
You should be here

 Filters

 Alphabetical

 Delete all objects in the

Pipeline Browser

 Select an object in the

Pipeline Browser

 Click the Delete button

(or right click, then

Delete)

 To select multiple objects

press and hold the CTRL

key while selecting

objects

You should be here

ParaView/Python Scripting
A short introduction to ParaView’s Python
Interface

Rich scripting support through Python.

Available

As part of the ParaView Client (ParaView)

An MPI-enabled batch application (pvbatch)

The ParaView python client (pvpython) or

Any other Python-enabled application

Using Python, users and developers can gain

access to the ParaView engine called Server

Manager

PARAVIEW/PYTHON SCRIPTING

• Library

• Designed to make it easy to build distributed

client-server applications

PARAVIEW/PYTHON SCRIPTING
SERVER MANAGER

Open Python Shell:

 Tools

 Python Shell

GETTING STARTED
PYTHON SHELL – USING PARAVIEW CLIENT

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

Create a Cone Object:

>>> cone = Cone()

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

This gives you the full list

of properties.

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

Check what the resolution property is

set to:

>>> cone.Resolution

>>> cone.Resolution

6

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

You can increase the resolution:

>>> cone.Resolution = 32

>>> cone.Resolution

6

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

You can increase the resolution:

>>> cone.Resolution = 32

>>> cone.Resolution

6

>>> cone.Resolution = 32

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

You could have specified a value for
resolution when creating the object
>>> cone = Cone(Resolution=32)

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

You can assign values to any

number of properties during

construction using keyword

arguments:

Type:

>>> cone.Center

[0.0, 0.0, 0.0]

>>> cone.Resolution

6

>>> cone.Resolution = 32

>>> cone.Center

[0.0, 0.0, 0.0]

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Vector properties such as this one
support setting and retrieval of
individual elements, as well as slices
(ranges of elements).

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Apply a shrink filter to the cone

>>> shrinkFilter = Shrink(cone)

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Apply a shrink filter to the cone

>>> shrinkFilter = Shrink(cone)

>>> shrinkFilter.Input

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

>>> shrinkFilter = Shrink(cone)

>>> shrinkFilter.Input

<paraview.servermanager.Cone object at 0x000000000896EEB8>

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

>>> shrinkFilter = Shrink(cone)

>>> shrinkFilter.Input

<paraview.servermanager.Cone
object at 0x000000000896EEB8>

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> cone = Cone()

>>> help(cone)

>>> cone.Resolution

>>> cone.Center

>>> cone.Center = [1, 2, 3]

>>> cone.Center[0:2] = [2, 4]

>>> cone.Center

[2.0, 4.0, 3.0]

>>> shrinkFilter = Shrink(cone)

>>> shrinkFilter.Input

<paraview.servermanager.Cone
object at 0x000000000896EEB8>

>>>

At this point you can

force ParaView to

update, which will also

cause the execution of

the cone source

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create a Cone Object:

>>> shrinkFilter.UpdatePipeline()

>>> shrinkFilter.GetDataInformation().GetNumberOfCells()

33L

>>> shrinkFilter.GetDataInformation().GetNumberOfPoints()

128L

>>>

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Create Cone Object

Set Cone Resolution

Set Cone Center Properties

Apply Shrink Filter to the Cone

Updated Pipeline

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

Two objects are needed to render the output

• A representation – takes a data object and

renders it in a view

• A view – responsible for managing a

render context and a collection of

representations

PARAVIEW/PYTHON SCRIPTING
RENDERING

Type at prompt:

>>> Show(shrinkFilter)

>>> Render()

>>> Show(shrinkFilter)

<paraview.servermanager.UnstructuredGridRe

presentation object at 0x000000000BE85B70>

>>> Render()

<paraview.servermanager.RenderView object

at 0x000000000C26D278>

>>>

PARAVIEW/PYTHON SCRIPTING
RENDERING

Type at prompt:

>>> Show(shrinkFilter)

>>> Render()

>>> Show(shrinkFilter)

<paraview.servermanager.UnstructuredGridRe

presentation object at 0x000000000BE85B70>

>>> Render()

<paraview.servermanager.RenderView object

at 0x000000000C26D278>

>>>

PARAVIEW/PYTHON SCRIPTING
RENDERING

 Should see something

similar to this

PARAVIEW/PYTHON SCRIPTING
RENDERING

Create a cone and assign it as the active object

Set a property of the active object

Apply the shrink filter to the active object

Shrink is now active

Show shrink

Render the active view

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE –WHAT DID WE DO

The value returned by

Cone() and Shrink()

was assigned to

Python variables and

used to build the

pipeline

 ParaView keeps

track of the last

pipeline object

created by the user.

This allows you to

accomplish

everything that was

just done

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

PARAVIEW/PYTHON SCRIPTING
CREATING A PIPELINE

>>> from paraview.simple import *

Create a cone and assign it as the active object

>>> Cone()

<paraview.servermanager.Cone object at 0x2910f0>

Set a property of the active object

>>> SetProperties(Resolution=32)

Apply the shrink filter to the active object

Shrink is now active

>>> Shrink()

<paraview.servermanager.Shrink object at 0xaf64050>

Show shrink

>>> Show()

<paraview.servermanager.UnstructuredGridRepresentation object at

0xaf57f90>

Render the active view

>>> Render()

<paraview.servermanager.RenderView object at 0xaf57ff0>

Type the following code in a text editor

Cone()

SetProperties(Resolution=32)

Shrink()

Show()

Render()

Save file as testScript.py

Click RUN SCRIPT from Python Shell

Locate and select script

Click OK

Should see

New objects in Pipeline Browser

Cone rendering in 3D Viewer

RUN FROM SCRIPT

http://www.paraview.org

ParaView User’s Guide: Downloaded with ParaView

ParaView Sample Data

http://www.paraview.org/Wiki/The_ParaView_Tutorial

ParaView/Python Scripting – KitwarePublic

http://www.paraview.org/Wiki/ParaView/Python_Scripting

ParaView Server Manager

http://www.paraview.org/ParaView/Doc/Nightly/www/py-

doc/paraview.servermanager.html

ADDITIONAL RESOURCES

http://www.paraview.org/
http://www.paraview.org/Wiki/The_ParaView_Tutorial
http://www.paraview.org/Wiki/ParaView/Python_Scripting
http://www.paraview.org/ParaView/Doc/Nightly/www/py-doc/paraview.servermanager.html

Vetria L. Byrd

Assistant Professor

Computer Graphics Technology

vlbyrd@purdue.edu

Purdue Polytechnic Institute

polytechnic.purdue.edu

/ TechPurdue

https://polytechnic.purdue.edu/profile/vbyrd
@VByrdPhD, @BPViz, @VisREU

https://polytechnic.purdue.edu/profile/vbyrd

