
Using OpenACC With

CUDA Libraries

John Urbanic

with NVIDIA
Pittsburgh Supercomputing Center

Copyright 2016

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

CUDA Libraries are

interoperable with OpenACC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

CUDA Languages are

interoperable with OpenACC,

too!

CUDA Libraries

Overview

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
AlgebraIMSL Library

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

Building-block
Algorithms for CUDA

http://developer.nvidia.com/gpu-accelerated-libraries
http://code.google.com/p/thrust/downloads/list
http://developer.nvidia.com/gpu-accelerated-libraries

CUDA Math Libraries

High performance math routines for your applications:

cuFFT – Fast Fourier Transforms Library

cuBLAS – Complete BLAS Library

cuSPARSE – Sparse Matrix Library

cuRAND – Random Number Generation (RNG) Library

NPP – Performance Primitives for Image & Video Processing

Thrust – Templated C++ Parallel Algorithms & Data Structures

math.h - C99 floating-point Library

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

Always more available at NVIDIA Developer site.

http://www.nvidia.com/getcuda

How To Use CUDA Libraries

With OpenACC

Sharing data with libraries

CUDA libraries and OpenACC both operate on device arrays

OpenACC provides mechanisms for interop with library calls

deviceptr data clause

host_data construct

These same mechanisms are useful for interoperating with custom

CUDA C, C++ and Fortran code.

deviceptr Data Clause

deviceptr(list)Declares that the pointers in list refer to device

pointers that need not be allocated or moved

between the host and device for this pointer.

Example:

C

#pragma acc data deviceptr(d_input)

Fortran

$!acc data deviceptr(d_input)

host_data Construct

Makes the address of device data available on the host.

use_device(list) Tells the compiler to use the device address for

any variable in list. Variables in the list must be

present in device memory due to data regions that

contain this construct

Example

C

#pragma acc host_data use_device(d_input)

Fortran

$!acc host_data use_device(d_input)

Example: 1D convolution using CUFFT

Perform convolution in frequency space

1. Use CUFFT to transform input signal and filter kernel into the frequency

domain

2. Perform point-wise complex multiply and scale on transformed signal

3. Use CUFFT to transform result back into the time domain

We will perform step 2 using OpenACC

Code highlights follow. Code available with exercises in:
Exercises/Cufft-acc

// Allocate host memory for the signal and filter
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
Complex *h_filter_kernel = (Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);

.

.

.

// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));

// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size));

Source Excerpt
Allocating Data

// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel, (cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,(float *restrict)d_signal,(float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,(cufftComplex *)d_signal, CUFFT_INVERSE);

Source Excerpt
Sharing Device Data (d_signal, d_filter_kernel)

CUDA

Routines

OpenACC

Routine

OpenACC Convolution Code
void complexPointwiseMulAndScale(int n, float *restrict signal,

float *restrict filter_kernel)
{
// Multiply the coefficients together and normalize the result
#pragma acc data deviceptr(signal, filter_kernel)

{
#pragma acc kernels loop independent

for (int i = 0; i < n; i++) {
float ax = signal[2*i];
float ay = signal[2*i+1];
float bx = filter_kernel[2*i];
float by = filter_kernel[2*i+1];
float s = 1.0f / n;
float cx = s * (ax * bx - ay * by);
float cy = s * (ax * by + ay * bx);
signal[2*i] = cx;
signal[2*i+1] = cy;

}
}

}

Note: The PGI C compiler does not currently support structs in

OpenACC loops, so we cast the Complex* pointers to float*

pointers and use interleaved indexing

Linking CUFFT

#include “cufft.h”

Compiler command line options:

CUDA_PATH = /opt/pgi/13.10.0/linux86-64/2013/cuda/5.0

CCFLAGS = -I$(CUDA_PATH)/include –L$(CUDA_PATH)/lib64

-lcudart -lcufft

Must use

PGI-provided

CUDA toolkit paths

Must link libcudart

and libcufft

Result

instr009@nid27635:~/Cufft> aprun -n 1 cufft_acc
Transforming signal cufftExecC2C
Performing point-wise complex multiply and scale.
Transforming signal back cufftExecC2C
Performing Convolution on the host and checking correctness

Signal size: 500000, filter size: 33
Total Device Convolution Time: 6.576960 ms (0.186368 for point-wise convolution)
Test PASSED

