups. This is used in some poly-
mer (anisotropic united atom) force fields, but GRO-
MACS can also employ virtual sites to entirely remove
hydrogen vibrations and construct the hydrogens in their
equilibrium positions from neighboring heavy atoms each
timestep. Since the constructing atoms are not necessar-
ily interacting on the same node, we have to track the
virtual site coordinate dependencies separately to make
sure they are both available for construction and that
forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-
ing part in MD simulations. In GROMACS, the force
calculation is preceded by the coordinate communication
and followed by the force communication. We can there-
fore balance the load by determining the time spent in the
force routines on each processor and then adjusting the
volume of every cell in the appropriate direction. The
timings are determined using inline assembly hardware
cycle counters and supported for virtually all modern
processor architectures. For a 3D decomposition with or-
der x, y, z the load balancing algorithm works as follows:
First the timings are accumulated in the z direction to
the processor of cell z=0, independently for each x and y
row. The processor of z=0 sums these timings and sends
the sum to the processor of y=0. This processor sums the
timings again and send the sum to the processor of x=0.
This processor can now shift the x boundaries and send
these to the y=0 processors. They can then determine
the y boundaries, send the x and y boundaries to the
z=0 processors, which can then determine z boundaries
and send all boundaries to the processors along their z
row. With this procedure only the necessary information
is sent to the processors that need it and global commu-
nication is avoided.

As mentioned in the introduction, load imbalance can
come from several sources. One needs to move bound-
aries in a conservative fashion in order to avoid oscil-
lations and instabilities, which could for instance occur
due to statistical fluctuations in the number of particles
in small cells. We found that scaling the relative lengths
of the cells in each dimension with 0.5 times the load
imbalance, with a maximum scaling of 5% produced ef-
ficient and stable load balancing. Of course, with our
current decision to only communicate to nearest neigh-
bors one has to make sure that cells do not get smaller
than the cut-o� radius in any dimension, but when/if this
becomes a bottleneck it is straightforward to add another
step of communication. For a large numbers of cells or
inhomogeneous systems two more checks are required. A
first restriction is that boundaries should not move more
than halfway an adjacent cell (where instead of halfway
one could also choose a di�erent value). This prevents
cells from moving so far that a charge group would move

Load balancing is tricky 
for arbitrary triclinic cells

Lysozyme, 25k atoms 
Rhombic dodecahedron 
(36k atoms in cubic cell)



How do we find parallelism?1 interaction

DPPC & Cholesterol 
130k atoms (Old scaling data from 2008)

DPPC & Cholesterol 
130k atoms

Blue Gene/L & Blue Matter:  
scaled to 3 atoms/CPU 
~10ns/day on 8192 CPUs

GROMACS 3: 2ns/day
...on a single dual dual-

core Opteron!



What does a modern CPU look like?

SIMD: 
Single 
Instruction 
Multiple 
Data



Execute 4 iterations of 
the innermost loop at once

This has served us very well for 10+ years, but it’s 
no longer good enough: We are spending way too 
much time shuffling data to fit 8-way SIMD registers

2 waters
1 neighborlist entry
9 interactions
O-O: Coulomb & L-J
All other: Coulomb

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

+

=



Explicit Data Parallelism
Stream=your data
Kernel=algoritm

Without 
dependencies,

all could be done in
parallel if enough 

hardware
was available!





It is much easier to port and 
scale a simple reference program

Our first GPU-try was 
100x slower than running 
on CPUs...

i.e., you see much better relative scaling 
before introducing any optimization



A failed GPU attempt?

Gromacs running 
entirely on CPU as 
an interface

Actual simulation running 
entirely on GPU
using OpenMM kernels

Only a few select algorithms worked
Multi-CPU usually beat GPU performance...



Option 1: Stay on the GPU

Awesome MD 
performance 
with AMBER

This avoids the
CPU to GPU 
PCIe bottleneck
completely

CPU irrelevant,
any node will work



K80

Titan Z
Titan Black

AMBER



• I like my 1980s integer unit, thank 
you, so I’ll emulate all floating-
point there

• Any other ideas?

• I’m a floating-point person, so I 
always use floating-point variables 
as my for-loops counters

“I skate to where the puck is going to be, not where it has been.”



Programming model

CPU
(PME)

GPU

N OpenMP
threads

1 MPI rank 1 MPI rank 1 MPI rank1 MPI rank

N OpenMP
threads

N OpenMP
threads

N OpenMP
threads

1 GPU
context

1 GPU
context

1 GPU
context

1 GPU
context

Domain decomposition 
dynamic load balancing

Load balancingLoad balancing



{ {
100-500 μs We cannot afford to lose all 

previous acceleration tricks!

