
Introduction to OpenACC

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2015

What is OpenACC?

It is a directive based standard to allow developers to

take advantage of accelerators such as GPUs from

NVIDIA and AMD, Intel's Xeon Phi, FPGAs, and even DSP

chips.

Directives

Program myscience

... serial code ...

!$acc kernels

do k = 1,n1

do i = 1,n2

... parallel code ...

enddo

enddo

!$acc end kernels

...

End Program myscience

CPU GPU

Your original

Fortran or C code

OpenACC

Compiler

Hint

Simple compiler hints from coder.

Compiler generates parallel

threaded code.

Ignorant compiler just sees some

comments.

Familiar to OpenMP Programmers

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma acc kernels

for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

More on this later!

How Else Would We Accelerate Applications?

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

(CUDA)

OpenACC

Directives

Maximum

Flexibility

Incrementally

Accelerate

Applications

Key Advantages Of This Approach

High-level. No involvement of OpenCL, CUDA, etc.

Single source. No forking off a separate GPU code. Compile the same program for

accelerators or serial, non-GPU programmers can play along.

Efficient. Experience shows very favorable comparison to low-level implementations

of same algorithms.

Performance portable. Supports GPU accelerators and co-processors from multiple

vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as resources

and profiling dictates. No wholesale rewrite required. Which can be quick.

A Few Cases
Reading DNA nucleotide sequences

Shanghai JiaoTong University

Designing circuits for quantum
computing

UIST, Macedonia

Extracting image features in real-
time

Aselsan

1 week

40x faster

3 directives

4.1x faster

HydroC- Galaxy Formation

PRACE Benchmark Code, CAPS

Real-time Derivative Valuation

Opel Blue, Ltd

Matrix Matrix Multiply

Independent Research
Scientist

Few hours

70x faster

4 directives

6.4x faster

4 directives

16x faster

1 week

3x faster

A Champion Case

S3D: Fuel Combustion

Design alternative fuels with
up to 50% higher efficiencyTitan

10 days

Jaguar

42 days

Modified <1%
Lines of Code

4x Faster

15 PF! One of fastest

simulations ever!

Broad Accelerator Support

Xeon Phi support already in CAPS. Demonstrated and soon to be release for PGI.

AMD line of accelerated processing units (APUs) as well as the AMD line of

discrete GPUs for preliminary PGI support.

Carma – a hybrid platform based on ARM Cortex-A9 quad core and an NVIDIA

Quadro® 1000M GPU.

NVIDIA…

NVIDIA Rules

or writes the rules. They have been the foremost supporter of GPU computing for

much of the past decade, and have earned the focus of this workshop. We are

using NVIDIA GPUs as our platform and our touchstone because:

They are proven

Well understood

Best bang for buck if you want to buy an accelerator

Excellent support by vendor and community

It is the basis for our leading edge platform, Keeneland

It will not be going obsolete any time soon

NVIDIA recently acquired PGI. That gave us a slight preference for the

PGI compiler over the Cray one. Both are available on Blue Waters.

True Standard

Full OpenACC 1.0 and 2.0 and now 2.5 Specifications available online

http://www.openacc-standard.org

Quick reference card also available

Implementations available now from PGI, Cray, and CAPS.

GCC version of OpenACC now in 5.x

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

!$acc kernels
do i=1,n

y(i) = a*x(i)+y(i)
enddo

!$acc end kernels
end subroutine saxpy

...
$ From main program
$ call SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Somewhere in main

// call SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Simple Example: SAXPY

SAXPY in C SAXPY in Fortran

kernels: Our first OpenACC Directive

We request that each loop execute as a separate kernel on the GPU.

This is an incredibly powerful directive.

!$acc kernels

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0

end do

do i=1,n

a(i) = b(i) + c(i)

end do

!$acc end kernels

kernel 1

kernel 2

Kernel:
A parallel routine to

run on the GPU

General Directive Syntax and Scope

Fortran

!$acc kernels [clause …]
structured block

!$acc end kernels

C

#pragma acc kernels [clause …]
{

structured block

}

I may indent the directives at the natural code indentation level for readability. It is a

common practice to always start them in the first column (ala #define/#ifdef). Either is fine

with C or Fortran 90 compilers.

Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

“I promise y is not aliased by

Anything else (esp. x)”

C Detail: the restrict keyword

Standard C (as of C99).

Important for optimization of serial as well as OpenACC and OpenMP code.