OpenACCCUFFT + cudaMemcpy

Summary

Use deviceptr data clause to pass pre-allocated device data to

OpenACC regions and loops

Use host_data to get device address for pointers inside acc data

regions

The same techniques shown here can be used to share device

data between OpenACC loops and

Your custom CUDA C/C++/Fortran/etc. device code

Any CUDA Library that uses CUDA device pointers

Appendix

Compelling Cases For Various Libraries

Of Possible Interest To You

cuFFT: Multi-dimensional FFTs

New in CUDA 4.1

Flexible input & output data layouts for all transform types

Similar to the FFTW “Advanced Interface”

Eliminates extra data transposes and copies

API is now thread-safe & callable from multiple host threads

Restructured documentation to clarify data layouts

FFTs up to 10x Faster than MKL

• Measured on sizes that are exactly powers-of-2

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

1D used in audio processing and as a foundation for 2D and 3D FFTs

Performance may vary based on OS version and motherboard configuration

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25

G
F

L
O

P
S

Log2(size)

cuFFT Single Precision

CUFFT MKL

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25

G
F

L
O

P
S

Log2(size)

cuFFT Double Precision

CUFFT MKL

0

20

40

60

80

100

120

140

160

180

0 16 32 48 64 80 96 112 128

G
FL

O
P

S

Size (NxNxN)

Single Precision All Sizes 2x2x2 to 128x128x128

CUFFT 4.1

CUFFT 4.0

MKL

CUDA 4.1 optimizes 3D transforms

Consistently faster

than MKL

>3x faster than 4.0

on average

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration

cuBLAS: Dense Linear Algebra on GPUs

Complete BLAS implementation plus useful extensions

Supports all 152 standard routines for single, double, complex, and

double complex

New in CUDA 4.1

New batched GEMM API provides >4x speedup over MKL

Useful for batches of 100+ small matrices from 4x4 to 128x128

5%-10% performance improvement to large GEMMs

cuBLAS Level 3 Performance

• 4Kx4K matrix size

• cuBLAS 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

Performance may vary based on OS version and motherboard configuration

0

200

400

600

800

1000

1200

S
G

E
M

M
S

S
Y

M
M

S
S

Y
R

K
S

T
R

M
M

S
T

R
S

M
C

G
E

M
M

C
S

Y
M

M
C

S
Y

R
K

C
T

R
M

M
C

T
R

S
M

D
G

E
M

M
D

S
Y

M
M

D
S

Y
R

K
D

T
R

M
M

D
T

R
S

M
Z

G
E

M
M

Z
S

Y
M

M
Z

S
Y

R
K

Z
T

R
M

M
Z

T
R

S
M

Single Complex Double Double
Complex

GFLOPS

0

1

2

3

4

5

6

7

S
G

E
M

M

S
S

Y
M

M

S
S

Y
R

K

S
T

R
M

M

S
T

R
S

M

C
G

E
M

M

C
S

Y
M

M

C
S

Y
R

K

C
T

R
M

M

C
T

R
S

M

D
G

E
M

M

D
S

Y
M

M

D
S

Y
R

K

D
T

R
M

M

D
T

R
S

M

Z
G

E
M

M

Z
S

Y
M

M

Z
S

Y
R

K

Z
T

R
M

M

Z
T

R
S

M

Single Complex Double Double
Complex

Speedup over MKL

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration

ZGEMM Performance vs Intel MKL

0

50

100

150

200

250

300

350

400

450

0 256 512 768 1024 1280 1536 1792 2048

G
F

L
O

P
S

Matrix Size (NxN)

CUBLAS-Zgemm MKL-Zgemm

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHzPerformance may vary based on OS version and motherboard configuration

cuBLAS Batched GEMM API improves

performance on batches of small matrices

0

20

40

60

80

100

120

140

160

180

200

0 16 32 48 64 80 96 112 128

G
FL

O
P

S

Matrix Dimension (NxN)

cuBLAS 100 matrices cuBLAS 10,000 matrices MKL 10,000 matrices

cuSPARSE: Sparse linear algebra routines

Sparse matrix-vector multiplication & triangular solve

APIs optimized for iterative methods

New in 4.1

Tri-diagonal solver with speedups up to 10x over Intel MKL

ELL-HYB format offers 2x faster matrix-vector multiplication

𝑦1
𝑦2
𝑦3
𝑦4

= 𝛼

1.0 ⋯ ⋯ ⋯
2.0 3.0 ⋯ ⋯
⋯ ⋯ 4.0 ⋯
5.0 ⋯ 6.0 7.0

1.0
2.0
3.0
4.0

+ 𝛽

𝑦1
𝑦2
𝑦3
𝑦4

cuSPARSE is >6x Faster than Intel MKL

Performance may vary based on OS version and motherboard configuration
•cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core

