
HPC Python Programming

Ramses van Zon

SciNet HPC Consortium

IHPCSS, June 29, 2016

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 1 / 127

In this session. . .

1 Performance and Python
2 Profiling tools for Python
3 Numpy: Fast arrays for python
4 Multicore computations:

I Numexpr

I Threading

I Multiprocessing

I Mpi4py

I IPython Parallel

I Apache Spark

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 2 / 127

Getting started

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 3 / 127

Packages and code

Requirements for this session

If following along on your own laptop, you need the following packages:
numpy

scipy

numexpr

matplotlib

psutil

line profiler

memory profiler

theano

pyzmq

mpi4py

ipyparallel or
IPython.parallel

Get the code and setup files on Bridges

Code and installation can be copies from my account on Bridges. It’s in
the directory /home/rzon/hpcpy. The code accompanying this session is
in the code subdirectory.

Own laptop/Not on Bridges?

$ git clone https://gitrepos.scinet.utoronto.ca/public/hpcpy.git

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 4 / 127

Setting up for today’s class (Bridges)
To get set up for today’s class, perform the following steps.

1 Login to Bridges

$ ssh -Y USERNAME@bridges.psc.edu

2 Install code and software to your own directory

$ cp -r /home/rzon/hpcpy .

$ cd hpcpy/code

$ source setup

The last command will install a few packages into your local account, so
as to satisfy the requirements, and will load the correct modules.

3 Request an interactive session on a compute node

$ interact -n 28

$ source setup

$ make help

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 5 / 127

Introduction

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 6 / 127

Performance and Python

Python is a high-level, interpreted language.

Those defining features are often at odds with “high performance”.

But the development in Python can be substantially easier (and thus
faster) than compiled languages.

In this session, we will explore when using Python still makes sense
and xhow to get the most performance out of it, without loosing the
flexibility and ease of development.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 7 / 127

What would make Python not “high
performance”?

Interpreted language:

Translation to machine language happens line-by-line as the script is
read.

Repeated lines are no faster.

Cross-line optimizations are not possible.

Dynamic language:

Types are part of the data: extra overhead

Memory management is automatic. Behind the scene that means
reference counting and garbage collection.

All this also interfers with optimal streaming of data to processor,
which interfers with maximum performance.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 8 / 127

What would make Python not “high
performance”?

Interpreted language:

Translation to machine language happens line-by-line as the script is
read.

Repeated lines are no faster.

Cross-line optimizations are not possible.

Dynamic language:

Types are part of the data: extra overhead

Memory management is automatic. Behind the scene that means
reference counting and garbage collection.

All this also interfers with optimal streaming of data to processor,
which interfers with maximum performance.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 8 / 127

Example: 2D diffusion equation

Suppose we are interested in the time evolution of the two-dimension
diffusion equation:

∂p(x, y, t)

∂t
= D

(
∂2p(x, y, t)

∂x2
+

∂2p(x, y, t)

∂y2

)
,

on domain [x1, x2]⊗ [x1, x2],
with P (x, y, t) = 0 at all times for
all points on the domain boundary,
and for some given initial condition
p(x, y, t) = p0(x, y).

Here:

P : density

x, y: spatial coordinates

t: time

D: diffusion constant

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 9 / 127

Example: 2D diffusion, result

x1 = −10, x2 = 10, D = 1, four-peak initial condition.

t=0 t=1 t=2

t=4 t=6 t=10

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 10 / 127

Example: 2D diffusion, algorithm

Discretize space in both
directions (points dx apart)

Replace derivatives with finite
differences.

Explicit finite time stepping
scheme (time step set by dx)

For graphics: Matplotlib for
python, pgplot for
c++/fortran, every outtime

time units

Parameters in file diff2dparams.py

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 11 / 127

Example: 2D diffusion, parameters

The fortran, C++ and python codes all read the same files (by some
special tricks).

diff2dparams.py

D = 1.0;

x1 = -10.0;

x2 = 10.0;

runtime = 15.0;

dx = 0.0667;

outtime = 0.5;

graphics = False;

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 12 / 127

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same
algorithm, in C++, Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex

g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp

gfortran -c -O3 -o pgplot90.o pgplot90.f90

...

Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.44 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.37 seconds

$ etime python diff2d.py > output_n.txt

Elapsed: 599.90 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 13 / 127

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same
algorithm, in C++, Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex

g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp

gfortran -c -O3 -o pgplot90.o pgplot90.f90

...

Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.44 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.37 seconds

$ etime python diff2d.py > output_n.txt

Elapsed: 599.90 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 13 / 127

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same
algorithm, in C++, Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex

g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp

gfortran -c -O3 -o pgplot90.o pgplot90.f90

...

Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.44 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.37 seconds

$ etime python diff2d.py > output_n.txt

Elapsed: 599.90 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 13 / 127

Then why do we bother with Python?
import numpy as np

from diff2dplot import plotdens

D = 1.0;

x1 = -10.0;

x2 = 10.0;

runtime = 15.0;

dx = 0.0666;

outtime = 0.5;

nrows = int((x2-x1)/dx)

npnts = nrows + 2

xm = (x1+x2)/2

dx = (x2-x1)/nrows

dt = 0.25*dx**2/D

nsteps = int(runtime/dt)

nper = int(outtime/dt)

x=np.linspace(x1-dx,x2+dx,npnts)

dens1 = np.zeros((npnts,npnts))

dens2 = np.zeros((npnts,npnts))

lapl = np.zeros((npnts,npnts))

simtime = 0

for i in xrange(1,npnts-1):

a=1-abs(1-4*abs((x[i]-xm)/(x2-x1)))

for j in xrange(1,npnts-1):

b=1-abs(1-4*abs((x[j]-xm)/(x2-x1)))

dens1[i][j]=a*b

print(simtime)

plotdens(dens1,x[0],x[-1],True)

for s in xrange(nsteps):

lapl[1:nrows+1,1:nrows+1]=(

dens1[2:nrows+2,1:nrows+1]

+dens1[0:nrows+0,1:nrows+1]

+dens1[1:nrows+1,2:nrows+2]

+dens1[1:nrows+1,0:nrows+0]

-4*dens1[1:nrows+1,1:nrows+1])

dens2[:,:]=dens1+D/dx**2*dt*lapl

dens1,dens2 = dens2,dens1

simtime += dt

if (s+1)%nper == 0:

print(simtime)

plotdens(dens1,x[0],x[-1])
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 14 / 127

Then why do we bother with Python?

Python lends itself easily to writing clear, concise code.
(2d diffusion fits on one slide!)

Python is very flexible: large set of very useful packages.

Easy of use→ shorter development time

Python’s performance hit is most prominant on ‘tightly coupled’
calculation on fundamental data types that are known to the cpu
(integers, doubles), which is exactly the case for the 2d diffusion.

It does much less worse on file I/O, text comparisons, list
manipularions etc.

Hooks to compiled libraries to remove worst performance pitfalls.

Once the performance isn’t too bad, we can start thinking of
parallelization, i.e., using more cpu cores working on the\ same
problem.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 15 / 127

Performance tuning tools for Python

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 16 / 127

CPU performance

Performance is about maximizing the utility of a resource.

This could be cpu processing power, memory, network, file I/O, etc.

Let’s focus on cpu performance first.

CPU Profiling by function

To consider the cpu performance of functions, but not of individual
lines in your code, there is the package called cProfile.

CPU Profiling by line

To find cpu performance bottlenecks by line of code, there is package
called line profiler

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 17 / 127

cProfile
Use cProfile or profile to know in which functions your script
spends its time.

You usually do this on a smaller but representative case.

The code should be reasonably modular, i.e., with separate functions
for different tasks, for cProfile to be useful.

Example

$ python -m cProfile -s cumulative diff2d_numpy.py

...

