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CUDA Libraries

Overview



NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT

C++ STL Features 
for CUDA

Sparse Linear 
AlgebraIMSL Library

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

Building-block 
Algorithms for CUDA

http://developer.nvidia.com/gpu-accelerated-libraries
http://code.google.com/p/thrust/downloads/list
http://developer.nvidia.com/gpu-accelerated-libraries


CUDA Math Libraries

High performance math routines for your applications:

cuFFT – Fast Fourier Transforms Library

cuBLAS – Complete BLAS Library

cuSPARSE – Sparse Matrix Library

cuRAND – Random Number Generation (RNG) Library 

NPP – Performance Primitives for Image & Video Processing

Thrust – Templated C++ Parallel Algorithms & Data Structures

math.h - C99 floating-point Library

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

Always more available at NVIDIA Developer site.

http://www.nvidia.com/getcuda


How To Use CUDA Libraries

With OpenACC



Sharing data with libraries

CUDA libraries and OpenACC both operate on device arrays

OpenACC provides mechanisms for interop with library calls

deviceptr data clause

host_data construct

These same mechanisms are useful for interoperating with custom 

CUDA C, C++ and Fortran code.



deviceptr Data Clause

deviceptr( list )Declares that the pointers in list refer to device 

pointers that need not be allocated or moved 

between the host and device for this pointer.

Example:

C

#pragma acc data deviceptr(d_input)

Fortran

$!acc data deviceptr(d_input)



host_data Construct

Makes the address of device data available on the host.

use_device( list ) Tells the compiler to use the device address for 

any variable in list. Variables in the list must be 

present in device memory due to data regions that 

contain this construct

Example

C

#pragma acc host_data use_device(d_input)

Fortran

$!acc host_data use_device(d_input)



Example: 1D convolution using CUFFT

Perform convolution in frequency space

1. Use CUFFT to transform input signal and filter kernel into the frequency 

domain

2. Perform point-wise complex multiply and scale on transformed signal

3. Use CUFFT to transform result back into the time domain

We will perform step 2 using OpenACC

Code highlights follow.  Code available with exercises in:  
Exercises/Cufft-acc



// Allocate host memory for the signal and filter
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
Complex *h_filter_kernel = (Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);

.

.

.

// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));

// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size));

Source Excerpt
Allocating Data



// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel, (cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,(float *restrict)d_signal,(float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,(cufftComplex *)d_signal, CUFFT_INVERSE);

Source Excerpt
Sharing Device Data (d_signal, d_filter_kernel)

CUDA

Routines

OpenACC

Routine



OpenACC Convolution Code
void complexPointwiseMulAndScale(int n, float *restrict signal, 

float *restrict filter_kernel)
{
// Multiply the coefficients together and normalize the result
#pragma acc data deviceptr(signal, filter_kernel)

{
#pragma acc kernels loop independent    

for (int i = 0; i < n; i++) {
float ax = signal[2*i];
float ay = signal[2*i+1];
float bx = filter_kernel[2*i];
float by = filter_kernel[2*i+1];
float s = 1.0f / n;
float cx = s * (ax * bx - ay * by);
float cy = s * (ax * by + ay * bx);
signal[2*i] = cx;
signal[2*i+1] = cy;

}
}

}

Note: The PGI C compiler does not currently support structs in 

OpenACC loops, so we cast the Complex* pointers to float* 

pointers and use interleaved indexing



Linking CUFFT

#include “cufft.h”

Compiler command line options:

CUDA_PATH = /opt/pgi/13.10.0/linux86-64/2013/cuda/5.0

CCFLAGS = -I$(CUDA_PATH)/include –L$(CUDA_PATH)/lib64 

-lcudart -lcufft

Must use 

PGI-provided 

CUDA toolkit paths

Must link libcudart

and libcufft



Result

instr009@nid27635:~/Cufft> aprun -n 1 cufft_acc
Transforming signal cufftExecC2C
Performing point-wise complex multiply and scale.
Transforming signal back cufftExecC2C
Performing Convolution on the host and checking correctness

Signal size: 500000, filter size: 33
Total Device Convolution Time: 6.576960 ms (0.186368 for point-wise convolution)
Test PASSED