@ 3.33 GHz

0

1

2

3

4

5

6

7

Sp
e

e
d

u
p

 o
ve

r
In

te
l M

K
L

Sparse Matrix x Dense Vector Performance

csrmv* hybmv*

*Average speedup over single, double, single complex & double-complex

Up to 40x faster with 6 CSR Vectors

Performance may vary based on OS version and motherboard configuration
• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

3.33 GHz

0

10

20

30

40

50

60

Sp
e

e
d

u
p

 o
ve

r
M

K
L

cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm)
Useful for block iterative solve schemes

single double single complex double complex

0

2

4

6

8

10

12

14

16

16384 131072 1048576 2097152 4194304

Sp
ee

d
u

p
 o

ve
r

In
te

l M
K

L

Matrix Size (NxN)

Speedup for Tri-Diagonal solver (gtsv)*

single double complex double complex

Performance may vary based on OS version and motherboard configuration
• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

3.33 GHz

Tri-diagonal solver performance vs. MKL

*Parallel GPU implementation does not include pivoting

cuRAND: Random Number Generation

Pseudo- and Quasi-RNGs

Supports several output distributions

Statistical test results reported in documentation

New commonly used RNGs in CUDA 4.1

MRG32k3a RNG

MTGP11213 Mersenne Twister RNG

cuRAND Performance compared to Intel MKL

Performance may vary based on OS version and motherboard configuration

0

2

4

6

8

10

12

G
ig

a
-S

a
m

p
le

s
/
S

e
c
o

n
d

Double Precision
Uniform Distribution

CURAND XORWOW

CURAND MRG32k3a

CURAND MTGP32

CURAND 32 Bit Sobol

CURAND 32 Bit Scrambled
Sobol

CURAND 64 Bit Sobol

CURAND 64 bit Scrambled
Sobol

MKL MRG32k3a

MKL 32 Bit Sobol

0

0,5

1

1,5

2

2,5

G
ig

a
-S

a
m

p
le

s
/
S

e
c
o

n
d

Double Precision
Normal Distribution

CURAND XORWOW

CURAND MRG32k3a

CURAND MTGP32

CURAND 32 Bit Sobol

CURAND 32 Bit Scrambled
Sobol

CURAND 64 Bit Sobol

CURAND 64 bit Scrambled
Sobol

MKL MRG32k3a

MKL 32 Bit Sobol

•cuRAND 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 @

3.33 GHz

OpenMP 4.0 (now 4.5) for

Accelerators

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2016

OpenACC vs. OpenMP

OpenMP has a very similar directive philosophy. This is no surprise as OpenACC was started by

OpenMP members as an “accelerator development branch” with the idea of merging it back in.

OpenMP assume(d) that memory movement isn’t an issue, but that thread startup overhead is. The

available directives reflect that.

OpenACC assumes threads are very lightweight, but that data movement onto and off of the

accelerator are significant. The directives reflect that.

But, they are both similar in approach and assume that you, the programmer, are responsible for

designating parallelizable loops.

They are also complementary and can be used together very well.

OpenMP Thread Control Philosophy

OpenMP was traditionally oriented towards controlling fully independent processors. In return for the

flexibility to use those processors to their fullest extent, OpenMP assumes that you know what you are doing

and does not recognize data dependencies in the same way as OpenACC.

While you override detected data dependencies in OpenACC (with the independent clause), there is no

such thing in OpenMP. Everything is assumed to be independent. You must be the paranoid one, not the

compiler.

OpenMP assumes that every thread has it’s own synchronization control (barriers, locks). GPUs do not have

that at all levels. For example, NVIDIA GPUs have synchronization at the Warp level, but not the Thread

Block level. There are implications regarding this difference.

In general, you might observe that OpenMP was built when threads were limited and start up overhead was

considerable (as it still is on CPUs). The design reflects the need to control for this. OpenACC starts with

devices built around very, very lightweight threads.

Intel’s MIC Approach

Since the days of RISC vs. CISC,

Intel has mastered the art of

figuring out what is important

about a new processing

technology, and saying “why can’t

we do this in x86?”