Heterogeneous CPU-GPU acceleration in GROMACS

Wallclock time for a step: 
~0.5 ms if we want to simulate 1μs/day



Problem:
You cannot use neighborlists…

The Link-cell algorithm: Verlet, Phys Rev 159, 98-103 (1967)]

Traditional solution: 
Group interactions into “tiles”

Too much data to send 
each step, each atom has 
different neighbors, memory bottleneck: 
Won’t work well on GPUs!

5 6 9 12 15 17 18 25 32 …

7 8 9 11 12 15 17 25 32 43 54 …

i=3:
i=4:
… 8 9 10 11 12 13 19 20 …

…

X X X X
X X X X
X X X X
X X X X

Load 1 atom, then compute 1 force

Load 4 atoms, then 
compute 16 forces



Tiling circles is difficult

• You need a lot of cubes to cover a sphere 
• All interactions beyond cutoff need to be zero



From neighborlists to cluster proximity lists

X X X X
X X X X
X X X X
X X X X

Organize  
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist



12 13 14 15111098

1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

8653 9 10 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

7654 12 13 14 15

222

3333

2

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11110000

222 33332

0
1
2
3

4
5
6
7

8
9
10
11

Classical 1x1 neighborlist on 4-way SIMD

4x4 setup on 4-way SIMD

4x4 setup on 8-way SIMD

4x4 setup on SIMT-16

141312 1515141312654 77654

Unified GPU/CPU architecture - completely portable

CUDA
OpenCL
Intel MIC
x86 SSE2
x86 SSE4.1
x86 AVX
x86 AVX2
x86 AVX-512
Arm Neon
Arm64 Asimd
IBM QPX
IBM VMX
IBM VSX
Fujitsu HPC-ACE
Wanted: Fujitsu HPC-ACE2



Surprisingly little CUDA code

A total of ~3500 lines
of CUDA, compared
to 3 million lines of
C/C++
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Kernel timing

We are starting to use a 
lot of integer ops too 
for pruning & tweaking

Single exec per 
step for 1 GPU
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A lot of low-level tuning
GPU SMX scheduling/balancing

60μs actual time (1500 atoms)

If we solve all latency bottlenecks, 
we would be below 20μs





The Villin headpiece
~8,000 atoms

explicit solvent
triclinic box

PME electrostatics

i7 3930K

i7 3930K+GTX680

E5-2690+GTX Titan

0 200 400 600 800 1000 1200

ns/day

2,546 FPS  (beat that, Battlefield)



Voltage-sensor domain 
embedded in POPC lipids 
and water: 47,000 atoms

Desktop example: Core i7 4790K & GTX Titan



Strong scaling:
40-80 atoms/core
for small systems

Performance:
12k Xeon cores
running GROMACS
on SuperMUC
beats 880k cores
running a different
code on K computer

~1300 atoms/GPU



You have already lost 
the CPU game







No longer true: 14nm transition

• Technology limitations mean we get ~1.75x faster 
performance instead of ~2x 

• Extremely difficult engineering: 
1.5x more expensive than 22nm 

• We are suddenly looking at 16% improvement in 
bang-for-the-$ compared to 100% every 18M 

• The question is not whether 5nm is technically 
feasible, but whether it is financially feasible 

• There is a real risk it might stop at 10nm



Memento mori.

The last vector computer (T90)  
was shipped by Cray in 1999

Performance was 2-50 GFLOPS

If your code does not run on stream processors, 
in 2025 it might be limited to the equivalent of 
what less than a single iPhone core is today

Today, an iPhone 5s is 115.2 GFLOPS



2010: ~300,000 cores

2014: ~3M cores
2012: ~1M cores

2016: ~10M cores
2018: ~30M cores

2020: ~100M cores
2022: ~300M cores

~2024: 1B ‘cores’

We keep scaling “up” (larger systems) where we should 
scale “down” (fine-grained parallelism, ensembles)!

How will YOU 
use a billion 

cores?

June 2016:
Sunway TaihuLight
10,649,600 “cores”







From ~100k cores 
to Exascale: Ensembles
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Thread Thread Thread

MPI MPI MPI

Worker WorkerWorker

Server

IB

SSL

Shared 
memory

Average: 0.04MB/s
Peak: 100MB/s

Latency: 10 ms

Average: 0.5GB/s
Peak: >2.7GB/s

Latency: 1-10 s

Average: 0.5GB/s
Peak: 25GB/s

Latency: <100ns

Server

ServerServer

Latency: >100ms

Cluster

Markov State Models

Swarms / Transition pathways

Milestoning

Monte Carlo Sampling
Free Energies

Metadynamics



Markov State Models
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Ensembles in action
The villin 

headpiece 244 trajectories
3840-5736 cores used
MSM clustering 
Each generation 50ns,
and takes ~10h to run
(we stick to 24 cores)



30 hours later
1.4 Å RMSD

Transition state 
matrix converges in 

46h!

Compared to ASIC HW:
4-5X better throughput

2X more efficient sampling
10X total
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