92333 function calls (92212 primitive calls) in 4.236 sec

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(func

1 0.000 0.000 4.236 4.236 diff2d_numpy.py:9(<m

1 4.171 4.171 4.176 4.176 diff2d_numpy.py:15(m

3 0.010 0.003 0.078 0.026 __init__.py:1(<modul

1 0.003 0.003 0.059 0.059 __init__.py:106(<mod

1 0.000 0.000 0.045 0.045 add_newdocs.py:10(<m

1 0.000 0.000 0.034 0.034 type_check.py:3(<mod

1 0.000 0.000 0.017 0.017 __init__.py:7(<modul

1 0.000 0.000 0.011 0.011 decorators.py:15(<mo

1 0.002 0.002 0.011 0.011 utils.py:4(<module>)

1 0.001 0.001 0.007 0.007 tempfile.py:18(<modu

2 0.002 0.001 0.007 0.004 __init__.py:45(<modu

1 0.001 0.001 0.006 0.006 _internal.py:6(<modu

1 0.001 0.001 0.005 0.005 random.py:40(<module

80400 0.005 0.000 0.005 0.000 {abs}
....

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 18 / 127

line profiler

Use line profiler to know, line-by-line, where your script spends
its time.

You usually do this on a smaller but representative case.

First thing to do is to have your code be in a function.

You also need to include modify your script slightly:

I Decorate your function with @profile

I Run your script on the command line with

$ kernprof -l -v SCRIPTNAME

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 19 / 127

line profiler script instrumentation

Script before:

x=[1.0]*(2048*2048)

a=str(x[0])

a+="\nis a one\n"
del x

print(a)

Script after:

#file: profileme.py

@profile

def profilewrapper():

x=[1.0]*(2048*2048)

a=str(x[0])

a+="\nis a one\n"
del x

print(a)

profilewrapper()

Run at the command line:

$ kernprof -l -v profileme.py

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 20 / 127

line profiler script instrumentation

Script before:

x=[1.0]*(2048*2048)

a=str(x[0])

a+="\nis a one\n"
del x

print(a)

Script after:

#file: profileme.py

@profile

def profilewrapper():

x=[1.0]*(2048*2048)

a=str(x[0])

a+="\nis a one\n"
del x

print(a)

profilewrapper()

Run at the command line:

$ kernprof -l -v profileme.py

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 20 / 127

Output of line profiler
1.0

is a one

Wrote profile results to profileme.py.lprof

Timer unit: 1e-06 s

Total time: 0.03296 s

File: profileme.py

Function: profilewrapper at line 2

Line # Hits Time Per Hit % Time Line Contents

===

2 @profile

3 def profilewrapper():

4 1 23882 23882.0 72.5 x=[1.0]*(2048*2048)

5 1 16 16.0 0.0 a=str(x[0])

6 1 1 1.0 0.0 a+="\nis a one\n"
7 1 9024 9024.0 27.4 del x

8 1 37 37.0 0.1 print(a)

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 21 / 127

Memory performance
Why worry about this?

Once your script runs out of memory, one of a number of things may
happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 22 / 127

Memory performance
Why worry about this?

Once your script runs out of memory, one of a number of things may
happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 22 / 127

Memory performance
Why worry about this?

Once your script runs out of memory, one of a number of things may
happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 22 / 127

Garbage collector

Python uses garbage collector to clean up un-needed variables

You can force the garbage collection to run at any time by running:

>>> import gc

>>> collect = gc.collect()

Running gc by hand should only be done in specific circumstances.

You can also remove objects with del (if object larger than 32MB):

>>> x = [0,0,0,0]

>>> del x

>>> print (x)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’x’ is not defined

But how would you know when the memory usage is problematic?
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 23 / 127

memory profiler

This module/utility monitors the python memory usage and its
changes throughout the run.

Good for catching memory leaks and unexpectedly large memory
usage.

Needs same instrumentation as line profiler.