Promise given by the programmer to the compiler for a pointer

float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it (such as ptr + 1) will be

used to access the object to which it points”

Limits the effects of pointer aliasing

OpenACC compilers often require restrict to determine independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

Compile and Run

C: pgcc –acc -Minfo=accel saxpy.c

Fortran: pgf90 –acc -Minfo=accel saxpy.f90

Compiler Output

pgcc -acc -Minfo=accel saxpy.c

saxpy:

8, Generating copyin(x[:n-1])

Generating copy(y[:n-1])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

9, Loop is parallelizable

Accelerator kernel generated

9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */

CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Run: a.out

Compare: Partial CUDA C SAXPY Code
Just the subroutine

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

int i;

i = blockIdx.x*blockDim.x + threadIdx.x;

if(i <= n) x[i] = a*x[i] + y[i];

}

void saxpy(float a, float* x, float* y, int n){

float *xd, *yd;

cudaMalloc((void**)&xd, n*sizeof(float));

cudaMalloc((void**)&yd, n*sizeof(float)); cudaMemcpy(xd, x, n*sizeof(float),

cudaMemcpyHostToDevice);

cudaMemcpy(yd, y, n*sizeof(float),

cudaMemcpyHostToDevice);

saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);

cudaMemcpy(x, xd, n*sizeof(float),

cudaMemcpyDeviceToHost);

cudaFree(xd); cudaFree(yd);

}

Compare: Partial CUDA Fortran SAXPY Code
Just the subroutine

module kmod
use cudafor

contains
attributes(global) subroutine saxpy_kernel(A,X,Y,N)
real(4), device :: A, X(N), Y(N)
integer, value :: N
integer :: i
i = (blockidx%x-1)*blockdim%x + threadidx%x
if(i <= N) X(i) = A*X(i) + Y(i)
end subroutine
end module

subroutine saxpy(A, X, Y, N)
use kmod
real(4) :: A, X(N), Y(N)
integer :: N
real(4), device, allocatable, dimension(:):: &

Xd, Yd
allocate(Xd(N), Yd(N))
Xd = X(1:N)
Yd = Y(1:N)
call saxpy_kernel<<<(N+31)/32,32>>>(A, Xd, Yd, N)
X(1:N) = Xd
deallocate(Xd, Yd)
end subroutine

Again: Complete SAXPY Example Code

#include <stdlib.h>

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, char **argv)

{

int N = 1<<20; // 1 million floats

if (argc > 1)

N = atoi(argv[1]);

float *x = (float*)malloc(N * sizeof(float));

float *y = (float*)malloc(N * sizeof(float));

for (int i = 0; i < N; ++i) {

x[i] = 2.0f;

y[i] = 1.0f;

}

saxpy(N, 3.0f, x, y);

return 0;

}

Entire Subroutine

Main Code

Big Difference!

With CUDA, we changed the structure of the old code. Non-CUDA

programmers can’t understand new code. It is not even ANSI standard code.

We have separate sections for the host code, and the GPU code. Different flow

of code. Serial path now gone forever.

Where did these “32’s” and other mystery variables come from? This is a clue

that we have some hardware details to deal with here.

Exact same situation as assembly used to be. How much hand-assembled code

is still being written in HPC now that compilers have gotten so efficient?

This looks easy! Too easy…

If it is this simple, why don’t we just throw kernel in front of every loop?

Better yet, why doesn’t the compiler do this for me?

The answer is that there are two general issues that prevent the compiler from being

able to just automatically parallelize every loop.

Data Dependencies in Loops

Data Movement

The compiler needs your higher level perspective (in the form of directive hints) to

get correct results, and reasonable performance.

Data Dependencies

Most directive based parallelization consists of splitting up big do/for loops into

independent chunks that the many processors can work on simultaneously.

Take, for example, a simple for loop like this:

for(index=0, index<1000000,index++)

Array[index] = 4 * Array[index];

When run on 1000 processors, it will execute something like this…

for(index=0, index<999,index++)

Array[index] = 4*Array[index];

Processor

1

for(index=1000, index<1999,index++)

Array[index] = 4*Array[index];

Processor

2

for(index=2000, index<2999,index++)

Array[index] = 4*Array[index];

Processor

3

for(index=3000, index<3999,index++)

Array[index] = 4*Array[index];

Processor

4

for(index=4000, index<4999,index++)

Array[index] = 4*Array[index];

Processor

5 ….

No Data Dependency

Data Dependency

But what if the loops are not entirely independent?

Take, for example, a similar loop like this:

for(index=1, index<1000000,index++)

Array[index] = 4 * Array[index] – Array[index-1];

This is perfectly valid serial code.