OpenACCCUFFT + cudaMemcpy



Summary

Use deviceptr data clause to pass pre-allocated device data to 

OpenACC regions and loops

Use host_data to get device address for pointers inside acc data 

regions

The same techniques shown here can be used to share device 

data between OpenACC loops and 

Your custom CUDA C/C++/Fortran/etc. device code 

Any CUDA Library that uses CUDA device pointers



Appendix

Compelling Cases For Various Libraries

Of Possible Interest To You



cuFFT: Multi-dimensional FFTs

New in CUDA 4.1

Flexible input & output data layouts for all transform types

Similar to the FFTW “Advanced Interface”

Eliminates extra data transposes and copies

API is now thread-safe & callable from multiple host threads

Restructured documentation to clarify data layouts



FFTs up to 10x Faster than MKL

• Measured on sizes that are exactly powers-of-2

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

1D used in audio processing and as a foundation for 2D and 3D FFTs

Performance may vary based on OS version and motherboard configuration
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CUDA 4.1 optimizes 3D transforms

Consistently faster 

than MKL

>3x faster than 4.0 

on average

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration



cuBLAS: Dense Linear Algebra on GPUs

Complete BLAS implementation plus useful extensions

Supports all 152 standard routines for single, double, complex, and 

double complex

New in CUDA 4.1

New batched GEMM API provides >4x speedup over MKL

Useful for batches of 100+ small matrices from 4x4 to 128x128

5%-10% performance improvement to large GEMMs



cuBLAS Level 3 Performance

• 4Kx4K matrix size        

• cuBLAS 4.1, Tesla M2090 (Fermi), ECC on  

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

Performance may vary based on OS version and motherboard configuration
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• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration

ZGEMM Performance vs Intel MKL

0

50

100

150

200

250

300

350

400

450

0 256 512 768 1024 1280 1536 1792 2048

G
F

L
O

P
S

Matrix Size (NxN)

CUBLAS-Zgemm MKL-Zgemm



• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration

cuBLAS Batched GEMM API improves 

performance on batches of small matrices
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cuSPARSE: Sparse linear algebra routines

Sparse matrix-vector multiplication & triangular solve

APIs optimized for iterative methods

New in 4.1

Tri-diagonal solver with speedups up to 10x over Intel MKL

ELL-HYB format offers 2x faster matrix-vector multiplication
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cuSPARSE is >6x Faster than Intel MKL

Performance may vary based on OS version and motherboard configuration
•cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on  

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core 

@ 3.33 GHz
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Up to 40x faster with 6 CSR Vectors

Performance may vary based on OS version and motherboard configuration
• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on  

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 

3.33 GHz
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Tri-diagonal solver performance vs. MKL

*Parallel GPU implementation does not include pivoting



cuRAND: Random Number Generation

Pseudo- and Quasi-RNGs

Supports several output distributions

Statistical test results reported in documentation

New commonly used RNGs in CUDA 4.1

MRG32k3a RNG

MTGP11213 Mersenne Twister RNG



cuRAND Performance compared to Intel MKL

Performance may vary based on OS version and motherboard configuration
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OpenMP 4.0 (now 4.5) for 

Accelerators

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2016



OpenACC vs. OpenMP

OpenMP has a very similar directive philosophy.  This is no surprise as OpenACC was started by 

OpenMP members as an “accelerator development branch” with the idea of merging it back in.

OpenMP assume(d) that memory movement isn’t an issue, but that thread startup overhead is.  The 

available directives reflect that.

OpenACC assumes threads are very lightweight, but that data movement onto and off of the 

accelerator are significant.  The directives reflect that.

But, they are both similar in approach and assume that you, the programmer, are responsible for 

designating parallelizable loops.

They are also complementary and can be used together very well.



OpenMP Thread Control Philosophy

OpenMP was traditionally oriented towards controlling fully independent processors.  In return for the 

flexibility to use those processors to their fullest extent, OpenMP assumes that you know what you are doing 

and does not recognize data dependencies in the same way as OpenACC.

While you override detected data dependencies in OpenACC (with the independent clause), there is no 

such thing in OpenMP.  Everything is assumed to be independent.  You must be the paranoid one, not the 

compiler.

OpenMP assumes that every thread has it’s own synchronization control (barriers, locks).  GPUs do not have 

that at all levels.  For example, NVIDIA GPUs have synchronization at the Warp level, but not the Thread 

Block level.  There are implications regarding this difference.

In general, you might observe that OpenMP was built when threads were limited and start up overhead was 

considerable (as it still is on CPUs).  The design reflects the need to control for this.  OpenACC starts with 

devices built around very, very lightweight threads.



Intel’s MIC Approach

Since the days of RISC vs. CISC, 

Intel has mastered the art of 

figuring out what is important 

about a new processing 

technology, and saying “why can’t 

we do this in x86?”