Requires the psutil module (at least on windows, but helps on
linux/mac too).

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 24 / 127

memory profiler, details
Your decorated script is usable by memory profiler.

You run your script through the profiler with the command

$ python -m memory_profiler profileme.py

1.0

is a one

Filename: profileme.py

Line # Mem usage Increment Line Contents

==

2 19.230 MiB 0.000 MiB @profile

3 def profilewrapper():

4 51.238 MiB 32.008 MiB x=[1.0]*(2048*2048)

5 51.242 MiB 0.004 MiB a=str(x[0])

6 51.242 MiB 0.000 MiB a+="\nis a one\n"
7 19.238 MiB -32.004 MiB del x

8 19.242 MiB 0.004 MiB print(a)

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 25 / 127

memory profiler, details
Your decorated script is usable by memory profiler.

You run your script through the profiler with the command

$ python -m memory_profiler profileme.py

1.0

is a one

Filename: profileme.py

Line # Mem usage Increment Line Contents

==

2 19.230 MiB 0.000 MiB @profile

3 def profilewrapper():

4 51.238 MiB 32.008 MiB x=[1.0]*(2048*2048)

5 51.242 MiB 0.004 MiB a=str(x[0])

6 51.242 MiB 0.000 MiB a+="\nis a one\n"
7 19.238 MiB -32.004 MiB del x

8 19.242 MiB 0.004 MiB print(a)
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 25 / 127

Hands-on

Profile the diff2d.py code

Reduce the resolution in diff2dparams.py, i.e., increase dx to 0.1.

In the same file, set graphics=False.

Add @profile to the main function

Run this through both the line and memory profilers.

I What lines cause the most memory usage?

I What lines cause the most cpu usage?

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 26 / 127

Numpy: faster numerical arrays for python

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 27 / 127

Lists aren’t the ideal data type

Lists can do funny things that you
don’t expect, if you’re not careful.

Lists are just a collection of
items, of any type.

If you do mathematical
operations on a list, you won’t
get what you expect.

These are not the ideal data
type for scientific computing.

Arrays are a much better
choice, but are not a native
Python data type.

>>> a = [1,2,3,4]

>>> a

[1, 2, 3, 4]

>>> b = [3,5,5,6]

>>> b

[3, 5, 5, 6]

>>> 2*a

[1, 2, 3, 4, 1, 2, 3, 4]

>>> a+b

[1, 2, 3, 4, 3, 5, 5, 6]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 28 / 127

Useful arrays: NumPy

Almost everything that you
want to do starts with NumPy.

Contains arrays of various types
and forms: zeros, ones,
linspace, etc.

>>> from numpy import zeros, ones

>>> zeros(5)

array([0., 0., 0., 0., 0.])

>>> ones(5, dtype=int)

array([1, 1, 1, 1, 1])

>>> zeros([2,2])

array([[0., 0.],

[0., 0.]])

>>> from numpy import arange

>>> from numpy import linspace

>>> arange(5)

array([0, 1, 2, 3, 4])

>>> linspace(1,5)

array([1. , 1.08163265, 1.16326531, 1.24489796, 1.32653061,

1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.73469388,

1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.14285714,

2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.55102041,

2.63265306, 2.71428571, 2.79591837, 2.87755102, 2.95918367,

3.04081633, 3.12244898, 3.20408163, 3.28571429, 3.36734694,

3.44897959, 3.53061224, 3.6122449 , 3.69387755, 3.7755102 ,

3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.18367347,

4.26530612, 4.34693878, 4.42857143, 4.51020408, 4.59183673,

4.67346939, 4.75510204, 4.83673469, 4.91836735, 5.])

>>> linspace(1,5,6)

array([1. , 1.8, 2.6, 3.4, 4.2, 5.])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 29 / 127

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major
(like Fortran, MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *

>>> zeros([2,3])

array([[0., 0., 0.],

[0., 0., 0.]])