Data Dependency

Now Processor 2, in trying to calculate its first iteration…

for(index=1000, index<1999,index++)

Array[1000] = 4 * Array[1000] – Array[999];

needs the result of Processor 1’s last iteration. If we want the correct (“same

as serial”) result, we need to wait until processor 1 finishes. Likewise for

processors 3, 4, …

Data Dependencies

That is a data dependency. If the compiler even suspects that there is a data

dependency, it will, for the sake of correctness, refuse to parallelize that loop.

11, Loop carried dependence of 'Array' prevents parallelization

Loop carried backward dependence of 'Array' prevents vectorization

As large, complex loops are quite common in HPC, especially around the most

important parts of your code, the compiler will often balk most when you most

need a kernel to be generated. What can you do?

Data Dependencies

Rearrange your code to make it more obvious to the compiler that there

is not really a data dependency.

Eliminate a real dependency by changing your code.

There is a common bag of tricks developed for this as this issue goes

back 40 years in HPC. Many are quite trivial to apply.

The compilers have gradually been learning these themselves.

Override the compiler’s judgment (independent clause) at the risk of

invalid results. Misuse of restrict has similar consequences.

Our Foundation Exercise: Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for OpenACC.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of it’s

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

do j=1,columns
do i=1,rows

temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

dt = 0.0;

for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

Serial C Code Subroutines

void track_progress(int iteration) {

int i;

printf("-- Iteration: %d --\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
}
printf("\n");

}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

int i, j; // grid indexes
int max_iterations; // number of iterations
int iteration=1; // current iteration
double dt=100; // largest change in t
struct timeval start_time, stop_time, elapsed_time; // timers

printf("Maximum iterations [100-4000]?\n");
scanf("%d", &max_iterations);

gettimeofday(&start_time,NULL); // Unix timer

initialize(); // initialize Temp_last including boundary conditions

// do until error is minimal or until max steps
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

track_progress(iteration);
}

iteration++;
}

Whole C Code

gettimeofday(&stop_time,NULL);
timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

int i;

printf("---------- Iteration number: %d ------------\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
}
printf("\n");

}

do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

do j=1,columns
do i=1,rows

dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

program serial
implicit none

!Size of plate
integer, parameter :: columns=1000
integer, parameter :: rows=1000
double precision, parameter :: max_temp_error=0.01

integer :: i, j, max_iterations, iteration=1
double precision :: dt=100.0
real :: start_time, stop_time

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

print*, 'Maximum iterations [100-4000]?'
read*, max_iterations

call cpu_time(start_time) !Fortran timer

call initialize(temperature_last)

!do until error is minimal or until maximum steps
do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

!copy grid to old grid for next iteration and find max change
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

!periodically print test values
if(mod(iteration,100).eq.0) then

call track_progress(temperature, iteration)
endif

iteration = iteration+1

enddo

call cpu_time(stop_time)

print*, 'Max error at iteration ', iteration-1, ' was ',dt
print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

end subroutine track_progress

Exercises: General Instructions for Compiling

Exercises are in the “Exercises/OpenACC” directory in your home

directory

Solutions are in the “Solutions” subdirectory

To compile

pgcc –acc laplace.c

pgf90 –acc laplace.f90

This will generate the executable a.out

Our Workshop Environment

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2016

Our Environment This Week

 Your laptops or workstations: only used for portal access

 Bridges is our HPC platform

We will here briefly go through the steps to login, edit, compile and
run before we get into the real materials.

We want to get all of the distractions and local trivia out of the way
here. Everything after this talk applies to any HPC environment you
will encounter.

© 2015 Pittsburgh Supercomputing Center

800 HPE Apollo 2000 (128GB)

compute nodes

20 “leaf” Intel® OPA edge switches

6 “core” Intel® OPA edge switches:

fully interconnected,

2 links per switch

42 HPE ProLiant DL580 (3

TB) compute nodes

20 Storage Building

Blocks, implementing

the parallel Pylon

filesystem (~10PB)

using PSC’s SLASH2

filesystem

4 HPE Integrity

Superdome X (12TB)

compute nodes

12 HPE ProLiant DL380

database nodes
6 HPE ProLiant DL360

web server nodes

4 MDS nodes

2 front-end nodes

2 boot nodes

8 management nodes

Intel® OPA cables

16 RSM nodes with NVIDIA K80

GPUs

32 RSM nodes with

NVIDIA

next-generation GPUs

http://staff.psc.edu/nystrom/bvt

×

×

×

×

×

× ×

× ×

×

×

×

×

Getting Connected

 The first time you use your account sheet, you must go to apr.psc.edu to set a password. We will take a minute to
do this shortly.