The Intel Many Integrated Core 

(MIC) architecture is about large 

die, simpler circuit, much more 

parallelism, in the x86 line.

Courtesy Dan Stanzione, TACC



What is MIC?

Basic Design Ideas:

• Leverage x86 architecture (a CPU with many cores)

• Use x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models

• Dedicate much of the silicon to floating point ops., keep some cache(s)

• Keep cache-coherency protocol

• Increase floating-point throughput per core

• Implement as a separate device

• Strip expensive features (out-of-order execution, branch prediction, etc.)

• Widened SIMD registers for more throughput (512 bit)

• Fast (GDDR5) memory on card

Courtesy Dan Stanzione, TACC



MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring 

network for L2 Memory 

and PCIe connection

Courtesy Dan Stanzione, TACC



MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring 

network for L2 Memory 

and PCIe connection

Courtesy Dan Stanzione, TACC



OpenMP 4.0 Data Migration

OpenMP comes from an SMP multi-core background.  The original idea was to avoid 

the pain of using Unix/Posix pthreads directly.  As SMPs have no concept of 

different memory spaces, OpenMP has not been concerned with that until now.  

With OpenMP 4.0, that changes.  We now have data migration control and related 

capability like data shaping.

#pragma omp target device(0) map(tofrom:B) 



SAXPY in OpenMP 4.0 on NVIDIA

int main(int argc, const char* argv[]) {
int n = 10240; floata = 2.0f; floatb = 3.0f;
float*x = (float*) malloc(n * sizeof(float));
float*y = (float*) malloc(n * sizeof(float));

// Run SAXPY TWICE inside data region
#pragma omp target data map(to:x)
{
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = b*x[i] + y[i];

}
}
}

Courtesy Christian Terboven



Comparing OpenACC with OpenMP 4.0 on NVIDIA & Phi

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)

B[i] += sin(B[i]); 

First two examples

Courtesy Christian Terboven

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)

#pragma omp parallel for
for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]); 

#pragma acc kernels
for (i=0; i<N; ++i)

B[i] += sin(B[i]); 

OpenMP 4.0 for Intel Xeon Phi

OpenMP 4.0 for NVIDIA GPU

OpenACC for NVIDIA GPU



OpenMP 4.0 Across Architectures

#if defined FORCPU

#pragma omp parallel for simd

#elif defined FORKNC

#pragma omp target teams distribute parallel for simd

#elif defined FORGPU

#pragma omp target teams distribute parallel for \

schedule(static,1)

#elif defined FORKNL

#pragma omp parallel for simd schedule(dynamic)

#endif

for( int j = 0; j < n; ++j )

x[j] += a*y[j];

Courtesy Michael Wolfe 



Which way to go?

While this might be an interesting discussion of the finer distinctions between these two 

standards and the future merging thereof, it is not.  At the moment, there is a simpler 

reality:

OpenMP 4.0 was ratified in July 2013, and it will be a while before it has the 

widespread support of OpenMP 3.  It is currently fully implemented only on Intel 

compilers for Xeon Phi and partially now in GCC 5.x and better in GCC 6.1.  LLVM 

Clang seems to be on way.

OpenACC supports Phi with the CAPS compiler, but via an OpenCL back end.  PGI has 

had something “coming” for a while.  You would really have to have a good reason to 

not use the native Intel compiler OpenMP 4.0 at this time.



So, at this time…

If you are using Phi, you are probably going to be using the Intel OpenMP release.

If you are using NVIDIA GPU’s, you are going to be using OpenACC.

Of course, there are other ways of programming both of these devices.  You might treat 

Phi as MPI cores and use CUDA on NVIDIA , for example.  But if the directive based 

approach is for you, then your path is clear.  I don’t attempt to discuss the many other 

types of accelerators here (AMD, DSPs, FPGAs, ARM), but these techniques apply there 

as well.

And as you should now suspect, even if it takes a while for these to merge as a 

standard, it is not a big jump for you to move between them.



Going Hostless

Both Intel and NVIDIA are converging towards a hostless future.

Intel

Plug a bunch of MICs (Knights Landing) into backplanes

Programming model doesn’t really change

NVIDIA

Expanding MIMD capability of hardware with each generation

CUDA evolving towards remote data access with each version

Adding CPU on board



Some things we did not mention

OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HSA (hUMA/APU oriented)

DirectCompute (Microsoft)

Not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Very C++ for threads
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