>>> a = zeros([2,3])

>>> a[1,2] = 1

>>> a[0,1] = 2

>>> a

array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 30 / 127

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major
(like Fortran, MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *

>>> zeros([2,3])

array([[0., 0., 0.],

[0., 0., 0.]])

>>> a = zeros([2,3])

>>> a[1,2] = 1

>>> a[0,1] = 2

>>> a

array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 30 / 127

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major
(like Fortran, MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *

>>> zeros([2,3])

array([[0., 0., 0.],

[0., 0., 0.]])

>>> a = zeros([2,3])

>>> a[1,2] = 1

>>> a[0,1] = 2

>>> a

array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 30 / 127

Copying array variables
Use caution when copying array variables. There’s a ‘feature’ here that is
unexpected.

>>> a = 10; b = a; a = 20

>>> a, b

(20, 10)

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[16, 3, 4]])

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a.copy()

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[2, 3, 4]])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 31 / 127

Copying array variables
Use caution when copying array variables. There’s a ‘feature’ here that is
unexpected.

>>> a = 10; b = a; a = 20

>>> a, b

(20, 10)

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[16, 3, 4]])

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a.copy()

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[2, 3, 4]])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 31 / 127

Copying array variables
Use caution when copying array variables. There’s a ‘feature’ here that is
unexpected.

>>> a = 10; b = a; a = 20

>>> a, b

(20, 10)

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[16, 3, 4]])

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> b = a.copy()

>>> a[1,0] = 16

>>> a

array([[1, 2, 3],

[16, 3, 4]])

>>> b

array([[1, 2, 3],

[2, 3, 4]])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 31 / 127

Matrix arithmetic

vector-vector & vector-scalar multiplication

1-D arrays are often called ‘vectors’.

When vectors are multiplied
you get element-by-element
multiplication.

When vectors are multiplied by
a scalar (a 0-D array), you also
get element-by-element
multiplication.

>>> import numpy as np

>>> a = np.arange(4)

>>> a

array([0, 1, 2, 3])

>>> b = np.arange(4.) + 3

>>> b

array([3., 4., 5., 6.])

>>> c = 2

>>> c

2

>>> a * b

array([0., 4., 10., 18.])

>>> a * c

array([0, 2, 4, 6])

>>> b * c

array([6., 8., 10., 12.])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 32 / 127

Matrix-vector multiplication

A 2-D array is sometimes called a
‘matrix’.

Matrix-scalar multiplication
gives element-by-element
multiplication.

With numpy, matrix-vector
multiplication DOES NOT give
the standard result!

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> a

array([[1, 2, 3],

[2, 3, 4]])

>>> b = np.arange(3) + 1

>>> b

array([1, 2, 3])

>>> a * b

array([[1, 4, 9],

[2, 6, 12]])

Numpy DOES NOT compute this:

[
a11 a12 a13

a21 a22 a23

]
∗

b1b2
b3

 =

[
a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3

]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 33 / 127

Matrix-vector multiplication

A 2-D array is sometimes called a
‘matrix’.

Matrix-scalar multiplication
gives element-by-element
multiplication.

With numpy, matrix-vector
multiplication DOES NOT give
the standard result!

>>> import numpy as np

>>> a = np.array([[1,2,3],

... [2,3,4]])

>>> a

array([[1, 2, 3],

[2, 3, 4]])

>>> b = np.arange(3) + 1

>>> b

array([1, 2, 3])

>>> a * b

array([[1, 4, 9],

[2, 6, 12]])

Numpy DOES compute this:

[
a11 a12 a13

a21 a22 a23

]
∗

b1b2
b3

 =

[
a11 ∗ b1 a12 ∗ b2 a13 ∗ b3
a21 ∗ b1 a22 ∗ b2 a23 ∗ b3

]

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 34 / 127

Matrix-matrix multiplication

Not surprisingly, matrix-matrix
multiplication doesn’t work as
expected either, instead doing the
same thing as vector-vector
multiplication.