 We will be working on bridges.psc.edu. Use an ssh client (a Putty terminal, for example), to ssh to the machine.

 At this point you are on a login node. It will have a name like “br001” or “br006”. This is a fine place to edit and
compile codes. However we must be on compute nodes to do actual computing. We have designed Bridges to be
the world’s most interactive supercomputer. We generally only require you to use the batch system when you want
to. Otherwise, you get your own personal piece of the machine. To get a single GPU use “interact –p GPU”:

[urbanic@br006 ~]$ interact –p GPU

[urbanic@gpu016 ~]$

 You can tell you are on a GPU node because it has a name like “gpu012”.

 Do make sure you are working on a GPU node. Otherwise your results will be confusing.

 We could request different types of nodes (GPU for OpenACC or many cores for OpenMP, for example). In general,
you can use the interact session you request for the rest of the day unless you need to request different resources.

Editors

For editors, we have several options:

– emacs

– vi

– nano: use this if you aren’t familiar with the others

Compiling
We will be using standard Fortran and C compilers this week. They should look familiar.

 pgcc for C

 pgf90 for Fortran

We will slightly prefer the PGI compilers (the Intel or gcc ones would also be fine for most
of our work, but not so much for OpenACC). There are also MPI wrappers for these called
mpicc and mpif90 that we will use. Note that on Bridges you would normally have to
enable this compiler with

module load pgi

I have put that in the .bashrc file that we will all start with.

Multiple Sessions

You are limited to one interactive compute node session for our workshop. However, there
is no reason not to open other sessions (windows) to the login nodes for compiling and
editing. You may find this convenient. Feel free to do so.

Our Setup For This Workshop

After you copy the files from the training directory, you will have:

/Exercises

/Test

/OpenMP

laplace_serial.f90/c

/Solutions

/Examples

/Prime

/OpenACC

/MPI

Let’s get the boring stuff out of the way now.

 Log on to apr.psc.edu and set an initial password.

 Log on to Bridges.

ssh username@bridges.psc.edu

 Copy the exercise directory from the training directory to your home directory, and then copy the workshop shell script into your home
directory.

cp -r ~training/Exercises .

cp ~training/.bashrc .

 Logout and back on again to activate this script. You won’t need to do that in the future.

 Edit a file to make sure you can do so. Use emacs, vi or nano (if the first two don’t sound familiar).

 Start an interactive session.

interact –p GPU

 cd into your exercises/test directory and compile (C or Fortran)

cd Exercises/Test

pgcc test.c

pgf90 test.f90

 Run your program

a.out (You should get back a message of “Congratulations!”)

Preliminary Exercise

mailto:username@bwbay.ncsa.illinois.edu

Exercises: Very useful compiler option

Adding –Minfo=accel to your compile command will give you some very useful information about

how well the compiler was able to honor your OpenACC directives.

instr009@h2ologin2:~/Test> pgcc -acc -Minfo=accel laplace_bad_acc.c
main:

71, Generating present_or_copyout(Temperature[1:1000][1:1000])
Generating present_or_copyin(Temperature_old[0:][0:])
Generating NVIDIA code
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

72, Loop is parallelizable
73, Loop is parallelizable

Accelerator kernel generated
72, #pragma acc loop gang /* blockIdx.y */
73, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

82, Generating present_or_copyin(Temperature[1:1000][1:1000])
Generating present_or_copy(Temperature_old[1:1000][1:1000])
Generating NVIDIA code
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

83, Loop is parallelizable
84, Loop is parallelizable

Accelerator kernel generated
83, #pragma acc loop gang /* blockIdx.y */
84, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

85, Max reduction generated for dt

Exercises: General Instructions for Running

Make sure you are on a GPU node. The command prompt is your clue.

urbanic@gpu006 ~]$ a.out

You can compare against the serial code you are starting with to see what

performance gains you achieve. You can compile the serial version without

any extra flags (just pgcc or pgf90), but run it as per the above. Rename

your a.out’s to avoid confusion.

Exercise 1: Using kernels to parallelize the main loops
(About 45 minutes)

Q: Can you get a speedup with just the kernels directives?

1. Edit laplace_serial.c/f90

1. Maybe copy your intended OpenACC version to laplace_acc.c to start

2. Add directives where it helps

2. Compile with OpenACC parallelization

1. pgcc -acc –Minfo=accel laplace_acc.c or

pgf90 -acc –Minfo=accel laplace_acc.f90

2. Look at your compiler output to make sure you are having an effect

3. Run

1. a.out (Try 4000 iterations if you want a solution that converges to current tolerance)

2. Serial version for baseline time

3. Your OpenACC version for performance difference

