
Introduction to

OpenMP

Lecture 4: Work sharing directives

2

Work sharing directives

• Directives which appear inside a parallel region and indicate how work

should be shared out between threads

– Parallel do/for loops

– Single directive

– Master directive

– Sections

– Workshare

http://www.epcc.ed.ac.uk/

3

Parallel do loops

• Loops are the most common source of parallelism in most codes. Parallel

loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between

threads.

• There is a synchronisation point at the end of the loop: all threads must

finish their iterations before any thread can proceed

http://www.epcc.ed.ac.uk/

4

Parallel do/for loops (cont)

Syntax:

Fortran:

!$OMP DO [clauses]

do loop

[!$OMP END DO]

C/C++:

#pragma omp for [clauses]

for loop

http://www.epcc.ed.ac.uk/

5

Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will partition the

iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some

ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

http://www.epcc.ed.ac.uk/

6

Restrictions in C/C++

• Because the for loop in C is a general while loop, there are restrictions on

the form it can take.

• It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalents such as var++.

Also cannot modify var within the loop body.

http://www.epcc.ed.ac.uk/

7

Parallel do/for loops (cont)

• How can you tell if a loop is parallel or not?

• Useful test: if the loop gives the same answers if it is run in reverse

order, then it is almost certainly parallel

• Jumps out of the loop are not permitted.

e.g.

do i=2,n

a(i)=2*a(i-1)

end do

http://www.epcc.ed.ac.uk/

8

Parallel do/for loops (cont)

• How can you tell if a loop is parallel or not?

• Useful test: if the loop gives the same answers if it is run in reverse

order, then it is almost certainly parallel

• Jumps out of the loop are not permitted.

e.g.

do i=2,n

a(i)=2*a(i-1)

end do

http://www.epcc.ed.ac.uk/

9

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

http://www.epcc.ed.ac.uk/

10

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

http://www.epcc.ed.ac.uk/

11

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

http://www.epcc.ed.ac.uk/

12

Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do

!$OMP END DO

!$OMP END PARALLEL

http://www.epcc.ed.ac.uk/

13

Parallel for loops (example)

Example:

#pragma omp parallel

{

#pragma omp for

for (i=0; i < n; i++)

{

b[i] = (a[i]-a[i-1])*0.5;

}

} // omp parallel

http://www.epcc.ed.ac.uk/

14

Parallel DO/FOR directive

• This construct is so common that there is a shorthand form which

combines parallel region and DO/FOR directives:

Fortran:

!$OMP PARALLEL DO [clauses]

do loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses]

for loop

http://www.epcc.ed.ac.uk/

15

Clauses

• DO/FOR directive can take PRIVATE , FIRSTPRIVATE and
REDUCTION clauses which refer to the scope of the loop.

• Note that the parallel loop index variable is PRIVATE by
default

– other loop indices are private by default in Fortran, but not
in C.

• PARALLEL DO/FOR directive can take all clauses available
for PARALLEL directive.

http://www.epcc.ed.ac.uk/

16

SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which

loops iterations are executed by which thread.

• Syntax:

Fortran: SCHEDULE (kind[, chunksize])

C/C++: schedule (kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

http://www.epcc.ed.ac.uk/

17

STATIC schedule

• With no chunksize specified, the iteration space is divided into

(approximately) equal chunks, and one chunk is assigned to each thread

in order (block schedule).

• If chunksize is specified, the iteration space is divided into chunks, each

of chunksize iterations, and the chunks are assigned cyclically to each

thread in order (block cyclic schedule)

http://www.epcc.ed.ac.uk/

18

STATIC schedule

http://www.epcc.ed.ac.uk/

19

DYNAMIC schedule

• DYNAMIC schedule divides the iteration space up into chunks of size

chunksize, and assigns them to threads on a first-come-first-served

basis.

• i.e. as a thread finish a chunk, it is assigned the next chunk in the list.

• When no chunksize is specified, it defaults to 1.

http://www.epcc.ed.ac.uk/

20

GUIDED schedule

• GUIDED schedule is similar to DYNAMIC, but the chunks start off large

and get smaller exponentially.

• The size of the next chunk is proportional to the number of remaining

iterations divided by the number of threads.

• The chunksize specifies the minimum size of the chunks.

• When no chunksize is specified it defaults to 1.

http://www.epcc.ed.ac.uk/

21

DYNAMIC and GUIDED schedules

http://www.epcc.ed.ac.uk/

22

AUTO schedule

• Lets the runtime have full freedom to choose its own

assignment of iterations to threads

• If the parallel loop is executed many times, the runtime can

evolve a good schedule which has good load balance and

low overheads.

http://www.epcc.ed.ac.uk/

23

Choosing a schedule

When to use which schedule?

• STATIC best for load balanced loops - least overhead.

• STATIC,n good for loops with mild or smooth load imbalance, but can

induce overheads.

• DYNAMIC useful if iterations have widely varying loads, but ruins data

locality.

• GUIDED often less expensive than DYNAMIC, but beware of loops

where the first iterations are the most expensive!