>>> import numpy as np

>>> a = np.array([[1,2],

... [4,3]])

>>> b = np.array([[1,2],

... [4,3]])

>>> a

array([[1, 2],

[4, 3]])

>>> a * b

array([[1, 4],

[16, 9]])

Numpy DOES NOT do this:

[
a11 a12

a21 a22

]
∗
[
b11 b12
b21 b22

]
=[

a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 35 / 127

Matrix-matrix multiplication

Not surprisingly, matrix-matrix
multiplication doesn’t work as
expected either, instead doing the
same thing as vector-vector
multiplication.

>>> import numpy as np

>>> a = np.array([[1,2],

... [4,3]])

>>> b = np.array([[1,2],

... [4,3]])

>>> a

array([[1, 2],

[4, 3]])

>>> a * b

array([[1, 4],

[16, 9]])

Numpy DOES NOT do this:

[
a11 a12

a21 a22

]
∗
[
b11 b12
b21 b22

]
=[

a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]
Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 36 / 127

How to fix the matrix algebra?
There are two solutions to these
matrix multiplication problems.

The specially built-in array fixes
(using ‘array’ types).

The matrix module
(using ‘matrix’ types).

The latter option is a bit clunkier, so
we recommend the ‘fixes’.
>>> import numpy as np

>>> a = np.array([[1,2],

... [4,3]])

>>> b = np.array([[1,2],

... [4,3]])

>>> a

array([[1, 2],

[4, 3]])

>>> a.transpose()

array([[1, 4],

[2, 3]])

>>> np.dot(a.transpose(), b)

array([[17, 14],

[14, 13]])

>>> np.dot(b, a.transpose())

array([[5, 10],

[10, 25]])

>>> c = np.arange(2) + 1

>>> np.dot(a,c)

array([5, 10])

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 37 / 127

Does changing to numpy really help?
Let’s return to our 2D diffusion example.

Pure python implementation:

$ etime python diff2d.py > output_p.txt

Elapsed: 588.68 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt

Elapsed: 20.97 seconds

Yeah! About 30× faster.

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.48 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.16 seconds

So python+numpy is still 10× slower than compiled.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 38 / 127

Does changing to numpy really help?
Let’s return to our 2D diffusion example.

Pure python implementation:

$ etime python diff2d.py > output_p.txt

Elapsed: 588.68 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt

Elapsed: 20.97 seconds

Yeah! About 30× faster.

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.48 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.16 seconds

So python+numpy is still 10× slower than compiled.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 38 / 127

Does changing to numpy really help?
Let’s return to our 2D diffusion example.

Pure python implementation:

$ etime python diff2d.py > output_p.txt

Elapsed: 588.68 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt

Elapsed: 20.97 seconds

Yeah! About 30× faster.

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt

Elapsed: 2.48 seconds

$ etime ./diff2d_f90.ex > output_f.txt

Elapsed: 2.16 seconds

So python+numpy is still 10× slower than compiled.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 38 / 127

What about cython?
Cython is a compiler for python code

Almost all python is valid cython

Typically used for packages, to be used in regular python scripts.

It is important to realize that the compilation preserves the pythonic
nature of the language, i.e, garbage collection, range checking,
reference counting, etc, are still done: no performance enhancement.

$ etime python diff2d_numpy.py > output_n.txt

Elapsed: 21.61 seconds

$ etime python diff2d_numpy_cython.py > output_nc.txt

Elapsed: 22.20 seconds

If you want to get around that, you need to use Cython specific
extentions that essential use c types.

From that point on, though, it isn’t really python anymore, just a very
convenient way to write compiled python extensions.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 39 / 127

Parallel Python

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 40 / 127

Parallel Python

We will look at a number of approached to parallel programming with
Python:

Package Functionality

numexpr threaded parallelization of certain numpy expressions

fork create copies of existing process

threads create threads sharing memory

multiprocessing create processes that behave more like threads

mpi4py message passing between processes

ipyparallel framework of controling parallel workers

spark framework of controling parallel workers

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 41 / 127

Numexpr

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 42 / 127

The numexpr package

The numexpr package is useful if you’re doing matrix algebra:

It is essentially a just-in-time compiler for NumPy.