The Intel Many Integrated Core

(MIC) architecture is about large

die, simpler circuit, much more

parallelism, in the x86 line.

Courtesy Dan Stanzione, TACC

What is MIC?

Basic Design Ideas:

• Leverage x86 architecture (a CPU with many cores)

• Use x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models

• Dedicate much of the silicon to floating point ops., keep some cache(s)

• Keep cache-coherency protocol

• Increase floating-point throughput per core

• Implement as a separate device

• Strip expensive features (out-of-order execution, branch prediction, etc.)

• Widened SIMD registers for more throughput (512 bit)

• Fast (GDDR5) memory on card

Courtesy Dan Stanzione, TACC

MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring

network for L2 Memory

and PCIe connection

Courtesy Dan Stanzione, TACC

MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring

network for L2 Memory

and PCIe connection

Courtesy Dan Stanzione, TACC

OpenMP 4.0 Data Migration

OpenMP comes from an SMP multi-core background. The original idea was to avoid

the pain of using Unix/Posix pthreads directly. As SMPs have no concept of

different memory spaces, OpenMP has not been concerned with that until now.

With OpenMP 4.0, that changes. We now have data migration control and related

capability like data shaping.

#pragma omp target device(0) map(tofrom:B)

SAXPY in OpenMP 4.0 on NVIDIA

int main(int argc, const char* argv[]) {
int n = 10240; floata = 2.0f; floatb = 3.0f;
float*x = (float*) malloc(n * sizeof(float));
float*y = (float*) malloc(n * sizeof(float));

// Run SAXPY TWICE inside data region
#pragma omp target data map(to:x)
{
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = b*x[i] + y[i];

}
}
}

Courtesy Christian Terboven

Comparing OpenACC with OpenMP 4.0 on NVIDIA & Phi

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)

B[i] += sin(B[i]);

First two examples

Courtesy Christian Terboven

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)

#pragma omp parallel for
for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

#pragma acc kernels
for (i=0; i<N; ++i)

B[i] += sin(B[i]);

OpenMP 4.0 for Intel Xeon Phi

OpenMP 4.0 for NVIDIA GPU

OpenACC for NVIDIA GPU

OpenMP 4.0 Across Architectures

#if defined FORCPU

#pragma omp parallel for simd

#elif defined FORKNC

#pragma omp target teams distribute parallel for simd

#elif defined FORGPU

#pragma omp target teams distribute parallel for \

schedule(static,1)

#elif defined FORKNL

#pragma omp parallel for simd schedule(dynamic)

#endif

for(int j = 0; j < n; ++j)

x[j] += a*y[j];

Courtesy Michael Wolfe

Which way to go?

While this might be an interesting discussion of the finer distinctions between these two

standards and the future merging thereof, it is not. At the moment, there is a simpler

reality:

OpenMP 4.0 was ratified in July 2013, and it will be a while before it has the

widespread support of OpenMP 3. It is currently fully implemented only on Intel

compilers for Xeon Phi and partially now in GCC 5.x and better in GCC 6.1. LLVM

Clang seems to be on way.

OpenACC supports Phi with the CAPS compiler, but via an OpenCL back end. PGI has

had something “coming” for a while. You would really have to have a good reason to

not use the native Intel compiler OpenMP 4.0 at this time.

So, at this time…

If you are using Phi, you are probably going to be using the Intel OpenMP release.

If you are using NVIDIA GPU’s, you are going to be using OpenACC.

Of course, there are other ways of programming both of these devices. You might treat

Phi as MPI cores and use CUDA on NVIDIA , for example. But if the directive based

approach is for you, then your path is clear. I don’t attempt to discuss the many other

types of accelerators here (AMD, DSPs, FPGAs, ARM), but these techniques apply there

as well.

And as you should now suspect, even if it takes a while for these to merge as a

standard, it is not a big jump for you to move between them.

Going Hostless

Both Intel and NVIDIA are converging towards a hostless future.

Intel

Plug a bunch of MICs (Knights Landing) into backplanes

Programming model doesn’t really change

NVIDIA

Expanding MIMD capability of hardware with each generation

CUDA evolving towards remote data access with each version

Adding CPU on board

Some things we did not mention

OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HSA (hUMA/APU oriented)

DirectCompute (Microsoft)

Not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Very C++ for threads

	1
	2