• AUTO may be useful if the loop is executed many times over

http://www.epcc.ed.ac.uk/

24

RUNTIME schedule

• The RUNTIME schedule defers the choice of schedule to run time, when

it is determined by the value of the environment variable OMP_SCHEDULE.

• e.g. export OMP_SCHEDULE=”guided,4”

• It is illegal to specify a chunksize in the code with the RUNTIME

schedule.

http://www.epcc.ed.ac.uk/

25

Nested loops

• For perfectly nested rectangular loops we can parallelise multiple loops

in the nest with the collapse clause:

• Argument is number of loops to collapse starting from the outside

• Will form a single loop of length NxM and then parallelise that.

• Useful if N is O(no. of threads) so parallelising the outer loop may not

have good load balance

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

http://www.epcc.ed.ac.uk/

26

SINGLE directive

• Indicates that a block of code is to be executed by a single thread only.

• The first thread to reach the SINGLE directive will execute the block

• There is a synchronisation point at the end of the block: all the other

threads wait until block has been executed.

http://www.epcc.ed.ac.uk/

27

SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

structured block

http://www.epcc.ed.ac.uk/

28

SINGLE directive (cont)

Example:

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y);

}

work(x,y);

}

http://www.epcc.ed.ac.uk/

29

SINGLE directive (cont)

• SINGLE directive can take PRIVATE and FIRSTPRIVATE clauses.

• Directive must contain a structured block: cannot branch into or out of it.

http://www.epcc.ed.ac.uk/

30

MASTER directive

• Indicates that a block of code should be executed by the master thread

(thread 0) only.

• There is no synchronisation at the end of the block: other threads skip the

block and continue executing: N.B. different from SINGLE in this respect.

http://www.epcc.ed.ac.uk/

31

MASTER directive (cont)

Syntax:

Fortran:

!$OMP MASTER

block

!$OMP END MASTER

C/C++:

#pragma omp master

structured block

http://www.epcc.ed.ac.uk/

32

Parallel sections

• Allows separate blocks of code to be executed in parallel (e.g. several

independent subroutines)

• There is a synchronisation point at the end of the blocks: all threads must

finish their blocks before any thread can proceed

• Not scalable: the source code determines the amount of parallelism

available.

• Rarely used, except with nested parallelism - see later!

http://www.epcc.ed.ac.uk/

33

Parallel sections (cont)

Syntax:

Fortran:

!$OMP SECTIONS [clauses]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS

http://www.epcc.ed.ac.uk/

34

Parallel sections (cont)

C/C++:

#pragma omp sections [clauses]

{

[#pragma omp section]

structured-block

[#pragma omp section

structured-block

. . .]

}

http://www.epcc.ed.ac.uk/

35

Parallel sections (cont)

Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL

http://www.epcc.ed.ac.uk/

36

Parallel sections (cont)

• SECTIONS directive can take PRIVATE, FIRSTPRIVATE,

LASTPRIVATE (see later) and clauses.

• Each section must contain a structured block: cannot branch into or out of

a section.

http://www.epcc.ed.ac.uk/

37

Parallel section (cont)

Shorthand form:

Fortran:

!$OMP PARALLEL SECTIONS [clauses]

. . .

!$OMP END PARALLEL SECTIONS

C/C++:

#pragma omp parallel sections [clauses]

{

. . .

}

http://www.epcc.ed.ac.uk/

38

Workshare directive

• A worksharing directive (!) which allows parallelisation of Fortran 90 array

operations, WHERE and FORALL constructs.

• Syntax:

!$OMP WORKSHARE

block

!$OMP END WORKSHARE

http://www.epcc.ed.ac.uk/

39

Workshare directive (cont.)

• Simple example

REAL A(100,200), B(100,200), C(100,200)

...

!$OMP PARALLEL

!$OMP WORKSHARE

A=B+C

!$OMP END WORKSHARE

!$OMP END PARALLEL

• N.B. No schedule clause: distribution of work units to threads is entirely up to the

compiler!

• There is a synchronisation point at the end of the workshare: all threads must
finish their work before any thread can proceed

http://www.epcc.ed.ac.uk/

40

Workshare directive (cont.)

• Can also contain array intrinsic functions, WHERE and FORALL

constructs, scalar assignment to shared variables, ATOMIC and

CRITICAL directives.

• No branches in or out of block.

• No function calls except array intrinsics and those declared

ELEMENTAL.

• Combined directive:

!$OMP PARALLEL WORKSHARE

block

!$OMP END PARALLEL WORKSHARE

http://www.epcc.ed.ac.uk/

41

Workshare directive (cont.)

• Example:

!$OMP PARALLEL WORKSHARE REDUCTION(+:t)

A = B + C

WHERE (D .ne. 0) E = 1/D

t = t + SUM(F)

FORALL (i=1:n, X(i)=0) X(i)= 1

!$OMP END PARALLEL WORKSHARE

http://www.epcc.ed.ac.uk/

42

Exercise

• Redo the Mandelbrot example using a worksharing do/for directive.

http://www.epcc.ed.ac.uk/