It takes matrix expressions, breaks things up into threads, and does
the calculation in parallel.

Somewhat awkwardly, it takes it’s input in as a string.

In some situations using numexpr can significantly speed up your
calculations.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 43 / 127

Numexpr in a nutshell

Give it an array artihmetic expression, and it will compile and run it,
and return or store the output.

Supported operators:
+, -, *, /, **, %, <<, >>, <, <=, ==, !=, >=, >, &, |, ~

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh,
cosh, tanh, arcsinh, arccosh arctanh, log, log10, log1p, exp,
expm1, sqrt, abs, conj, real, imag, complex, contains.

Supported reductions:
sum, product

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 44 / 127

Using the numexpr package
Without numexpr:

>>> from etime import etime

>>> import numpy as np

>>> import numexpr as ne

>>> a = np.random.rand(1000000)

>>> b = np.random.rand(1000000)

>>> c = np.zeros(1000000)

>>> etime("c = a**2 + b**2 + 2*a*b", "a,b,c")

Elapsed: 0.0080178976059 seconds

Note: The python function etime measures the elapsed time. It is defined
in the file etime.py that is part of the code of this session. The second
argument should list the variables used (though some will be picked up
automatically).

Ipython has its own version of this, invoked (without quotes) as

In [10]: %time c = a**2 + b**2 +2*a*b

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 45 / 127

Using the numexpr package

With numexpr:

>>> from etime import etime

>>> import numpy as np

>>> import numexpr as ne

>>> a = np.random.rand(1000000)

>>> b = np.random.rand(1000000)

>>> c = np.zeros(1000000)

>>> etime("c = a**2 + b**2 + 2*a*b")

Elapsed: 0.00992105007172 seconds

>>> old = ne.set_num_threads(1)

>>> etime("ne.evaluate(’a**2 + b**2 + 2*a*b’,out=c)", "a,b,c")

Elapsed: 0.00384114980698 seconds

>>> old = ne.set_num_threads(2)

>>> etime("ne.evaluate(’a**2 + b**2 + 2*a*b’,out=c)", "a,b,c")

Elapsed: 0.00219610929489 seconds

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 46 / 127

Numexpr for the diffusion example

Annoyingly, numexpr has no facilities for slicing or offsets, etc.

This is troubling for our diffusion code, in which we have to do
something like

laplacian[1:nrows+1,1:ncols+1] = (dens[2:nrows+2,1:ncols+1]

+ dens[0:nrows+0,1:ncols+1]

+ dens[1:nrows+1,2:ncols+2]

+ dens[1:nrows+1,0:ncols+0]

- 4*dens[1:nrows+1,1:ncols+1])

We would need to make a copy of dens[2:nrows+2,1:ncols+1]
etc. into a new numpy array before we can use numexpr, but copies
are expensive.

We want numexpr to use the same data as in dens, but viewed
differently.

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 47 / 127

Numexpr for the diffusion example (cont.)

We want numexpr to use the same data as in dens, but viewed
differently.

That is tricky, and requires knowledge of the data’s memory structure.

diff2d numexpr shows one possible solution.

$ etime python diff2d_numpy.py > diff2d_numpy.out

Elapsed: 21.03 seconds

$ etime python diff2d_numexpr.py > diff2d_numexpr.out

Elapsed: 4.16 seconds

Ramses van Zon (SciNet HPC Consortium) HPC Python Programming IHPCSS, June 29, 2016 48 / 127

	Getting started
	Introduction
	Performance tuning tools for Python
	Numpy: faster numerical arrays for python
	Parallel Python
	Numexpr
	Forking
	Threads in Python
	Multiprocessing
	MPI4PY
	Map/Reduce variations
	IPython's Parallel Architecture
	Spark

